Generalized LR Parsing for Extensions of
Context-Free Grammars

MiGUEL A. ALoNSO, DAVID CABRERO & MANUEL VILARES

Universidade da Coruna

Abstract

We present a Generalized LR parsing algorithm for extensions of
context-free grammars. It differs from previous approaches in the
use of dynamic programming techniques to cope with non determin-
ism, instead of a graph-structured stack. The steps for deriving the
algorithm from the classical Earley’s parsing algorithm are shown.

1 Introduction

LR parsing strategies can analyze LR grammars, which are deterministic.
If we consider LR parsing tables in which each entry can contain several
actions, we obtain non-deterministic LR parsing, often known as general-
ized LR parsing (GLR), which can analyze non-deterministic context-free
grammars. In this context, some mechanism is needed in order to represent
the non-deterministic evolution of the stack. Tomita (1996) has proposed
an algorithm based on a graph-structured stack but it has problems with
cyclic and hidden left recursive constructions. Rekers (1992) has modified
the original algorithm to overcome these limitations. Space and time bounds
can be reduced transforming the form of the grammar (Sheil 1976). Some
approaches also use transformations in the construction of the LR automa-

ton and in these the treatment of cyclicity is even more complex and so is
often avoided (Nederhof & Sarbo 1996).

Generalized LR parsing can be extended to deal with grammatical for-
malisms which have a context-free backbone, such as unification-based gram-
mars, lexical-functional grammars or definite clause grammars. As has
been shown by De la Clergerie (1993), there is a straightforward extension
of automata-based context-free parsing techniques to Horn-clause analysis.
The most common grammatical framework based on Horn-clauses is Def-
inite Clause Grammars (Pereira & Warren 1980), which is the formalism
chosen to work with in this article.

2 MIGUEL A. ALONSO, DAVID CABRERO & MANUEL VILARES

1.1 Notation

A context-free grammar (CFQG) is a tuple (Vy, Vr, P, S), where Vy is a finite
set of non-terminal symbols, Vr is a finite set of terminal symbols, P is a
finite set of productions A — o and S € Vy is the start symbol or axiom of
the grammar. We will write A, B ... for elements in Vy, a,b. .. for elements
inVp, X,)Y ... forelementsin V = VyUVy and o, 3... for elements in V*.
The relation = on V* x V* is defined by o = (3 if there are o/, o', A,y such
that @« = o/Ad”, f = o/va" and A — v € P exists. We can suffix each
element in a production r, thus A, — A, 14,2... App,.

We can think of a definite clause grammar (DCG) as a CFG skeleton
with attributes associated to grammatical symbols. A DCG is defined by a
tuple (Vy, Vi, P, S, V, F), where V is a finite set of variables, F' is a finite
set of functors and P is a set of definite clauses

Aro(trgs - t08) = Apity g, 00 o A, (8 £

)ttt Ve,

where A,y € Vn, A,;, € (VyUVp)* for 1 > ¢ > n, and t;n{ are terms,
which are inductively defined as being either a constant functor of arity 0,

a variable or a compound term f(¢y,...,t), where f is a functor of arity
l and ty,...,t are terms. If A,; € Vp, the terms tiyi, .oyt are related

to the lexical entry A,; and therefore the elements in V; are preterminals
rather than actual terminals. For each clause 7, we define the vector f of
variables appearing in ~,. When possible, definite clauses will be written in
short as Ay o — Ar1...Arp,.

A substitution o is a finite mapping {R;/t1,..., R,/t,} from variables
R; to terms t;. The application of ¢ to a term ¢ is denoted to and it is
achieved by replacing in ¢ any occurrence of R; by ¢;. A term ¢ generalizes
or subsumes ¢’ if there exists a substitution o such that ¢ = to and it is
denoted ¢t < t'. The unification of two terms ¢ and t' without common
variables returns the most general substitution o = mgu(¢,t'), unique to
the renaming of variables, so that to = t'o.

Parsing algorithms will be described using Parsing Schemata, a frame-
work for high-level description of parsing algorithms (Sikkel 1997). A pars-
ing system for a grammar G and string a; ...a, is a triple (Z,H, D), with
T a set of items which represent intermediate parse results, H an initial set
of items that encodes the sentence to be parsed, and D a set of deduction
steps that allow new items to be derived from already known items. De-
duction steps are of the form 7y, ..., n: F &, meaning that if all antecedents
n; of a deduction step are present, then the consequent ¢ should be gener-
ated by the parser. A set F C T of final items represent the recognizing

GLR PARSING FOR EXTENSIONS OF CFG 3

of a sentence. A parsing schema is a parsing system parameterized by a
context-free grammar and a sentence.

A parsing schema can be generalized from another one using the follow-
ing transformations (Sikkel 1997):

o [tem refinement, breaking single items into multiple items.

e Step refinement, decomposing a single deduction step in a sequence of
steps.

e FEztension of a schema by considering a larger class of grammars.

In order to decrease the number of items and deduction steps in a parsing
schema, we can apply the following kinds of filtering:

e Static filtering, in which redundant parts are simply discarded.

e Dynamic filtering, using context information to determine the validity
of items.

e Step contraction, in which a sequence of deduction steps is replaced
by a single one.

The set of items in a parsing system IP,j, corresponding to the parsing
schemata Alg describing a given parsing algorithm Alg is denoted Zyq, the
set of hypotheses H g, the set of final items Fu;, and the set of deduction
steps is denoted D,,.

2 Relating Earley and LR parsing algorithms

Given a context-free grammar G and a input string a;...a,, an Earley
parser (Earley 1970) for G constructs a sequence of n + 1 sets of items.
Each item [A — « e 3,4, j] indicates that o = a;4; ...a;, with 0 <4 < j,
and that symbol A has been predicted in the item set ¢. Parsing begins with
a set of initial items [S — e, 0,0], where S — « € P, and successively
applies three operations until new items can not be generated:

scanner operation can be applied if there exists an item [A — « ® af3, 1, j|
and aj1 = q, yielding the item [A — aa e §,7,7 + 1].

predictor operation, which represents the predictive descendent phase of
the algorithm, can be applied when an item [A — « @ Bf, 1, j] exists,
generating an item [B — o7, j, j| for each B — v € P.

completer operation can be applied if two items [A — « e Bf, i, k] and
[B — ve,k,j| exist, and produces a new item [A — aB e 3,1, j],
which represents that a;i;...a; can be reduced to B and therefore,
as we know that « reduces the input a;;; ...ag, we can ensure that
aB reduces a1 ... a;.

4 MIGUEL A. ALONSO, DAVID CABRERO & MANUEL VILARES

The input sentence belongs to the language described by the grammar if
the final item [S — «e, 0, n| is generated.

The parsing system IPg,;1ey corresponding to the parsing schemata Earley
describing the Earley’s algorithm is the following (Sikkel 1997:76):

IEarley:{[A%Ck.ﬁ,Zl,j]}|A—)Ojﬂ€P, OSZS]}
HEarley = {[aai:i+1] ‘ a = a'i}

Dot ={F[S — e,0,0]}

Earley

pScan _{ [A— aeaf,i,jlla,j,j+1]F[A— aae(,i,j+1] }

Earley —

Dired = {[A— aeBg,i,jlF[B— ev,7,4]}

Earley

pComp _{ [A%a.Bﬁ’i’k]’[B—)'yo,k,j]l—[A—>O!BOﬂ,i,j] }

Earley —

__ gyInit Scan Pred Comp
Earley — DEarley U DEarley U DEarley U DEarley

D

Frariey = {[S — «e,0,n]}

The previous parsing system corresponds to “uncompiling” an LR(0) parser:
while LR(0) parsers compile the Dggﬁfey steps into a finite state control, an
Earley parser uses run-time items. What Dg;‘;?ey really does is compute the
closure function in run-time.

In order to obtain a version closer to LR stack computations, we can
make several minor changes in the Scan and Comp steps, involving a slightly
different use of indices: the components 7 and j of an item [A — « e 3,7, j|
will now represent the part of the input string recognized by the element in
« just before the dot. If & = ¢ then ¢ = j. As a consequence, the completer
step must now have m elements as antecedents, where m is the length of the
right hand side of the production to be reduced. In the new LR(0) deduction
steps, the Scan and Comp steps are called Shift and Reduce because they
show a close relation to shift and reduce operations of LR parsers:

GLR PARSING FOR EXTENSIONS OF CFG 5

D ={ [A—> aeap,ijl,[a,j,j +1]F[A—>aaeB,j,j+1] }

([B—= X1 Xo- Xm®, jmt, jm);

[B — Xl .X2' "vajOajl]a (
[A — Ck.Bﬂ,’i,jo]
\ - [A — aB./B7j07jm]

Reduce __
Drroy = 9

Ini Shif Pred Red
DLR(O) = DEngt"ley U DLRI(B) U DE;f«ley U DL]?{(EE: °

3 Using lookahead: SLR(1) and LR(1)

We can add lookahead to IPpg() in order to mimic the behavior of SLR(1)
parsers. For this purpose, we introduce a dynamic filter in the Reduce step,
using the function ‘follow’, which is defined in relation to a function ‘first’.

Given a context-free grammar, an element a € Vr is in first(X), where
XeViftX=aor X 5 ec€ Panda=cor X - Y;---Y,---Y,, € P
and a € first(Y;) and V/_] € € first(Y;). The extension to first(c), where
a=X;---X;--- X, €V, is straightforward: a € first(«) if a € first(X;) U
-+- U first(X;) and € ¢ first(X;) and ViZ] ¢ € first(X;). If @ = ¢ then
e € first(a).

An element a € V3 U {$} is in follow(A), where $ is a special end-of-
input marker not in Vy and A € Vy, if a = $ and A is the start symbol or
A" — aApB € P and a € (first(8) — {e}) or A" - aAfB € P and ¢ € first(3)
and a € follow(A').

Checking of lookahead is performed by the condition 3[a, jn, jm + 1] €
Hsir, @ € follow(B) introduced in the Reduce deduction step for SLR(1):

([B—= X1 Xo- - Xn®, 1,),)

Reduce [B_>X1.X2"'Xmaj05jl]a
Dsir'™ =\ [A — a e BB, i, jo] (
F [A — aB .ﬁajmjm] |
a[aajmajm + 1] € %SLRa
[a € follow(B))

6 MIGUEL A. ALONSO, DAVID CABRERO & MANUEL VILARES

DSLR = D]I;ziﬁley U DEIII{I{F)) U Dg;ﬁiey U Dgfﬁuce
In order to obtain a parsing system for LR(1), we must introduce the
notion of lookahead into items, as is done in the classical construction of
finite state control for LR(1) parsers (Aho & Ullman 1972). The items in
IPLr can be obtained by item refinement of SLR items if we consider that
in Prarey and Pgrr each item represents a set of items having the same
dotted production and indices but probably different lookahead:

Iir={[A—>aefpbijl|A—>afeP, beVy 0<i<j}

where b represents the lookahead. The parsing system IPpg, in which looka-
head is set in DFRd and checked in DRgI is the following:

Hir = Hrarley
DIt — {- [S — a,$,0,0]}
DA = { (A~ aeaf,b,ij].a,j,j+1]F[4—oaeBbjj+1])
Dt ={ [A— aeBB,b,i,jlF [B — e,V j,j] | b = first(5b) }

([B_>X1X2"'Xm.ab,ajm71,jm])

[B — X1 [] X2 t 'Xma blajOajl]a
Di{ﬁduce = [A — e Bﬂ: balvj()] '

F [A —aBe ﬂ7b7]07]m] |

b € first(pb),

a[a’ajmujm + 1] € HLR’

!
\a_b)

_ Init Shift Pred Reduce
Dip =Dir UDrg UDig" UDpg

fLR = {[S - a0,$,0,n]}

GLR PARSING FOR EXTENSIONS OF CFG 7

4 Compiling predictive information into tables

A more compact and efficient algorithm can be obtained by avoiding the
computation of Pred steps in run-time. Instead, they are compiled, resulting
in the construction of an LR automaton as in classical LR algorithms (Aho &
Ullman 1972). The items in the new parsing system Py e are equivalent to
those of IP1 g because items [A — «ef3, b, i, j| are simply replaced by [st, 3, j],
where st is the precomputed state of the LR automaton which contains the
element [A — « e 3,b]. The parsing system IPpg. is the following:

Tire = {[st,1,7] | st € set of states of LR automaton, 0 < i < j}
Hire = Hrarley
Dt = { [sto,0,0]}
Dt = { [st, i, 5], [a, 4, j + 1] F [st',j,j + 1] | shift,y € action(st,a) }

[Stm:jM—lajm]’ SRR [StlajO’jl]a [Stoa iajO] = [St’jO’jM] |
DReduce _ El[q,jm,jm + 1] € Higre, reduce, € action(st™, a),
LRe st' € reveal(st'™), st € goto(st?, A,),
m = length(rhs(r))

Dy pe = Dl UDPRe U Dige™

where st' € reveal(st'*!) is equivalent to st"™! € goto(st’, X) if X € Vy
and is equivalent to shift,:+1 € action(st!, X) if X € V. More intuitively,
we can say that reveal function traverses the finite state control of the
automaton backwards.

Frre = {[sty,0,n]}

where sty is a final state of the LR automaton.
In the preceding, ‘action’ and ‘goto’ refer to the tables that code the
behavior of the LR automaton:

8 MIGUEL A. ALONSO, DAVID CABRERO & MANUEL VILARES

action table determines what action should be taken for a given state and
lookahead. In the case of shift actions, it determines the resulting new
state and in the case of reduce actions, the production which is to be
applied for the reduction.

goto table determines what will be the state after performing a reduce
action. Each entry is accessed using the current state and the non-
terminal in the left-hand side of the production to be applied for
reduction.

A significant advantage with respect to previous parsing systems is that we
can now differentiate between LR(1) and LALR(1) algorithms simply by
choosing the appropriate compiling methods for the finite state control.

5 GLR parsing for DCG

Context-free grammars have a finite number of grammar symbols. When
these grammars are enriched with terms or feature-structures, the number of
grammar symbols can not be guaranteed to be finite. Thus the construction
of the parsing tables may be a non terminating process. A solution to this
problem is to use positive restrictors (Shieber 1985) or negative restrictors
(Trujillo 1994) to define a finite number of equivalence classes into which
the infinite number of nonterminals may be sorted. The restrictor must be
applied to obtain the compiled information: the first and follow functions,
the closure of the LR automaton and the action and goto tables.

Several restrictors exist for each grammar but termination is not guar-
anteed for all of them and furthermore, the best restrictor can not be chosen
automatically since it depends on the amount of grammatical information
that is to be preserved. In practice, a good balance is obtained if only
the underlying context-free grammar is considered during the compilation
phase (Vilares et al. 1998).

Deduction steps need to access the terms associated to grammar sym-
bols. As that information is not contained in the states of the automaton,
it must be included in items. Applying item refinement to [Py g items, we
obtain the new form of the items [A(¢!,. .., ™), st, 1, j], with a new element
that represents an element of a clause. With respect to deduction steps,
Shift steps must be refined into:

InitShift, which is applied when the symbol to be shifted is the first symbol
in the right hand side of a clause.
Shift, which is applied in the shift of the other symbols in a clause.

GLR PARSING FOR EXTENSIONS OF CFG 9
The new schema LR(DCG) is the extension of the schema LR to the case

of definite clause grammars and it is defined by the following parsing system
IPrr(pCa):

ILR(DCG) = {[A7 st, ia]]}
Hrrmoca) = Hrarley

DE%(DCG) = {F [, sy, 0,0]}

DInitShift { [A7 Sta iaj]a [a’ajaj + 1] F [Al‘,la St’ajaj + 1] |
)

LR(DCG) ™) shift,y € action(st,a), Ary=a(tr,,..., 00
DShift — [AI‘,S: Sta iaj]a [aa .7’.7 + 1] |_ [AI‘,S-I-la St,ajaj + 1] |
LR(DCG) shift,y € action(st,a), Arsyr = a(tyopq,---5 0% 1)
[Ar,ma Stm: jmfla jm]a LR [Ar,la StlajOa jl]a [Aa Stoa iajO]
H [Ar,OJa Sta jOa]m] ‘
Driibce) =94 310, Jm> jm + 1] € Hirmea), reduce, € action(st™, a),

stt € reveal(st'™1), st € goto(st®, A,p),
m = length(rhs(r)), ¢ = mgu(Aym,...,Ar1)

Ini TnitShif Shif Red
Dirmoa) = Prrmoa) U Pirmoa) Y Piriboa) Y Prrmoa)

Firmca) = {[S, sty,0,n]}

6 GLR Logic Push-Down Automata and dynamic programming

The common framework for parsing described by Lang (1991) is based on
dynamic programming interpretation of logic push-down automata, which
are push-down automata storing logic atoms in the stack instead of symbols
in Vr U Vy. In that framework, weakly predictive automata, such as LR,
can be interpreted in dynamic programming using items containing only
the top element of the stack. The resulting automata are very close to

10 MIGUEL A. ALONSO, DAVID CABRERO & MANUEL VILARES

inference systems (De la Clergerie 1993:173-175). In this context, Py rpcg)
can be seen as a dynamic programming interpretation of LR(1) or LALR(1)
parsing algorithms using an inference system based on that kind of items. It
can be easily transformed into a set of logic push-down transitions, applying
implicit binarization of clauses. Thus, the reduction of a clause

Ar!(] — A,-,l cen Ar,n,

can be equivalently performed as the reduction of the following n,+1 clauses
with at most 2 elements on their right-hand side:

Aro— Vr,o(?r)
V’/‘,O(ﬁ) — Ar,l vr,l(ﬁ)

vr,nr—l(?r) — Ar,nr V'r,nr (ﬁ)
Vr,nr(l_“:) — €

Applying item refinement to IPLr(pca) items, we obtain the new form of
items, in which the element that previously represented a grammar symbol
will now represent a symbol in a clause or a V,; meaning that elements
Ayii1...A;n, have been reduced. Therefore, V,; is like a dotted clause
Ao —aeffwherea=A;q...Arjand 8= A;i11... Ap .. With respect
to deduction steps, Reduce steps must be refined into:

Sel, which select the clause to be reduced.
Red, which reduce each implicit binary clause.
Head, which recognize the left-hand symbol of the clause reduced.

Considering that Head deduction steps correspond to SWAP transitions,
Init, InitShift, Shift and Sel steps correspond to PUSH transitions and that
Red steps correspond to POP transitions, we can transform the deductive
steps of the IPrrpcq) system into a set of logic push-down transitions,
with the advantage that we do not need to deal explicitly with unifications
because the operational mechanism of the LPDA is in charge of them. The
set of logic push-down transitions is the following:

,Diri?i{tsl(DCG) = {F [, st0,0,0]}

_ (A, st i, 7] F [Aea,st', 5,5+ 1] [A,st,4,7]]|
Dfﬁ%ﬁ}g}?c(;) =< dla, 5,7 + 1] € Hirmce), shifty € action(st, a),
Aci=alty,,...,t7})

GLR PARSING FOR EXTENSIONS OF CFG 11

[AI‘,Sa Sta ia]] |_ [AI‘,S+17 St,a l,j + 1] [AT,S’ St’ i)]] |

Dfllgjgtl(DCG) = 3Fa,j,j+1] € %LR(DC(T},%’ shiftsy € action(st, a),
Ar,s—|—1 = a(ti,s_pla e 7tr,ss—|+—i)
psa [e sti 1 Voo, (), t,5,5] [Arnstyisj] |
LR (DCG) El[a 4,7 +1] € Hirca), reduce, € action(st, a)
DRe%1 — [VT,S (?T)’ Sta 7;: k] [AI‘,S: Sta ka .7] H [vr,sfl(f)a Stl, ia .7] |
LRZH(DCG) st' € reveal(st)

DiRd peay = { Vo ? ,st,1,] = [Aro, st 4, 5] | st’ € goto(st, Arp) }

_ Init InitShift Shift
DLR51(DCG) - DLRSl (DCG) U DLRSl DCG) U DLRSl DCG)U

Red Head
Di%stpeay Y Pinsipeay Y Pird pea)

7 Conclusion

We have considered Earley’s algorithm as a starting point for deriving other
well known parsing algorithms, such us Generalized LR. Several intermedi-
ate parsing systems have been used in the path from Earley to LR, applying
simple and intuitive transformations in each step. The resulting algorithm
has been extended to deal with definite clause grammars and it has been
integrated in the common framework for parsing in dynamic programming
proposed by Lang. An implementation of a parser for DCGs based on our
specification of LALR(1) parsers has been described in (Vilares & Alonso
forthcoming).

Acknowledgements. This work has been partially supported by the FEDER
of the European Union (1FD97-0047-C04-02), Government of Spain (HF97-223)
and Xunta de Galicia (XUGA10505B96 and XUGA20402B97).

12 MIGUEL A. ALONSO, DAVID CABRERO & MANUEL VILARES

REFERENCES

Aho, Alfred V. & Jeffrey D. Ullman. 1972. The Theory of Parsing, Translation
and Compiling. Englewood Cliffs: Prentice Hall.

De la Clergerie, Eric. 1993. Automates a Piles et Programmation Dynamique.
DyALog : Une Application a la Programmation en Logique. Ph.D. disserta-
tion. Université Paris 7. Paris, France.

Earley, J. 1970. “An Efficient Context-Free Parsing Algorithm”. Communica-
tions of the Associattion for Computing Machinery (CACM) 13:2.94-102.

Lang, Bernard. 1991. “Towards a Uniform Formal Framework for Parsing”. Cur-
rent Issues in Parsing Technology ed. by Masaru Tomita, 153-171. Norwell:
Kluwer Academic.

Nederhof, Mark-Jan & J.J. Sarbo. 1996. “Increasing the Applicability of LR
Parsing”. Recent Advances in Parsing Technology ed. by H. Bunt & M. Tomita,
35-57. Dordrecht: Kluwer Academic.

Pereira, Fernando C. N. & David H.D. Warren. 1980. “Definite Clause Gram-
mars for Language Analysis: A Survey of the Formalism and a Comparison
with Augmented Transition Networks”. Artificial Intelligence, 13.231-278.

Rekers, Jan. 1992. Parsing Generation for Interactive Environments. Ph.D.
dissertation, Amsterdam: University of Amsterdam.

Sheil, B. A. 1976. “Observations on Context-Free Grammars”. Statistical Meth-
ods in Linguistics, 71-109, Stockholm, Sweden.

Shieber, Stuart. 1985. “Using Restriction to Extend Parsing Algorithms for
Complex-Feature-Based Formalisms”. Proceedings of the 23th Annual Meet-
ing of the Association for Computational Linguistics (ACL’85), 145-152.

Sikkel, Klaas. 1997. Parsing Schemata: A Framework for Specification and
Analysis of Parsing Algorithms. Heidelberg: Springer-Verlag.

Tomita, Masaru. 1986. Efficient Parsing for Natural Language. Boston: Kluwer
Academic.

Trujillo, Arturo. 1994. “Computing First and Follow Functions for Feature-
Theoretic Grammars”. Proceedings of the Fifteenth International Conference
on Computational Linguistics (COLING’9/4). Kyoto, Japan.

Vilares, Manuel & Miguel A. Alonso. Forthcoming. “An LALR Extension for
DCGs in Dynamic Programming”. To appear in Mathematical Linguistics 11
ed. by Carlos Martin Vide. Amsterdam: John Benjamins.

, David Cabrero & Miguel A. Alonso. 1998. “A Comparison for Unification-

Based Parsers”. Proceedings of APPIA-GULP-PRODE 1998 Joint Confer-
ence on Declarative Programming (AGP’98) ed. by Moreno Falaschi, José L.
Freire & Manuel Vilares, 113-123. La Coruna, Spain.

