
Construction of Efficient

Generalized LR Parsers

Miguel A. Alonso1, David Cabrero2, and Manuel Vilares1

1 Departamento de Computación
Facultad de Informática, Universidad de La Coruña

Campus de Elviña s/n, 15071 La Coruña, Spain
2 Centro de Investigacións Lingǘısticas e Literarias Ramón Piñeiro

Estrada Santiago-Noia km 3, A Barcia,
15896 Santiago de Compostela, Spain

Abstract. We show how LR parsers for the analysis of arbitrary context-
free grammars can be derived from classical Earley’s parsing algorithm.
The result is a Generalized LR parsing algorithm working at complex-
ity O(n3) in the worst case, which is achieved by the use of dynamic
programming to represent the non-deterministic evolution of the stack
instead of graph-structured stack representations, as has often been the
case in previous approaches. The algorithm behaves better in practical
cases, achieving linear complexity on LR grammars. Experimental results
show the performance of our proposal.

1 Introduction

LR parsing, one of the strongest and most efficient class of parsing strategies
for context-free grammars (CFGs), is a two fold process: first, the grammar
is compiled into a finite-state machine called LR automaton, which has two
associated tables of actions and gotos [1]; second, a push-down automata with
the LR automaton as finite-state engine is used to parse strings according to
the grammar. The efficiency of the parsing relies on the implementation of this
run-time phase, which is the center of our discussion in this article.

The class of grammars that can be deterministically analyzed using LR pars-
ing with k lookahead symbols are called LR(k) grammars. They are useful for
describing programming languages, but they are very limited when they are used
for other purposes, for example parsing of natural languages. If we consider LR
parsing tables in which each entry can contain several actions, we obtain non-
deterministic LR parsing, often known as generalized LR parsing. A kind of gen-
eralized LR parsing was proposed by Tomita in [13]. He uses a graph-structured

stack instead of a single stack in order to deal with multiple parses of a single
sentence. Tomita’s algorithm has problems with cyclic and hidden left recursive

constructions. Moreover, the complexity of Tomita’s algorithm with respect to
the input string is O(np+1), where p is the length of the longer right-hand side
of a rule.

Several enhancements to the original Tomita’s algorithm have been proposed.
Rekers [9] has modified the original algorithm to overcome its limitations, but
maintaining at least the original complexity. Other authors prefer to transform
the grammar in order to reduce the space and time bounds [10]. Some approaches
also use transformations in the construction of the LR automaton and in these
the treatment of cyclicity is even more complex and so is often avoided [7].

In recent years there has been a great interest in knowing how one parsing
algorithm can be derived from another [7, 12, 6]. Usually, the start point for
this comparison is Earley’s algorithm [3]. We propose a generalized LR(1) and
LALR(1) parsing algorithm for arbitrary context-free grammars which is derived,
in a natural way, from the well known Earley’s algorithm, preserving cubic time
complexity in the worst case but performing better in the average case and
attaining linear complexity in the case of LR grammars.

1.1 Parsing Schemata

We will describe parsing algorithms using Parsing Schemata, a framework for
high-level description of parsing algorithms [12]. An interesting application of
this framework is the analysis of the relations between different parsing al-
gorithms by studying the formal relations between their underlying parsing
schemata.

Given a context-free grammar G = (VN , VT , P, S), where VN is a finite set of
non-terminal symbols, VT is a finite set of terminal symbols, P is a finite set of
productions A → α and S ∈ VN is the start symbol or axiom of the grammar,
a parsing system for G and string a1 . . . an is a triple 〈I,H,D〉, with I a set of
items which represent intermediate parse results, H an initial set of items that
encodes the sentence to be parsed, and D a set of deduction steps that allow
to derive new items from already know items. Deduction steps are of the form
η1, . . . , ηk ` ξ, meaning that if all antecedents ηi of a deduction step are present,
then the consequent ξ should be generated by the parser. A set F ⊆ I of final

items represent the recognizing of a sentence.
A parsing schemata is a parsing system parameterized by a context-free gram-

mar and a sentence.
We can see a relation between parsing schemata and the grammatical de-

duction systems proposed in [11], where items are called formula schemata, de-
duction steps are inference rules, hypothesis are axioms and final items are goal

formulas.
A parsing schemata can be generalized from another one using the following

transformations [12]:

– Item refinement, breaking single items into multiple items.
– Step refinement, decomposing a single deduction step in a sequence of steps.
– Extension of a schema by considering a larger class of grammars.

In order to decrease the number of items and deduction steps in a parsing
schemata, we can apply the following kinds of filtering:

– Static filtering, in which redundant parts are simply discarded.
– Dynamic filtering, using context information to determine the validity of

items.
– Step contraction, in which a sequence of deduction steps is replaced by a

single one.

1.2 Notation

Given a CFG G = (VN , VT , P, S), we will write A,B . . . for elements in VN ,
a, b . . . for elements in VT , X,Y . . . for elements in V and α, β . . . for elements
in V ∗, where V = VN ∪ VT . The relation ⇒ on V ∗ × V ∗ is defined by α ⇒ β if
there are α′, α′′, A, γ such that α = α′Aα′′, β = α′γα′′ and A → γ ∈ P exists.
We can suffix each element in a rule r, thus Ar,0 → Ar,1Ar,2 . . . Ar,nr

.
The set of items in a parsing schemata corresponding to a given parsing

algorithm A is called IA, the set of hypotheses HA, the set of final items FA

and the set of deduction steps is called D
A

.

2 From Earley to LR in Dynamic Programming

In this section we show how a dynamic programming version of LR and LALR
parsing algorithms can be derived from Earley’s algorithm. As a first step, we
describe the latter and we show its relation with LR(0). Next, by adding looka-
head we obtain LR(1). Then, the predictive phase is compiled in a finite state
automaton and implicit binarization is used to obtain a generalized LR and
LALR parsing algorithm with cubic worst case complexity. From this point, mi-
nor changes are needed to obtain a version working on a push-down automata
implemented in dynamic programming.

2.1 Earley Parsing

An Earley parser [3] for a grammar G and input a1 . . . an constructs a sequence
of n + 1 sets of items. Each item has the form [A → α.β, i, j], where A → α.β

indicates that the α part of rule A → αβ ∈ P has been recognized, j indicates
the item is in item set j and i is a back-pointer to the item set in which we began
to recognize the current rule. It holds 0 ≤ i ≤ j.

Parsing begin with a set of initial items [S → .α, 0, 0], where S → α ∈ P ,
and successively applies the three operations scanner, predictor and completer

until new items cannot be generated.
A scanner operation can be applied if there exists an item [A → α.aβ, i, j]

and aj+1 = a, generating the item [A → αa.β, i, j + 1]. A predictor operation is
applied when an item [A → α.Bβ, i, j] exists, generating an item [B → .γ, j, j] for
each B → γ ∈ P . This operation represents the predictive descendent phase of
the algorithm. A completer operation can be applied if two items [A → α.Bβ, i, k]
and [B → γ., k, j] exist, and produces a new item [A → αB.β, i, j], which rep-
resent that ak+1 . . . aj can be reduced to B and therefore, as we know that α

reduces the input ai+1 . . . ak, we can ensure that αB reduces ai+1 . . . aj .

If a final item [S → α., 0, n] has been generated, the input sentence belongs
to the language generated by the grammar.

The parsing schemata corresponding to Earley’s algorithm is the follow-
ing [12]:

IEarley =
{

[A → α.β, i, j] | A → αβ ∈ P , 0 ≤ i ≤ j
}

HEarley =
{

[a, i, i + 1] | a = ai

}

DInit
Earley =

{

` [S → .α, 0, 0]
}

DScan
Earley =

{

[A → α.aβ, i, j], [a, j, j + 1] ` [A → αa.β, i, j + 1]
}

DPred
Earley =

{

[A → α.Bβ, i, j] ` [B → .γ, j, j]
}

DComp
Earley =

{

[A → α.Bβ, i, k], [B → γ., k, j] ` [A → αB.β, i, j]
}

DEarley = DInit
Earley ∪ DScan

Earley ∪ DPred
Earley ∪ DComp

Earley

FEarley =
{

[S → α., 0, n]
}

In Fig. 1 we show how Earley’s algorithm proceed, using arcs to represent the
part of the input string an item recognizes. We suppose the grammar includes
the following two rules:

A → αBγ

B → abc

and the item [A → α.Bβ, i, k] was already generated. Thus, α
∗
⇒ ai . . . Ak−1,

which is represented in Fig. 1 by the first thin arc. At this moment, items
containing rules of B are predicted. In our case the only item predicted is
[B → .abc, k, k], which is represented by a dashed arc in Fig. 1. The three follow-
ing arcs represent the application of three Scan steps in order to recognize termi-
nals a, b and c. The items generated are [B → a.bc, k, k + 1], [B → ab.c, k, k + 2]
and [B → abc., k, j], respectively. This last item and [A → α.Bβ, i, k] are the
antecedents of a Comp step generating [A → αB.β, i, j], which is represented by
the thick arc.

γ
i k k+1 k+2

α b ca
j

Fig. 1. Graphic representation of Earley’s algorithm

2.2 From Earley to LR(0)

The previous parsing schemata corresponds to “uncompiling” an LR(0) parser:
while LR(0) parsers compile the Pred steps into an finite state control, an Earley
parser use run-time items. What Pred really does is compute the closure function
in run-time1. In this sense, the Scan and Comp steps correspond to shift and
reduce operations of classical LR parsers.

In order to obtain a version closer to LR stack computations, we can make
several minor changes in the Scan and Comp steps, involving a slightly different
use of indexes: the components i and j of an item [A → α.β, i, j] will now
represent the part of the input string recognized by the element X ∈ V suffix
of α. Completer step must now have m elements as antecedents, where m is the
length of the right hand side of the rule to be reduced. In the new LR(0) parsing
schemata, the Scan and Comp steps are called Shift and Reduce because they
show a close relation to shift and reduce operations of LR parsers:

ILR(0) = IEarley

HLR(0) = HEarley

DInit
LR(0) = DInit

Earley

DShift
LR(0) =

{

[A → α.aβ, i, j], [a, j, j + 1] ` [A → αa.β, j, j + 1]
}

DPred
LR(0) = DPred

Earley

DReduce
LR(0) =

{

[B → X1X2 · · ·Xm., jm−1, jm], . . . , [B → X1.X2 · · ·Xm, j0, j1],
[A → α.Bβ, i, j0]
` [A → αB.β, j0, jm]

}

1 In LR(0), the closure of a state st proceed as follow: for each LR(0) item [A → α.Bβ]
in st and production B → γ, it includes [B → .γ] in st until no more elements can
be included in st.

DLR(0) = DInit
LR(0) ∪ DShift

LR(0) ∪ DPred
LR(0) ∪ DReduce

LR(0)

FLR(0) = FEarley

In Fig. 2 we show how LR(0) parsers proceed for the same case of Fig. 1. We
suppose the item [A → α.Bβ, ?, k] was already generated2. At this point, the item
[B → .abc, k, k] is predicted. Shifts of the terminals a, b y c generate the items
[B → a.bc, k, k +1], [B → ab.c, k +1, k +2] and [B → abc., k +2, j], respectively,
which are represented by three thin arcs in Fig. 2. The difference of behavior
between Earley and LR(0) parsing algorithms is due to the different coverage of
Scan and Shift deduction steps, as can be observed comparing Fig. 1 and Fig. 2.
Following the parsing process, the reduction of rule B → abc is performed by
grouping the items corresponding to the recognition of each element of the right-
hand side of that rule, generating the item [A → αB.β, k, j], which is represented
by a thick arc in Fig. 2.

k+1 k+2
b cα a

j

γ
i k

Fig. 2. Graphic representation of LR(0) algorithm

2.3 LR Parsing with Lookahead

In order to obtain a parsing schemata for LR(1), we must introduce the notion
of lookahead into items, as is done in the classical construction of finite state
control for LR(1) parsers [1]. The items in LR parsing schemata can be obtained
by item refinement of LR(0) items if we consider that in Earley and LR(0)
parsing schemata, each item represents a set of items having the same dotted
rule and indexes but probably different lookahead:

ILR =
{

[A → α.β, b, i, j] | A → αβ ∈ P , b ∈ VT , 0 ≤ i ≤ j
}

where b represents the lookahead. The parsing schemata, in which lookahead
is set in DPred

LR and checked in DReduce
LR , by means of a dynamic filter, is the

following:

2 The first index can not be known from the information in Fig. 2.

HLR = HEarley

DInit
LR = {` [S → .α, $, 0, 0]}

DShift
LR =

{

[A → α.aβ, b, i, j], [a, j, j + 1] ` [A → αa.β, b, j, j + 1]
}

DPred
LR =

{

[A → α.Bβ, b, i, j] ` [B → .γ, b′, j, j] | b′ = first(βb)
}

DReduce
LR =

{

[B → X1X2 · · ·Xm., b′, jm−1, jm], . . . , [B → X1.X2 · · ·Xm, b′, j0, j1],
[A → α.Bβ, b, i, j0]
` [A → αB.β, b, j0, jm] | b′ ∈ first(βb), ∃[b′, j, j + 1] ∈ HLR

}

DLR = DInit
LR ∪ DShift

LR ∪ DPred
LR ∪ DReduce

LR

FLR =
{

[S → α., $, 0, n]
}

where “first” is defined as follows:

Definition 1. An element a ∈ VT is in first(X), where X ∈ V , if X = a or
X → ε ∈ P and a = ε or X → Y1 · · ·Yi · · ·Ym ∈ P and a ∈ first(Yi) and
∀i−1

j=1 ε ∈ first(Yj).
The extension to first(α), where α = X1 · · ·Xi · · ·Xn ∈ V , is straightforward:
a ∈ first(α) if a ∈ first(X1) ∪ · · · ∪ first(Xi) and ε 6∈ first(Xi) and ∀i−1

j=1 ε ∈

first(Xj). If α
∗
⇒ ε then ε ∈ first(α).

In Fig. 3 we show how LR(1) parsers proceed. The only difference with respect
to Fig. 2 is that b′ is computed as a valid lookahead in Pred step and it is
compared with the first element in γ when the reduction of rule B → abc is
performed.

2.4 LR(1) and LALR(1) Using Compiled Tables

If we “compile” the computation of Pred steps, as performed the closure function
in the construction of states in classical LR algorithms [1], we obtain a more
compact and efficient algorithm, because the work done in run-time has been
reduced by the elimination of Pred steps. The items in the new LRc parsing
schemata are equivalent to those ones of LR schemata, because items [A →
α.β, b, i, j] are simply replaced by [st, i, j], where st is the precomputed state
which contains the element [A → α.β, b].

γ
i k

α b’
k+1 k+2

b ca
j

Fig. 3. Graphic representation of LR(1) algorithm

A significative advantage with respect to previous parsing schemata is that
we can now differentiate between LR(1) and LALR(1) algorithms simply by
choosing the appropriate compiling methods for the finite state control. The
parsing schemata is the following:

ILRc =
{

[st, i, j] | st ∈ S, 0 ≤ i ≤ j
}

HLRc = HEarley

DInit
LRc = {` [st0, 0, 0]}

DShift
LRc =

{

[st, i, j], [a, j, j + 1] ` [st′, j, j + 1] | shiftst′ ∈ action(st, a)
}

DReduce
LRc =

[stm, jm−1, jm], , . . . , [st1, j0, j1], [st
0, i, j0] ` [st, j0, jm] |

∃[a, j, j + 1] ∈ HLRc , reducer ∈ action(stm, a),
sti ∈ reveal(sti+1), st ∈ goto(st0, lhs(r)),
m = length(rhs(r))

DLRc = DInit
LRc ∪ DShift

LRc ∪ DReduce
LRc

where S is the set of states in the LR automaton, st0 ∈ S is the initial state
and where sti ∈ reveal(sti+1) is equivalent to sti+1 ∈ goto(sti, X) if X ∈ VN

and it is equivalent to shiftsti+1 ∈ action(sti, X) if X ∈ VT . More intuitively, we
can say that reveal function traverse the finite state control of the automaton
backwards.

FLRc =
{

[stf , 0, n]
}

where stf is a final state of the LR automaton.
In the preceding, “action” and “goto” refer to the tables that code the be-

havior of the LR automaton:

– The action table determines what action should be taken for a given state
and lookahead. In the case of shift actions, it determines the resulting new
state and in the case of reduce actions, the rule which is to be applied for
the reduction.

– The goto table determines what will be the state after performing a reduce
action. Each entry is accessed using the current state and the non-terminal,
which is the left-hand side of the rule to be applied for reduction.

2.5 LR(1) and LALR(1) with Cubic Complexity

The use of the Reduce step increase the complexity of the algorithm to np+1,
where p is the longest right-hand side of rules in P . In order to obtain O(n3)
complexity in the general case, we can use a implicit binarization of rules [5],
splitting each reduction involving m elements in the reduction of m + 1 rules
with at most 2 elements in their right-hand side. Thus, the reduction of a rule

Ar,0 → Ar,1 . . . Ar,nr

is equivalently performed as the reduction of the following nr + 1 rules:

Ar,0 → ∇r,0

∇r,0 → Ar,1 ∇r,1

...
∇r,nr−1 → Ar,nr

∇r,nr

∇r,nr
→ ε

This new treatment of reductions involves a change in the form of the items: a
new element, representing a symbol in a rule or a ∇r,i meaning that elements
Ar,i+1 . . . Ar,nr

have been reduced3, is added. This corresponds to applying item

refinement to the previous class of items.
With respect to deduction steps, there is a step refinement of the Shift step,

because we must now differentiate between whether we make the shift of the first
symbol in the right hand side of a rule (InitShift) or the shift of other symbols
(Shift).

The Reduce step has also been refined into three steps: the selection of the
rule to be reduced (Sel), the reduction of the implicit binary rules (Red) and the
recognizing of the left-hand symbol of the rule to be reduced (Head).

ILR3 =
{

[A, st, i, j] ∪ [∇r,s, st, i, j] | A ∈ VN ∪ VT , st ∈ S, 0 ≤ i ≤ j
}

HLR3 = HEarley

DInit
LR3 =

{

` [−, st0, 0, 0]
}

3 ∇r,i is equivalent to the dotted rule Ar,0 → α.β where α = Ar,1 . . . Ar,i and β =
Ar,i+1 . . . ar,nr

.

DInitShift
LR3 =

{

[A, st, i, j] ` [Ar,1, st
′, j, j + 1] |

∃[a, j, j + 1] ∈ HLR3 , Ar,1 = a, shiftst′ ∈ action(st, a), A ∈ V

}

DShift
LR3 =

{

[Ar,s, st, i, j] ` [Ar,s+1, st
′, j, j + 1] |

∃[a, j, j + 1] ∈ HLR3 , Ar,s+1 = a, shiftst′ ∈ action(st, a)

}

DSel
LR3 =

{

[A, st, i, j] ` [∇r,nr
, st, j, j] |

∃[a, j, j + 1] ∈ HLR3 , reducer ∈ action(st, a), A ∈ V

}

DRed
LR3 =

{

[∇r,s, st, k, j], [Ar,s, st, i, k] ` [∇r,s−1, st
′, i, j] |

st′ ∈ reveal(st)

}

DHead
LR3 =

{

[∇r,0, st, i, j] ` [Ar,0, st
′, i, j] | st′ ∈ goto(st, Ar,0)

}

DLR3 = DInit
LR3 ∪ DInitShift

LR3 ∪ DShift
LR3 ∪ DSel

LR3 ∪ DRed
LR3 ∪ DHead

LR3

FLR3 =
{

[Φ, stf , 0, n]
}

where S is the set of states in the LR automaton, st0 ∈ S is the initial state and
Φ is the axiom of the augmented grammar.

In Fig. 4 we show how LR(1) parsers with cubic complexity proceed. Instead
of applying a big Reduce step when rule B → abc must be reduced, the Sel step
generates the item [∇2,3, st, j, j]. Then a Red step is applied, combining this item
with the item resulting of the shift of c in order to generate the item [∇2,2, st

′, k+
2, j]. A new Red step combining this last item with the item resulting of the shift
of b is applied in order to generate the item [∇2,1, st

′′, k + 1, j]. Applying once
again a Red step we obtain the item [∇2,0, st

′′′, k, j]. These items are represented
by thick arcs in Fig. 4. The application of a Head step generating the item
[B, stiv, k, j] finish the reduction. This last item is not shown in Fig. 4.

Complexity Bounds. As the size of the grammar and the finite-state control
of the LR automaton are fixed for a given grammar, we have taken the length n

of the input string as parameter of complexity. As items include two indexes to
the input string, there are O(n2) items. Each deduction step executes a bounded
number of steps per item. The worst case is given by DRed

LR3 , which could combine
O(n2) items of the form [∇r,s, st, k, j] with O(n) items of the form [Ar,s, st, i, k]
and therefore this step has O(n3) complexity.

As in Earley’s algorithm, we can group items in item sets4. In this case, for
the class of bounded item grammars5, the number of items is bounded whichever

4 An item set can be associated to each position in the input string. Items with fourth
component equals to j are in the item set j.

5 Which are called bounded state grammars in [3].

j
b’ γ

i k
α

k+1 k+2
b ca

Fig. 4. Graphic representation of LR(1) algorithm with cubic complexity

is the item set, and linear time and space on the length of the input string
is attained. This has a practical sense because this class of grammars includes
the LR family and, in consequence, linear parsing can be performed when local
determinism is present.

2.6 Dynamic Programming Interpretation of LR Push-down
Automata

The LR3 parsing schemata corresponds to a dynamic interpretation of LR(1) or
LALR(1) parsing algorithms using an inference system based on S1 items [16, pp.
173–175]. It can be easily transformed into a set of push-down transitions in order
to represent the algorithm into the common framework for parsing described by
Lang in [5], which is based on dynamic programming interpretation of Push-
Down Automata (PDA). From [16] we know that we can use S1 items (i.e.,
items containing only the top element of the stack) in order to obtain a correct
interpretation in dynamic programming of weakly predictive automata [16], such
as LR.

In Fig. 5 we can observe the stack behavior of the LR algorithm described
in Sect. 2.5. In this figure, boxes represent items. Each box contains the first
element of the item it represent6. Shift and Sel deduction steps push a new top
element on the stack of items. Red deduction steps pop the two items on the top
of the stack, placing a new top item. Head deduction steps swap the top item
by a new top item.

Transitions shown in Fig. 5 exactly correspond with the transitions of PDA
described in [5]. In effect, every PDA can be described using the following tran-
sitions:

SWAP: (B 7−→ C)(A) = C such that B = A

PUSH: (B 7−→ CB)(A) = C such that B = A

POP: (BD 7−→ C)(A,E) = C such that (B,D) = (A,E)

where A, B, C, D and E are items and stacks grow from right to left.

6 In order to draw a clearer picture, we have not included in boxes the rest of the
elements in each item. Also, nabla symbols have only one suffix which indicates the
position in rule B → abc.

3

2

1

0

SWAP

α

b

α

b

c

α

b

c

α

b

α α

a

α

a a a a a

α

Shift

Shift

Shift

Sel Red

Red

Red

Head

α

Β

POP

PUSH

Fig. 5. Graphic representation of stack behavior of LR algorithms

Thus, considering Head deduction steps as SWAP transitions, Init, InitShift,
Shift and Sel steps as PUSH transitions and Red steps as POP transitions, we
obtain the following set of transitions that describe the dynamic programming
interpretation of LR(1) or LALR(1) push-down automata.

ILRS1 =
{

[A, st, i, j] ∪ [∇r,s, st, i, j] | A ∈ VN ∪ VT , st ∈ S, 0 ≤ i ≤ j
}

HLRS1 = HEarley

DInit
LRS1 =

{

` [−, st0, 0, 0]
}

DInitShift
LRS1 =

{

[A, st, i, j] ` [Ar,1, st
′, j, j + 1] [A, st, i, j] |

∃[a, j, j + 1] ∈ HLRS1 , Ar,1 = a, shiftst′ ∈ action(st, a), A ∈ V

}

DShift
LRS1 =

{

[Ar,s, st, i, j] ` [Ar,s+1, st
′, i, j + 1] [Ar,s, st, i, j] |

∃[a, j, j + 1] ∈ HLRS1 , Ar,s+1 = a, shiftst′ ∈ action(st, a)

}

DSel
LRS1 =

{

[A, st, i, j] ` [∇r,nr
, st, i, j + 1] [Ar,nr

, st, i, j] |
∃[a, j, j + 1] ∈ HLRS1 , reducer ∈ action(st, a), A ∈ V

}

DRed
LRS1 =

{

[∇r,s, st, i, k][Ar,s, st, k, j] ` [∇r,s−1, st
′, i, j] |

st′ ∈ reveal(st)

}

DHead
LRS1 =

{

[∇r,0, st, i, j] ` [Ar,0, st
′, i, j] |

st′ ∈ goto(st, Ar,0)

}

DLRS1 = DInit
LRS1 ∪ DInitShift

LRS1 ∪ DShift
LRS1 ∪ DSel

LRS1 ∪ DRed
LRS1 ∪ DHead

LRS1

FLR3 =
{

[Φ, stf , 0, n]
}

where S is the set of states in the LR automaton, st0 ∈ S is the initial state and
Φ is the axiom of the augmented grammar.

3 Example

We are now going to show how a parsing algorithm implementing the LRS1

schema use the lookahead to improve performance by avoiding the exploration
of useless computations and how it can deal with cyclic and recursive rules. For
this purpose, we will use the following grammar G, simple but instructive:

(0) Φ → S (1) S → Aa (5) S → Dc

(2) S → Bb (6) D → E

(3) A → cc (7) E → D

(4) B → cc (8) E → ε

The language generated by G is the set {cca, ccb, c}. Rule 0 represents the aug-
mentation of the grammar [1], rules 1 to 4 generate the stings cca and ccb while
rules 5 to 8 describe an unbounded number of derivations for the string c.

In Fig. 6 we show the LALR(1) automaton of G with the transitions corre-
sponding to the interpretation of the prefix cc in the input cca using rules 1 to
4. Thick arrows, dashed arrows and dotted arrows represent PUSH, POP and
SWAP transitions, respectively. In the case of Fig. 6, with computation starting
in state 0, the first action is an InitShift, pushing the item [c, st1, 0, 1] and chang-
ing to state 1. In this state we know that we are trying to analyze the current
part of the input according to rules 3 and 47, but we do not know which of the
two rules will be the only correct one. The following action is a Shift, pushing
the item [c, st2, 1, 2] and changing to state 2. From this state we know that both
rules 3 and 4 recognize the input cc, but the lookahead determines that 3 is the
correct one. A parser without lookahead would have to explore the two alter-
natives, discovering the correct one and rejecting the incorrect one some time
later. The use of lookahead increase the deterministic domain, allowing better
efficiency.

The other transitions shown in Fig. 6 correspond to the reduction by rule 3:

Sel: Push [∇3,2, st2, 2, 2]
Red: Pop [∇3,2, st2, 2, 2] and [c, st2, 1, 2] for [∇3,1, st1, 1, 2]
Red: Pop [∇3,1, st1, 1, 2] and [c, st1, 0, 1] for [∇3,0, st0, 0, 2]
Head: Swap [∇3, 0.st0, 0, 2] for [A, st3, 0, 2]

In Fig. 7 we show the transitions corresponding to several cyclic computations
while we try to analyze the first c of the input string cca using rules 5 to 8.
Starting at state 0, we may reduce rule 8:

Sel: Push [∇8,0, st0, 0, 0]
Head: Swap [∇8,0, st0, 0, 0] for [E, st9, 0, 0]

As the current state is 9, we can reduce the rule 6, which involves:

Sel: Push [∇6,1, st9, 0, 0]
Red: Pop [∇6,1, st9, 0, 0] and [E, st9, 0, 0] for [∇6,0, st0, 0, 0]
Head: Swap [∇6,0, st0, 0, 0] for [D, st7, 0, 0]

7 In the sense of Earley parsers, this corresponds to predict the rules 3 and 4.

3,1[,st1,1,2] 3,0[,st0,0,2]
3,2[,st2,2,2]

A -> cc . , a

B -> cc . , b

state 2

A -> c . c, a

B -> c . c, b

state 1
Φ-> . S, $

S -> A . a, $

state 3

S -> A a ., $

state 4

S -> B b ., $

state 6

S -> B . b, $

state 5

PUSH

POP

SWAP

S -> D . c, $

E -> D . , c

state 7

S -> D c . , $

B

state 8

D -> E . , c

state 9

Φ-> S . , $

state 10

cd

[c,st1,0,1][c,st2,1,2]

state 0

S -> . Aa, $

S -> . Bb, $

A -> . cc, a

B -> . cc, b

S -> . D c, $

D -> . E, c

E -> . D, c

E -> . , c

[A,st3,0,2]

a A

D

S

E

c

b

Fig. 6. Transitions for the string cd in the LALR(1) automaton of G

Now, we are in state 7 and we can reduce rule 7:

Sel: Push [∇7,1, st7, 0, 0]
Red: Pop [∇7,1, st7, 0, 0] and [D, st7, 0, 0] for [∇7,0, st0, 0, 0]
Head: Swap [∇7,0, st0, 0, 0] for [E, st9, 0, 0]

The item resulting from the last transition, [E, st9, 0, 0], had been generated
before and therefore we do not need to compute the actions derived from this
item again. As a consequence, all items corresponding to the cyclic application
of rules 6 and 7 are calculated only once at the first iteration.

To continue the analysis of an input sentence, we must apply a Shift in state
7, pushing [c, st8, 0, 1], but in state 8 we may not apply a reduction because the
current lookahead symbol c is not compatible with $, the lookahead indicated in
the element S → Dc., $ of state 8.

4 Experimental Results

We have compared an implementation of the proposed parsing algorithm, pro-
grammed in Lisp and included in our Ice system, against Bison [2], Glr [9]
and Sdf [4], which are to the best of our knowledge some of the most efficient
LR-based parsing environments, and also against a implementation of Earley’s
algorithm included in the Ice system.

Results on deterministic and non deterministic parsing are considered. In
both cases, we have used the Pascal syntax as guideline for tests. All tests were

-> . S, $A -> c . c, a

B -> c . c, b

state 1

A -> cc . , a

B -> cc . , b

state 2

S -> B . b, $

state 5

S -> B b ., $

state 6

S -> A . a, $

state 3

S -> A a ., $

state 4

S -> D . c, $

E -> D . , c

state 7

S -> D c . , $

state 8

PUSH

POP

SWAP

Φ-> S . , $

state 10

D -> E . , c

state 9

7,1[,st7,0,0]

Φ

8,0

D

[,st0,0,0]

6,1[,st9,0,0]

7,0[,st0,0,0]

6,0[,st0,0,0]

state 0

S -> . Aa, $

S -> . Bb, $

A -> . cc, a

B -> . cc, b

S -> . D c, $

D -> . E, c

E -> . D, c

E -> . , c

d

B

c

b

a A

c

[c,st8,0,1]

S

[E,st9,0,0]

E

[D,st7,0,0]

Fig. 7. Transitions corresponding to a cycle in the LALR(1) automaton of G

done using a weakly loaded Sun SPARCstation 10 and lexical time is included
because, for the version considered, it is not possible to differentiate lexical and
parsing time in Glr and Sdf. The time needed to “print” parse trees was not
included.

Fig. 8 shows the parsing time for complete Pascal programs using the deter-
ministic grammar. The results for non-deterministic parsing are in Fig. 9. Bison

is not considered here because it only works with deterministic grammars. The
programs considered are of the form

Program P(input, output);
var a, b: integer;

begin

a := b{+b}i

end.

in order to reduce the impact of lexical time. The non deterministic grammar
contains a rule Exp → Exp+Exp and therefore the number of ambiguous parses,
denoted by Ci, grows exponentially with i, the number of + in the arithmetic
expression to be parsed:

1

2

3

0

4

1000 2000 3000 tokens4000

parse time Bison

parse time SDF

parse time ICE, using
a LALR(1) scheme

parse time ICE, using
an Earley scheme

tim
e

Fig. 8. Results on deterministic parsing

Ci =

1 if i ∈ {0, 1}
(

2i
i

)

1
i+1

if i > 1

This test is relevant in natural language processing, a field in which determin-
istic parsing is not frequent. In fact, the order of ambiguities of the expressions
analyzed in the test is the same as in the case of texts written according to the
well known grammar of Tomita [13] for prepositional phrases.

5 Conclusion

Earley’s algorithm is a good starting point for deriving other and more com-
plex parsing algorithms. In this sense, a Generalized LR algorithm for pars-
ing arbitrary context-free grammars has been derived using several intermediate
schemata, applying simple and intuitive transformations in each step. The result
is a dynamic programming algorithm which is fully integrated in the common
framework for parsing proposed by Lang, with a O(n3) complexity in the worst
case and with a better behavior in practical cases, as is indicated by several
experimental results. This performance is obtained both by avoiding redundant
computations and by the high level of sharing attained.

In [14] our specification of the LALR(1) algorithm has been extended to deal
with Definite Clause Grammars [8] and in [15] to implement full incremental
parsing.

5 10 15 20

0

1

100

10000

1e+08

1e+06

1e+10

1e+12

0

1e+14

0.2

am
bi

gu
iti

es

value of for C i
i

1

3

5

0.5

tim
e

parse time SDF

parse time ICE, using
a LALR(1) scheme

parse time ICE, using
an Earley scheme

parse time GLR

ambiguities

Fig. 9. Results on non deterministic parsing

Acknowledgements

This work has been partially supported by projects XUGA 10505B96 and XUGA
20402B97 of Xunta de Galicia and by Acción integrada HF96-36 of the Govern-
ment of Spain.

References

1. Aho, A. V., Ullman,J. D.: The theory of parsing, translation and compiling. Pren-
tice Hall (1972)

2. Donnelly, C., Stallman, R.M.: Bison reference manual. Free Software Foundation,
Inc., 675 Mass Avenue, Cambridge, MA 02139, USA, 1.20 edition (1992)

3. Earley, J.: An efficient context-free parsing algorithm. Communications of the
ACM 13 (1970) 94–102

4. Heering, J., Hendriks, P.R. H., Klint, P., Rekers, J.: The syntax definition formal-
ism SDF — reference manual. SIGPLAN Notices 24 (1989) 43–75

5. Lang, B.: Towards a uniform formal framework for parsing. In Tomita, M. (ed.):
Current Issues in Parsing Technology. Kluwer Academic Publishers (1991) 153–171

6. McLean, P., Horspool, R. N.: A faster Earley parser. Proc. of International Con-
ference on Compiler Construction (1996) 281–293

7. Nederhof, M.-J., Sarbo, J. J.: Increasing the applicability of LR parsing. Proc. of
Third International Workshop on Parsing Technologies (1993) 187–201

8. Pereira, F. C.N., Warren, D. H. D.: Definite Clause Grammars for language anal-
ysis — a survey of the formalism and a comparison with Augmented Transition
Networks. Artificial Intelligence 13 (1980) 231–278

9. Rekers, J.: Parsing Generation for Interactive Environments. PhD thesis. Univer-
sity of Amsterdam (1992)

10. Sheil, B. A.: Observations on context-free grammars. Proc. of Statistical Methods
in Linguistics (1976) 71–109

11. Shieber, S. M., Schabes, Y., Pereira, F. C.N.: Principles and implementation of
deductive parsing. Journal of Logic Programming 24 (1995) 3–36

12. Sikkel, K.: Parsing Schemata — A Framework for Specification and Analysis of
Parsing Algorithms. Texts in Theoretical Computer Science — An EATCS Series.
Springer-Verlag (1997)

13. Tomita, M.: Efficient Parsing for Natural Language. Kluwer Academic Publishers
(1986)

14. Vilares Ferro, M., Alonso Pardo, M. A.: An LALR extension for DCGs in dynamic
programming. In Mart́ın Vide, C. (ed.): Mathematical Linguistics, vol. II. John
Benjamins Publishing Company (to appear)

15. Vilares Ferro, M., Dion, B. A.: Efficient incremental parsing for context-free lan-
guages. Proc. of the 5th IEEE International Conference on Computer Languages
(1994) 241–252

16. Villemonte de la Clergerie, E.: Automates à Piles et Programmation Dynamique.
DyALog : Une Application à la Programmation en Logique. PhD thesis. Université
Paris 7 (1993)

