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Abstract Tree Adjoining Grammars (TAG) and Linear Indexed Grammars (LIG)
are extensions of Context Free Grammars that generate the class of Tree
Adjoining Languages. Taking advantage of this property, and providing
a method for translating a TAG into a LIG, we define several parsing
algorithms for TAG on the basis of their equivalent LIG parsers. We
also explore why some practical optimizations for TAG parsing cannot
be applied to the case of LIG.
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1. Introduction
Tree Adjoining Grammars (TAG; Joshi and Schabes, 1997) and Lin-

ear Indexed Grammars (LIG; Gazdar, 1987) are extensions of Context
Free Grammars (CFG). Tree adjoining grammars use trees instead of
productions as the primary means of representing structure and seem
to be adequate for describing syntactic phenomena occurring in natural
language, due to their extended domain of locality and to their ability to
factor recursion from the domain of dependencies. Linear indexed gram-
mars associate a list of indices with each non-terminal symbol, with the
restriction that the index list of the left hand side non-terminal of each
production (the mother) can be inherited by at most one right hand
side non-terminal (the dependent child) while the other lists must have
a bounded size.

Several parsing algorithms have been proposed for TAG, ranging
from simple bottom-up algorithms to sophisticated extensions of the
Earley’s algorithm (Vijay-Shanker and Weir, 1993; Joshi and Schabes,
1997; Nederhof, 1999). In (Alonso et al., 1999) we have shown the rela-
tionships among them, creating a continuum of parsing algorithms and
showing what transformations must be applied to each one in order to
obtain the next one in the continuum. For this purpose, we have selected
Parsing Schemata (Sikkel, 1997) as the framework for describing parsing
algorithms.

In order to improve efficiency, it is usual to translate the source tree
adjoining grammar into a linear indexed grammar (Vijay-Shanker and
Weir, 1991; Schabes and Shieber, 1994; Vijay-Shanker and Weir, 1993).
We have presented in (Alonso et al., 2000a) a set of parsing algorithms
for LIG that mimic the parsing strategies for TAG shown in (Alonso
et al., 1999), including a strategy that preserves the correct prefix prop-
erty. However, in (Alonso et al., 2000a) we did not present the relations,
for each parsing strategy, between the algorithm for TAG and the algo-
rithm for LIG implementing that strategy. In this chapter we study the
relations among the way TAG parsers recognize adjunction and the way
LIG parsers transmit information from one index list to another.

2. Tree Adjoining Grammars
Formally, a TAG is a tuple G = (VN , VT , S, I,A), where VN is a finite

set of non-terminal symbols, VT is a finite set of terminal symbols, S is
the axiom of the grammar, I is a finite set of initial trees and A is a
finite set of auxiliary trees. I ∪A is the set of elementary trees. Internal
nodes are labeled by non-terminals and leaf nodes by terminals or the
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empty string ε, except for just one leaf per auxiliary tree (the foot) which
is labeled by the same non-terminal used as the label of its root node.
The path in an elementary tree from the root node to the foot node is
called the spine of the tree. We write Nγ ∈ spine(γ) to denote that a
node Nγ belongs to the spine of γ.

New trees are derived by adjunction: let γ be a tree containing a
node Nγ labeled by A and let β be an auxiliary tree whose root and
foot nodes are also labeled by A. Then, the adjunction of β at the
adjunction node Nγ is obtained by excising the subtree of γ with root
Nγ , attaching β to Nγ and attaching the excised subtree to the foot of
β. We write β ∈ adj(Nγ) to denote that a tree β may be adjoined at
node Nγ of the elementary tree γ. If adjunction is not mandatory at Nγ

then nil ∈ adj(Nγ) where nil /∈ I ∪A is a dummy symbol. If adjunction
is not allowed at Nγ then {nil} = adj(Nγ).

In order to describe the parsing algorithms for TAG, we must be
able to represent the partial recognition of elementary trees. Parsing
algorithms for context-free grammars usually denote partial recognition
of productions by dotted productions. We can extend this approach to
the case of tree-based grammars by considering each elementary tree γ
as formed by a set of context-free productions P(γ): a node Nγ and its
children Nγ

1 , . . . , Nγ
g are represented by a production Nγ → Nγ

1 · · ·Nγ
g .

Thus, the position of the dot in the tree is indicated by the position of
the dot in a production in P(γ). The elements of the productions are
the nodes of the tree, with Rγ denoting its root and Fγ its possible foot.
To simplify the description of parsing algorithms we add a production
> → Rγ for each γ ∈ I∪A, and the production Fβ → ⊥ for each β ∈ A.

Let P(G) be the union of all P(γ), γ ∈ I ∪ A. The relation ∗⇒ of
derivation on P(G) is defined as the smallest reflexive and transitive
relation including the following base cases:

δ′Mγδ′′
∗⇒ δ′υδ′′ if Mγ → υ ∈ P(γ) and nil ∈ adj(Mγ).

δ′Mγδ′′
∗⇒ δ′υ1υυ2δ

′′ if Mγ → υ ∈ P(γ), β ∈ adj(Mγ), and Rβ ∗⇒
υ1Fβυ2.

The language defined by a TAG is the set of strings w ∈ VT such that
Rα ∗⇒ w with S = label(Rα).

We also define additional forms of derivations for TAG. The first two,
used to distinguish derivations with and without adjunction at a node
Mγ such that Mγ → υ, are defined by Mγ ∗⇒t δ (resp. Mγ ∗⇒b δ) if
Mγ ∗⇒ δ (resp. υ

∗⇒ δ). The other two are used to denote derivations
crossing root nodes of auxiliary trees and derivations crossing foot nodes.
They are defined respectively as ∗⇒r=def (⇒r ∪

∗⇒)∗ and ∗⇒f=def (⇒f
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∪ ∗⇒)∗ with the base cases δ1M
γδ2 ⇒r δ1Rβδ2 and δ1Fβδ2 ⇒f δ1υδ2 if

β ∈ adj(Mγ) and Mγ → υ ∈ P(γ).

3. Linear Indexed Grammars
A linear indexed grammar is a tuple (VT , VN , VI , P, S), where VT is a

finite set of terminals, VN is a finite set of non-terminals, VI is a finite set
of indices, S ∈ VN is the start symbol and P is a finite set of productions.
Following (Gazdar, 1987) we consider productions in which at most one
index can be pushed on or popped from a list of indices:

A0[◦◦η] → A1[ ] · · ·Ad−1[ ] Ad[◦◦η′] Ad+1[ ] · · ·Am[ ]

A0[ ] → a

where m is the length of the production, Aj ∈ VN for each 0 ≤ j ≤ m,
Ad is the dependent child, ◦◦ is the part of the index list transmitted
from the mother to the dependent child, η, η′ ∈ VI ∪ {ε} and for each
production either η or η′ or both must be ε, and a ∈ VT ∪ {ε}.

The derivation relation ⇒ is defined for LIG by the following cases:

ΥA[ζη]Υ′ ⇒ ΥΥ1A
′[ζη′]Υ2Υ′ if there exists a production

A[◦◦η] → Υ1A
′[◦◦η′] Υ2.

ΥA[ ]Υ′ ⇒ ΥaΥ′ if there exists a production A[ ] → a

where A ∈ VN , ζ ∈ V ∗
I and η, η′ ∈ VI ∪ {ε}. The reflexive and transitive

closure of ⇒ is denoted by ∗⇒. The language defined by a LIG is the set
of strings w ∈ V ∗

T such that S[ ] ∗⇒ w.
In a derivation step ΥA[ζη]Υ′ ⇒ ΥΥ1A

′[ζη′]Υ2Υ′, we say that A′[ζη′]
is the dependent successor of A[ζη]. We define the notion of dependent
descendent as the reflexive and transitive closure of dependent successor.

To parse this type of grammars, tabulation techniques with polyno-
mial complexity can be designed based on a property defined in (Vijay-
Shanker and Weir, 1993), that we call the context-freeness property
of LIG , such that if A[η] ∗⇒ uB[ ]w where u, w ∈ V ∗

T , A,B ∈ VN ,
η ∈ VI ∪ {ε} and B[ ] is a dependent descendant of A[η], then for each
Υ1,Υ2 ∈ (VN [V ∗

I ]∪VT )∗ and ζ ∈ V ∗
I we have Υ1A[ζη]Υ2

∗⇒ Υ1uB[ζ]wΥ2

Conversely, if B[η] is a dependent descendant of A[ ] and A[ ] ∗⇒ uB[η]w
then Υ1A[ζ]Υ2

∗⇒ Υ1uB[ζη]wΥ2.

3.1 Compiling TAG to LIG
LIG is often used as an intermediate formalism for TAG parsing.

Given a TAG (VT , VN , S, I,A) we can obtain a strongly equivalent LIG
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(VT , V ′
N , VI , S

′, P ), where V ′
N = {Mγt|Mγ ∈ N} ∪ {Mγb|Mγ ∈ N} and

VI = {Mγ |Mγ ∈ N}, N denoting the set of every node Mγ of every
elementary tree γ ∈ I ∪A (Vijay-Shanker and Weir, 1991). The set P
is constructed applying the following rules:

1 A production S′[◦◦] → Rαt[◦◦] is generated for each initial tree α
having its root labeled by S.

2 A production Mγ
0
b[◦◦] → Mγ

1
t[◦◦] Mγ

2
t[ ] · · ·Mγ

m
t[ ] is generated

for each Mγ
0 → Mγ

1 · · ·Mγ
m ∈ P(γ) such that γ ∈ I or γ ∈ A and

∀1≤i≤mMi 6∈ spine(γ).

3 A production Mβ
0

b
[◦◦] → Mβ

1

t
[ ] · · ·Mβ

d

t
[◦◦] · · ·Mβ

m
t[ ] is gener-

ated for each Mβ
0 → Mβ

1 · · ·M
β
d · · ·Mβ

m ∈ P(β) such that β ∈ A

and Mβ
0 ,Mβ

d ∈ spine(β).

4 A production Mγt[◦◦] → Mγb[◦◦] is generated for each node Mγ

such that nil ∈ adj(Mγ).

5 A production Mγt[◦◦] → Rβt[◦◦Mγ ] is generated for each adjunc-
tion node Mγ such that β ∈ A and β ∈ adj(Mγ).

6 A production Fβb[◦◦Mγ ] → Mγb[◦◦] is generated for each node
Mγ such that β ∈ A and β ∈ adj(Mγ).

7 A production Mγt[ ] → a is generated for each node Mγ labeled
by a ∈ VT ∪ {ε}.

Considering a top-down traversal of trees and adjunctions, the pro-
ductions generated by rule 1 start the traversal from the root node of
initial trees labeled by the axiom of the grammar. Rule 2 productions are
slightly artificial productions used to traverse nodes not on the spine of
auxiliary trees; indeed, to respect the kind of expected LIG productions,
we have chosen the first child as dependent child when there is actually
none, as every indices list should be empty. A more natural LIG pro-
duction (if allowed) would be (2’) Mγ

0
b[ ] → Mγ

1
t[ ] Mγ

2
t[ ] · · ·Mγ

m
t[ ].

Rule 3 productions are used to traverse nodes on the spine of auxiliary
trees. By means of the set of productions generated by rule 4, we can
continue regular traversal when adjunction is not mandatory at a given
node, while rule 5 productions suspend the traversal of an elementary
tree γ to start the traversal of the auxiliary tree that can be adjoined
at node Mγ ; the fact that we will have to return to Mγ is recorded by
pushing this node on the index list. When the auxiliary tree has been
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completely traversed, a rule 6 production pops Mγ from the index list to
resume the traversal of γ at this node. Productions generated by rule 7
are in charge of recognizing terminal symbols and the empty string.

Superscripts t and b are used to guarantee that at most one auxil-
iary tree is adjoined at each node. Given an adjunction node Mγ , in
a top-down view of adjunction, Mγt corresponds to reaching the node
Mγ before adjunction and Mγb corresponds to reaching this node af-
ter adjunction. In a bottom-up view of adjunction, Mγb corresponds
to reaching the node Mγ before adjunction and Mγt corresponds to
reaching this node after adjunction.

4. Bottom-up Parsing Algorithms
The basic bottom-up parsing algorithm for context-free grammars is

the one defined by Cocke, Younger and Kasami (Kasami, 1965; Younger,
1967). Extensions have been defined for TAG (Vijay-Shanker and
Weir, 1991; Alonso et al., 1999) and LIG (Vijay-Shanker and Weir,
1991; Alonso et al., 2000a). In the case of LIG, grammars are restricted
to have at most two non-terminal elements, or one element which must
be a terminal, in the right-hand side of each production. This restriction
could be considered as the transposition of Chomsky Normal Form to
linear indexed grammars. In the case of TAG, nodes in elementary trees
can have at most two children.

We will describe parsing algorithms using Parsing Schemata, a frame-
work for high-level descriptions of parsers (Sikkel, 1997). A parsing sys-
tem for a grammar G and string a1 · · · an is a triple 〈I,H,D〉, with I
a set of items which represent intermediate parse results, H an initial
set of items [aj+1, j, j + 1], with 0 ≤ j < n, called the hypothesis that
encodes the sentence a1 · · · an to be parsed, and D a set of deduction
steps that allow new items to be derived from already known items. De-
duction steps are of the form η1,...,ηk

ξ cond, meaning that if all antecedents
ηi of a deduction step are present and the conditions cond are satisfied,
then the consequent ξ should be generated by the parser. A set F ⊆ I
of final items represents the recognition of a sentence. A parsing schema
is a parsing system parameterized by a grammar and a sentence.

4.1 Items
Items used in the tabular interpretation of the CYK-like algorithm

for LIG are of the form

[A, η, i, j | B, p, q]
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where, in general, A,B ∈ VN , η ∈ VI , 0 ≤ i ≤ j and i ≤ p ≤ q ≤ j
denoted (p, q) ≤ (i, j). Elements B, η, p and q may be unbound in some
cases and represented by −.

Each item represents one of the following kinds of derivations:

A[η] ∗⇒ ai+1 · · · ap B[ ] aq+1 · · · aj iff (B, p, q) 6= (−,−,−), B[ ] is a
dependent descendent of A[η] and (p, q) ≤ (i, j).

A[ ] ∗⇒ ai+1 · · · aj iff η = − and (B, p, q) = (−,−,−).

If the index list associated with A is empty then η = − and (B, p, q) =
(−,−,−), otherwise η is the topmost element of the index list and
the part (B, p, q) acts as a logical pointer to other items of the form
[B, η′, p, q | B′, p′, q′] from which we can retrieve the second element η′

of that list. By following the chains of pointers, we can retrieve the entire
index list associated to A. The string a1 · · · an to be parsed has been suc-
cessfully recognized if a final item in the set F = { [S,−, 0, n | −,−,−] }
has been generated.

These items are like those proposed for the tabulation of right-oriented
linear indexed automata (Alonso et al., 2000b; Nederhof, 1998) and for
the tabulation of bottom-up 2–stack automata (De la Clergerie et al.,
1998). They are slightly different from the items of the form [A, η, i, j |
B, η′, p, q] proposed by (Vijay-Shanker and Weir, 1991) for their CYK-
like algorithm, where the element η′ ∈ VI is useless: the context-freeness
property of LIG implies that if A[η] ∗⇒ ai+1 · · · ap B[ ] aq+1 · · · aj then
for any η′ we have that A[η′η] ∗⇒ ai+1 · · · ap B[η′] aq+1 · · · aj .

In the case of TAG parsing, if we translate the grammar to LIG fol-
lowing the mechanism shown in section 3.1, we obtain items of the form:

[NγX,Mγ′
, i, j | Mγ′

, p, q]

where X ∈ {t, b}, representing one of the following two situations:

Nγ ∗⇒X ai+1 · · · ap Fγ aq+1 · · · aj ⇒f ai+1 · · · ap υ aq+1 · · · aj
∗⇒f

ai+1 · · · aj , Mγ′ → υ, and γ ∈ adj(Mγ′
) iff (Mγ′

, p, q) 6= (−,−,−).

Nγ ∗⇒X ai+1 · · · aj iff (Mγ′
, p, q) = (−,−,−).

We can observe that each item represents a state in the parsing pro-
cess, storing information about the node that we are currently visiting,
the part of the input string spanned by this node, and the list of nested
adjunctions that have been started but not yet finished. The topmost
element Mγ′

of this list is explicitly stored in the item. However, the
element Mγ′

is redundant, as an item is valid for any node Mγ′
of an
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elementary tree such that γ can be adjoined at Mγ′
. Therefore, by dis-

carding redundant information, we can obtain a more compact form of
items for TAG parsing:

[NγX, i, j | p, q]

Final items are those belonging to the set F = { [Rαt, 0, n | −,−] }, with
α ∈ I and S = label(Rα).

4.2 Deduction Steps
The bottom-up parsing process is started by steps recognizing termi-

nal symbols and the empty string:

DScan
CYK−LIG =

[a, j, j + 1]
[A,−, j, j + 1 | −,−,−]

A[ ] → a ∈ P

Dε
CYK−LIG =

[A,−, j, j | −,−,−]
A[ ] → ε ∈ P

The other steps are in charge of combining the items corresponding to
the body elements in the right-hand side of a production in order to gen-
erate the item corresponding to the left-hand side element, propagating
bottom-up the information about the index list:

D[◦◦][ ][◦◦]
CYK−LIG =

[B,−, i, k | −,−,−],
[C, η, k, j | D, p, q]
[A, η, i, j | D, p, q]

A[◦◦] → B[ ] C[◦◦] ∈ P

D[◦◦][◦◦][ ]
CYK−LIG =

[B, η, i, k | D, p, q],
[C,−, k, j | −,−,−]
[A, η, i, j | D, p, q]

A[◦◦] → B[◦◦] C[ ] ∈ P

D[◦◦][◦◦]
CYK−LIG =

[B, η, i, j | D, p, q],
[A, η, i, j | D, p, q]

A[◦◦] → B[◦◦] ∈ P

D[◦◦η][ ][◦◦]
CYK−LIG =

[B,−, i, k | −,−,−],
[C, η′, k, j | D, p, q]
[A, η, i, j | C, k, j]

A[◦◦η] → B[ ] C[◦◦] ∈ P

D[◦◦η][◦◦][ ]
CYK−LIG =

[B, η′, i, k | D, p, q],
[C,−, k, j | −,−,−]
[A, η, i, j | B, i, k]

A[◦◦η] → B[◦◦] C[ ] ∈ P

D[◦◦η][◦◦]
CYK−LIG =

[B, η′, i, j | D, p, q],
[A, η, i, j | B, i, j]

A[◦◦η] → B[◦◦] ∈ P
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D[◦◦][ ][◦◦η]
CYK−LIG =

[B,−, i, k | −,−,−],
[C, η, k, j | D, p, q],
[D, η′, p, q | E, r, s]
[A, η′, i, j | E, r, s]

A[◦◦] → B[ ] C[◦◦η] ∈ P

D[◦◦][◦◦η][ ]
CYK−LIG =

[B, η, i, k | D, p, q],
[C,−, k, j | −,−,−],
[D, η′, p, q | E, r, s]
[A, η′, i, j | E, r, s]

A[◦◦] → B[◦◦η] C[ ] ∈ P

D[◦◦][◦◦η]
CYK−LIG =

[B, η, i, j | D, p, q],
[D, η′, p, q | E, r, s]
[A, η′, i, j | E, r, s]

A[◦◦] → B[◦◦η] ∈ P

These steps have counterparts in TAG parsing. The steps in charge
of starting the TAG parser are the following:

DScan
CYK−TAG =

[a, j, j + 1]
[Nγb, j, j + 1 | −,−]

a = label(Nγ)

Dε
CYK−TAG =

[Nγb, j, j | −,−]
ε = label(Nγ)

The sets D[◦◦][ ][◦◦]
CYK−LIG andD[◦◦][◦◦][ ]

CYK−LIG correspond to the bottom-up prop-
agation of information through the spine of an auxiliary tree when the
right child and the left child, respectively, is placed on the spine:

DRightDom
CYK−TAG =

[Mγt, i, k | −,−],
[P γt, k, j | p, q]

[Nγb, i, j | p, q]
Nγ → MγP γ ∈ P(γ),
P γ ∈ spine(γ)

DLeftDom
CYK−TAG =

[Mγt, i, k | p, q],
[P γt, k, j | −,−]

[Nγb, i, j | p, q]
Nγ → MγP γ ∈ P(γ),
Mγ ∈ spine(γ)

The set D[◦◦][◦◦][ ]
CYK−LIG also corresponds to the bottom-up propagation of

information, in this case for productions not covering the spine of an
auxiliary tree:

DNoDom
CYK−TAG =

[Mγt, i, k | −,−],
[P γt, k, j | −,−]

[Nγb, i, j | −,−]
Nγ → MγP γ ∈ P(γ),
Nγ 6∈ spine(γ)

The set D[◦◦][◦◦]
CYK−LIG corresponds to the bottom-up propagation of in-

formation for nodes with only one child and to the bottom-up traversal
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of nodes at which adjunction is not mandatory:

DUnary
CYK−TAG =

[Mγt, i, j | p, q]
[Nγb, i, j | p, q]

Nγ → Mγ ∈ P(γ)

DNoAdj
CYK−TAG =

[Nγb, i, j | p, q]
[Nγt, i, j | p, q]

nil ∈ adj(Nγ)

The set D[◦◦η][◦◦]
CYK−LIG corresponds to the bottom-up starting of an ad-

junction operation from the foot node of an auxiliary tree:

DFoot
CYK−TAG =

[Nγb, i, j | p, q]

[Fβb
, i, j | i, j]

β ∈ adj(Nγ)

The set D[◦◦][◦◦η]
CYK−LIG corresponds to the bottom-up ending of an ad-

junction operation when the root node of an auxiliary tree is reached:

DAdj
CYK−TAG =

[Rβt
, i, j | p, q], [Nγb, p, q | r, s]

[Nγt, i, j | r, s]
β ∈ adj(Nγ)

The space complexity of these bottom-up parsers with respect to the
length n of the input string is O(n4), as each item stores four positions
of the input string. The time complexity is O(n6) and is given by the
deduction steps in D[◦◦][ ][◦◦η]

CYK−LIG and D[◦◦][◦◦η][ ]
CYK−LIG. Although these steps in-

volve 7 positions of the input string, each step can be decomposed, by
partial application, into a set of deduction steps involving at most 6 po-
sitions. As an example, the application of a step in D[◦◦][ ][◦◦η]

CYK−LIG can be
performed by combining its second and third items in O(n6) complexity:

[C, η, k, j | D, p, q],
[D, η′, p, q | E, r, s]
〈C, η′, k, j, E, r, s〉

At this point, positions p and q are discarded, being only useful
when combining the second and third items. The resulting element
〈C, η′, k, j, E, r, s〉 may be combined with the first item, in O(n5) com-
plexity, in order to obtain the consequent item of the original step:

〈C, η′, k, j, E, r, s〉,
[B,−, i, k | −,−,−]
[A, η′, i, j | E, r, s]

A[◦◦] → B[ ] C[◦◦η] ∈ P

It is worth noting that this rule transformation may be related to the
grammar transformation of production A[◦◦] → B[ ] C[◦◦η] into the two
equivalent productions A[◦◦] → B[ ] C ′[◦◦] and C ′[◦◦] → C[◦◦η], where
C ′ is some fresh non-terminal.
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5. Earley-like Parsing Algorithms
Earley-like parsers overcome the limitation of binary branching im-

posed by CYK-like parsing algorithms and incorporate top-down pre-
diction in order to reduce the number of deduced items.

5.1 Items
To overcome the limitation imposed by CYK-like algorithms, we in-

troduce dotted productions into items. Thus, we can distinguish the
part of a production already processed from the unprocessed part. In
the case of LIG, we write A as a shorthand for A[◦◦η], A[◦◦] and A[ ]
when the specification of the list of indices is not relevant in the context.
Therefore, LIG items are now of the form:

[A → Υ1 •Υ2, η, i, j | B, p, q]

and they represent one of the following two cases:

A[η] ⇒ Υ1Υ2
∗⇒ ai+1 · · · ap B[ ] aq+1 · · · aj Υ2 iff (B, p, q) 6=

(−,−,−), B[ ] is a dependent descendant of A[η] and (p, q) ≤ (i, j).

Υ1
∗⇒ ai+1 · · · aj iff η = − and (B, p, q) = (−,−,−). If the depen-

dent child is in Υ1 then the list of indices associated with A and
with the dependent child must be empty.

The recognition of the input string is indicated by the presence of final
items in the set F = { [S → Υ•,−, 0, n | −,−,−] }.

In the case of TAG parsing, if we translate the grammar to LIG fol-
lowing the mechanism shown in section 3.1, we obtain items of the form:

[Nγ → δ • ν, Mγ′
, i, j | Mγ′

, p, q]

representing the following cases:

δ
∗⇒ ai+1 · · · ap Fγ aq+1 · · · aj ⇒f ai+1 · · · ap υ aq+1 · · · aj

∗⇒f

ai+1 · · · aj , Mγ′ → υ, and γ ∈ adj(Mγ′
) iff (Mγ′

, p, q) 6= (−,−,−).

δ
∗⇒ ai+1 · · · aj iff (Mγ′

, p, q) = (−,−,−).

As mentioned for the CYK-like algorithm, the element Mγ′
is redun-

dant, allowing a more compact form of items for TAG parsing:

[Nγ → δ • ν, i, j | p, q]

The set of final items is F = { [Rα → δ•, 0, n | −,−] }, with α ∈ I and
S = label(Rα).
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5.2 Deduction Steps
The CYK-like parsing algorithm for LIG does not take into account

whether the part of the input string recognized by each grammar element
can be derived from S, the axiom of the grammar. Earley-like algorithms
limit the number of deduction steps that can be applied at each point by
predicting productions which are candidates to be part of a derivation
starting from the grammar axiom. As a first approach, we consider that
prediction is performed by taking into account only the context-free
skeleton. The resulting parsing system has the following characteristics:

A set of Init deduction steps is in charge of starting the top-down
prediction by considering only the productions with S as left-hand
side.

In any state of the parsing process, a set of Pred deduction steps
generates only those items involving productions with a relevant
context-free skeleton.

The following list specifies the sets of deduction steps for an Earley-
like parsing algorithm for linear indexed grammars:

DInit
E−LIG =

[S → •Υ,−, 0, 0 | −,−,−]

DScan
E−LIG =

[A[ ] → •a,−, j, j | −,−,−],
[a, j, j + 1]

[A[ ] → a•,−, j, j + 1 | −,−,−]

Dε
E−LIG =

[A[ ] → •ε,−, j, j | −,−,−]
[A[ ] → ε•,−, j, j | −,−,−]

DPred
E−LIG =

[A → Υ1 •B Υ2, γ, i, j | C, p, q]
[B → •Υ3,−, j, j | −,−,−]

DComp[ ]
E−LIG =

[A → Υ1 •B[ ] Υ2, γ, i, k | C, p, q],
[B → Υ3•,−, k, j | −,−,−]
[A → Υ1 B[ ] •Υ2, γ, i, j | C, p, q]

DComp[◦◦η][◦◦]
E−LIG =

[A[◦◦η] → Υ1 •B[◦◦] Υ2,−, i, k | −,−,−],
[B → Υ3•, η′, k, j | C, p, q]
[A[◦◦η] → Υ1 B[◦◦] •Υ2, η, i, j | B, k, j]

DComp[◦◦][◦◦]
E−LIG =

[A[◦◦] → Υ1 •B[◦◦] Υ2,−, i, k | −,−,−],
[B → Υ3•, η′, k, j | C, p, q]
[A[◦◦] → Υ1 B[◦◦] •Υ2, η′, i, j | C, p, q]
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Table 1.1. Productions proposed by Schabes and Shieber

Schabes & Shieber Production Equivalent Production

b[◦◦Nγ ] → t[Nγ
1 ] · · · t[◦◦Nγ

s ] · · · t[Nγ
m] Nγb[◦◦] → Nγ

1
t[ ] · · ·Nγ

s
t[◦◦] · · ·Nγ

m
t[ ]

b[Nγ ] → t[Nγ
1 ] · · · t[Nγ

m] Nγb[ ] → Nγ
1
t[ ] · · ·Nγ

m
t[ ]

t[◦◦Nγ ] → b[◦◦Nγ ] Nγt[◦◦] → Nγb[◦◦]
t[◦◦Nγ ] → t[◦◦NγRβ ] Nγt[◦◦] → Rβt

[◦◦Nγ ]

b[◦◦Nγ ] → t[◦◦NγRβ ] Nγb[◦◦] → Rβt
[◦◦Nγ ]

b[◦◦NγFβ ] → b[◦◦Nγ ] Fβb
[◦◦Nγ ] → Nγb[◦◦]

t[Nγ ] → t[Rα] Nγt[ ] → Rαt[ ]

DComp[◦◦][◦◦η]
E−LIG =

[A[◦◦] → Υ1 •B[◦◦η] Υ2 ,−, i, k | −,−,−],
[B → Υ3• , η, k, j | C, p, q],
[C → Υ4•, η′, p, q | D, r, s]
[A[◦◦] → Υ1 B[◦◦η] •Υ2, η′, i, j | D, r, s]

The resulting algorithm, which has a space complexity O(n4) and a
time complexity O(n6), is very close to the Earley-like algorithm de-
scribed in (Schabes and Shieber, 1994) although the latter can only be
applied to a specific class of linear indexed grammars obtained from tree
adjoining grammars. However, both algorithms share an important fea-
ture: they are weakly predictive as they do not consider the contents
of the index lists when predictive steps are applied. At first glance, the
algorithm proposed in (Schabes and Shieber, 1994) consults the element
on the top of the index list during prediction, but a deeper study of the
behavior of the algorithm makes it clear that this is not true, due to the
fact that the context-free skeleton of the elementary trees of a TAG is
stored in the index lists, reducing the non-terminal set of the resulting
LIG to {t, b}. In table 1.1, an equivalent set of productions with a richer
non-terminal set is given. If we consider these productions, there is no
consultation of the top of the index lists in the application of predictive
steps.

From this parsing algorithm for LIG, we can derive an Earley-like
parsing algorithm for TAG, similar to the one described in (Schabes,
1991), that applies prediction with respect to the structure of elementary
trees, but not with respect to the lists of pending adjunctions. In the
case of TAG, parsing begins by creating the item corresponding to a
production that has the root of an initial tree as left-hand side and the
dot in the leftmost position of the right-hand side:

DInit
E−TAG =

[> → •Rα, 0, 0 | −,−]
α ∈ I, S = label(γ)
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Terminal symbols and the empty string are recognized by the following
deduction steps:

DScan
E−TAG =

[Nγ → δ •Mγν, i, j | p, q],
[a, j, j + 1]

[Nγ → δMγ • ν, i, j + 1 | p, q]
a = label(Mγ)

Dε
E−TAG =

[Nγ → δ •Mγν, i, j | p, q],
[Nγ → δMγ • ν, i, j | p, q]

ε = label(Mγ)

The set DPred
E−LIG of deduction steps has its counterpart in several different

steps, one for each kind of predictions that we can perform on TAG
parsing, namely:

Prediction of a child node:

DPred
E−TAG =

[Nγ → δ •Mγν, i, j | p, q]
[Mγ → •υ, j, j | −,−]

nil ∈ adj(Mγ)

Prediction of the adjunction on a node of an elementary tree γ,
starting the traversal of an auxiliary tree β:

DAdjPred
E−TAG =

[Nγ → δ •Mγν, i, j | p, q]
[> → •Rβ , j, j | −,−]

β ∈ adj(Mγ)

Prediction, when the foot node of β is reached, of some subtree of γ
to be attached to this foot node and traversed (after suspension
of the traversal of β). At this point, no information is available
about the adjunction node, so all possible nodes are predicted:

DFootPred
E−TAG =

[Fβ → •⊥, k, k | −,−]
[Mγ → •υ, k, k | −,−]

β ∈ adj(Mγ)

The counterpart of DComp[ ]
E−LIG corresponds to a bottom-up traversal of

nodes not on the spine of an auxiliary tree:

DCompNoSpine
E−TAG =

[Nγ → δ •Mγν, i, k | p, q],
[Mγ → υ•, k, j | −,−]
[Nγ → δMγ • ν, i, j | p, q]

Mγ 6∈ spine(γ)
nil ∈ adj(Mγ)

whereas the counterpart of DComp[◦◦][◦◦]
E−LIG is in charge of the bottom-up

traversal of nodes on the spine of an auxiliary tree:

DCompSpine
E−TAG =

[Nγ → δ •Mγν, i, k | −,−],
[Mγ → υ•, k, j | p, q]
[Nγ → δMγ • ν, i, j | p, q]

Mγ ∈ spine(γ)
nil ∈ adj(Mγ)
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Upon completion of the traversal of a subtree predicted at the foot
node Fβ, a step in the counterpart of DComp[◦◦η][◦◦]

E−LIG resumes the traversal
of auxiliary tree β at Fβ:

DFootComp
E−TAG =

[Fβ → •⊥, k, k | −,−],
[Mγ → υ•, k, j | p, q]
[Fβ → ⊥•, k, j | k, j]

β ∈ adj(Mγ)

Upon completion of the traversal of β, a deduction step in the coun-
terpart of DComp[◦◦][◦◦η]

E−LIG checks if the subtree attached to the foot of β
corresponds to the one rooted at the adjunction node Mγ , when Mγ is
placed on a spine:

DAdjCompSpine
E−TAG =

[Nγ → δ •Mγν, i, k | −,−],
[> → Rβ•, k, j | p, q],
[Mγ → υ•, p, q | r, s]
[Nγ → δMγ • ν, i, j | r, s]

β ∈ adj(Mγ)
Mγ ∈ spine(γ)

If the adjunction node Mγ is not placed on a spine, then the comple-
tion of an adjunction is equivalent to the consecutive application of the
counterparts of DComp[◦◦][◦◦η]

E−LIG and DComp[ ]
E−LIG :

DAdjCompNoSpine
E−TAG =

[Nγ → δ •Mγν, i, k | p′, q′],
[> → Rβ•, k, j | p, q],
[Mγ → υ•, p, q | −,−]
[Nγ → δMγ • ν, i, j | p′, q′]

β ∈ adj(Mγ)
Mγ 6∈ spine(γ)

The space complexity of these parsing algorithms for LIG and TAG
remains O(n4) and the time complexity remains O(n6).

6. Earley-like Parsing Algorithms Preserving
the Correct Prefix Property

Parsers satisfying the correct prefix property (CPP) guarantee that, as
they read the input string from left to right, the substrings read so far are
valid prefixes of the language defined by the grammar. More formally, a
parser satisfies the correct prefix property if, for any substring a1 · · · ak

read from the input string a1 · · · akak+1 · · · an, it guarantees that there
exists a string of tokens b1 · · · bm, where bi need not be part of the input
string, such that a1 · · · akb1 · · · bm is a valid string of the language.

To maintain the correct prefix property, a parser must recognize all
possible derived trees in prefix form. In order to do that, two different
phases must work coordinately: a top-down phase that expands the chil-
dren of each node visited and a bottom-up phase grouping the children
nodes to indicate the recognition of the parent node (Schabes, 1991).



16

6.1 Items
A parser for LIG that preserves the correct prefix property must check

that each predicted element A[ζ] satisfies S[ ] ∗⇒ w′ A[ζ] Υ where w′ is
a prefix of the input string w. To obtain a CPP Earley-like parser, we
need to modify the Pred steps in order to predict information about the
index lists. As a consequence, items must be also modified, introducing
a new element that allows us to track the contents of the predicted index
lists. The items are now of the form

[E, h | A → Υ1 •Υ2, η, i, j | B, p, q]

and they represent one of the following kinds of derivations:

S[ ] ∗⇒ a1 · · · ah E[ζ] Υ4
∗⇒ a1 · · · ah · · · ai A[ζη] Υ3Υ4

∗⇒
a1 · · · ah · · · ai · · · ap B[ζ] aq+1 · · · aj Υ2Υ3Υ4 if and only if
(B, p, q) 6= (−,−,−), A[ζη] is a dependent descendent of
E[ζ], and B[ζ] is a dependent descendent of A[ζη]. Such a
derivation corresponds to the completion of the dependent child
of a production having the non-terminal A with a non empty
index list as left-hand side.

S[ ] ∗⇒ a1 · · · ah E[ζ] Υ4
∗⇒ a1 · · · ah · · · ai A[ζη] Υ3Υ4

∗⇒
a1 · · · ah · · · ai · · · aj Υ2Υ3Υ4 iff (E, h) 6= (−,−), (B, p, q) =
(−,−,−), A[ζη] is a dependent descendant of E[ζ], Υ1 does not
contain the descendent child of A[ζη], and (p, q) ≤ (i, j). Such a
derivation corresponds to prediction of the non-terminal A with a
non-empty index list.

S[ ] ∗⇒ a1 · · · aiA[ ]Υ4
∗⇒ a1 · · · ai · · · aj Υ2Υ4 iff (E, h) = (−,−),

η = −, and (B, p, q) = (−,−,−). If Υ1 includes the dependent
child of A[ ] then the index list associated with that dependent
child is empty. Such a derivation corresponds to the prediction or
completion of an element A[ ].

The new items are refinements of the items in the Earley-like parser
without the CPP: the element η is used to store the top of the predicted
index list and the pair (E, h) allows us to track the item involved in the
prediction. At first glance, we could suppose that, in order to track this
item, it would be necessary to store (E, η′, h, k). However, due to the
context-freeness property of LIG, the index η′ may be discarded as the
derivation must be valid independently of the rest of the index list. The
position k may be discarded because every predicted item in the parsing
system is of the form [A → •Υ, h, h | B, p, q] and therefore h = k.

The recognition of the input string is indicated by the generation of
items in the set of final items F = { [−,− | S → Υ•,−, 0, n | −,−,−] }.
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In the case of TAG parsing, if we translate the grammar to LIG as
shown in section 3.1, we obtain items of the form:

[Mγ′
, h | Nγ → δ • ν, Mγ′

, i, j | Mγ′
, p, q]

representing the following cases, where α denotes an initial tree with
label(Rα) = S:

Rα ∗⇒r a1 · · · ahMγ′
ν ′, Rγ ∗⇒ ah+1 · · · aiδνυ′, δ

∗⇒
ai+1 · · · ap Fγ aq+1 · · · aj ⇒f ai+1 · · · ap υ aq+1 · · · aj

∗⇒f

ai+1 · · · aj , Mγ′ → υ, and γ ∈ adj(Mγ′
) iff (Mγ′

, h) 6= (−,−)
and (p, q) 6= (−,−).

Rα ∗⇒r a1 · · · ahMγ′
ν ′, Rγ ∗⇒ ah+1 · · · aiδνυ, δ

∗⇒ ai+1 · · · aj , and
γ ∈ adj(Mγ′

) iff if (Mγ′
, h) 6= (−,−) and (p, q) = (−,−).

Rα ∗⇒r a1 · · · aiδνν ′, δ
∗⇒ ai+1 · · · aj , and Nγ not on a spine iff

(Mγ′
, h) = (−,−) and (p, q) = (−,−).

When bound, Mγ′
and h indicate, respectively, the node at which γ has

been adjoined and the position of the input string where this adjunction
was started. Note that h is also the left-most position of the frontier of γ.
Once again, the element Mγ′

is redundant, allowing a more compact
form of items for TAG parsing:

[h | Nγ → δ • ν, i, j | p, q]

The set of final items is F = { [− | Rα → δ•, 0, n | −,−] }, with α ∈ I
and S = label(Rα).

6.2 Deduction Steps
With respect to deduction steps for LIG, the completion steps must

be adapted to the new form of the items in order to manipulate the new
components E and h, and the prediction steps must be refined to take
into account the different kinds of productions:

DInit
Earley−LIG =

[−,− | S → •Υ,−, 0, 0 | −,−,−]

DScan
Earley−LIG =

[−,− | A[ ] → •a,−, j, j | −,−,−],
[a, j, j + 1]

[−,− | A[ ] → a•,−, j, j + 1 | −,−,−]

Dε
Earley−LIG =

[−,− | A[ ] → •ε,−, j, j | −,−,−]
[−,− | A[ ] → ε•,−, j, j | −,−,−]
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DPred[ ]
Earley−LIG =

[E, h | A → Υ1 •B[ ] Υ2, η, i, j | C, p, q]
[−,− | B → •Υ3,−, j, j | −,−,−]

B = B[◦◦]
or B = B[ ]

DPred[◦◦η][◦◦]
Earley−LIG =

[E, h | A[◦◦η] → Υ1 •B[◦◦] Υ2, η, i, j | −,−,−],
[M,m | E → •Υ3, η

′, h, h | −,−,−]
[M,m | B → •Υ4, η′, j, j | −,−,−]

such that B = B[ ] iff η′ = −, while B = B[◦◦] or B = B[◦◦η′] iff η′ 6= −.

DPred[◦◦][◦◦]
Earley−LIG =

[E, h | A[◦◦] → Υ1 •B[◦◦] Υ2, η, i, j | −,−,−]
[E, h | B → •Υ3, η, j, j | −,−,−]

such that B = B[ ] iff η = −, while B = B[◦◦] or B = B[◦◦η] iff η 6= −.

DPred[◦◦][◦◦η]
Earley−LIG =

[E, h | A[◦◦] → Υ1 •B[◦◦η] Υ2, η
′, i, j | −,−,−]

[A, i | B → •Υ3, η, j, j | −,−,−]

such that B = B[◦◦] or B = B[◦◦η].

DComp[ ]
Earley−LIG =

[E, h | A → Υ1 •B[ ] Υ2, η, i, j | C, p, q],
[−,− | B → Υ3•,−, j, k | −,−,−]
[E, h | A → Υ1 B[ ] •Υ2, η, i, k | C, p, q]

DComp[◦◦η][◦◦]
Earley−LIG =

[E, h | A[◦◦η] → Υ1 •B[◦◦] Υ2, η, i, j | −,−,−],
[M,m | E → •Υ3, η

′, h, h | −,−,−],
[M,m | B → Υ4•, η′, j, k | C, p, q]
[E, h | A[◦◦η] → Υ1 B[◦◦] •Υ2, η, i, k | B, j, k]

DComp[◦◦][◦◦]
Earley−LIG =

[E, h | A[◦◦] → Υ1 •B[◦◦] Υ2, η, i, j | −,−,−],
[E, h | B → Υ3•, η, j, k | C, p, q]
[E, h | A[◦◦] → Υ1 B[◦◦] •Υ2, η, i, k | C, p, q]

DComp[◦◦][◦◦η]
Earley−LIG =

[E, h | A[◦◦] → Υ1 •B[◦◦η] Υ2 , η′, i, j | −,−,−],
[A, i | B → Υ3• , η, j, k | C, p, q],
[E, h | C → Υ4•, η′, p, q | D, r, s]
[E, h | A[◦◦] → Υ1 B[◦◦η] •Υ2, η′, i, k | D, r, s]

The space complexity of this algorithm with respect to the length n
of the input string is O(n5), as each item stores five positions of the
input string. The time complexity is O(n8) due to steps in the set
DComp[◦◦][◦◦η]

Earley . To reduce the time complexity, we use a technique, in-
spired by the work of (Nederhof, 1999), and similar to the one used
in (De la Clergerie and Alonso, 1998; Alonso et al., 2000b) to reduce the
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complexity of the tabular interpretations of automata for tree adjoining
languages. The idea is to split each deduction step in DComp[◦◦][◦◦η]

Earley into
two different steps such that their final complexity is at most O(n6):

DComp[◦◦][◦◦η]0

Earley−LIG =

[A, j | B → Υ3• , η, j, k | C, p, q],
[E, h | C → Υ4•, η′, p, q | D, r, s]

[[B → Υ3• , η, j, k | D, r, s]]

DComp[◦◦][◦◦η]1

Earley−LIG =

[[B → Υ3• , η, j, k | D, r, s]],
[E, h | A[◦◦] → Υ1 •B[◦◦η] Υ2 , η′, i, j | −,−,−],
[E, h | C → Υ4•, η′, p, q | D, r, s]
[E, h | A[◦◦] → Υ1 B[◦◦η] •Υ2, η′, i, k | D, r, s]

Deduction steps in DComp[◦◦][◦◦η]0

Earley generate an intermediate item of the
form [[B → Υ3• , η, j, k | D, r, s]] that will be taken as antecedent for
steps in DComp[◦◦][◦◦η]1

Earley and that represents a derivation

B[η′η] ∗⇒ aj+1 · · · ap C[η′] aq+1 · · · ak
∗⇒ aj+1 · · · ap · · · ar D[ ] as+1 · · · aq · · · ak

for some η′, p and q. Deduction steps Comp[◦◦][◦◦η]1 combine this
pseudo-item with an item [E, h | A[◦◦] → Υ1 • B[◦◦η] Υ2 , η′, i, j |
−,−,−] that represents a derivation

S[ ] ∗⇒ a1 · · · ah E[ζ] Υ5
∗⇒ a1 · · · ah · · · ai A[ζη′] Υ3Υ5
∗⇒ a1 · · · ah · · · ai · · · aj B[ζη′η] Υ2Υ3Υ5

and with an item [E, h | C → Υ4•, γ′, p, q | D, r, s] representing a deriva-
tion

S[ ] ∗⇒ a1 · · · ah E[ζ] Υ5
∗⇒ a1 · · · ah · · · ap C[ζη′′] Υ4Υ5
∗⇒ a1 · · · ah · · · ap · · · ar D[ζ] as+1 · · · aq Υ4Υ5

As a result, a new item of the form [E, h | A[◦◦] → Υ1 B[◦◦η] •
Υ2, η

′, i, k | D, r, s] is generated. This last item represents the existence
of a derivation

S[ ] ∗⇒ a1 · · · ah E[ζ] Υ5
∗⇒ a1 · · · ah · · · ai A[ζη′] Υ3Υ5
∗⇒ a1 · · · ah · · · ai · · · aj B[ζη′η] Υ2Υ3Υ5
∗⇒ a1 · · · ah · · · ai · · · aj · · · ap C[ζη′] aq+1 · · · ak Υ2Υ3Υ5
∗⇒ a1 · · · ah · · · ai · · · aj · · · ap · · · ar D[ζ] as+1 · · · aq+1 · · · ak Υ2Υ3Υ5
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In the case of TAG, the CYK-like and Earley-like parsing algorithms
described in the previous sections do not preserve the correct prefix
property because foot-prediction (a top-down operation) is not restric-
tive enough to guarantee that the subtree attached to the foot node is
really a subtree of the tree involved in the adjunction. The following is
the list of deduction steps for TAG obtained from the list of deduction
steps for LIG:

DInit
Earley−TAG =

[− | > → •Rα, 0, 0 | −,−]
α ∈ I, S = label(α)

DScan
Earley−TAG =

[h | Nγ → δ •Mγν, i, j | p, q],
[a, j, j + 1]

[h, Nγ → δMγ • ν, i, j + 1 | p, q]
a = label(Mγ)

Dε
Earley−TAG =

[h | Nγ → δ •Mγν, i, j | p, q],
[h | Nγ → δMγ • ν, i, j | p, q]

ε = label(Mγ)

The set DPred[ ]
E−LIG has its counterparts in the set of steps in charge of

predicting a node not placed on the spine:

DPredNoSpine
Earley−TAG =

[h | Nγ → δ •Mγν, i, j | p, q]
[− | Mγ → •υ, j, j | −,−]

Mγ 6∈ spine(γ),
nil ∈ adj(Mγ)

Items related to a node Mγ not on a spine need not keep trace of h
(corresponding to the input position when starting the traversal of γ),
as done for LIG for non descendant children.

The counterpart of DPred[◦◦][◦◦]
Earley−LIG is the set of steps in charge of predict-

ing children nodes of a node placed on the spine:

DPredSpine
Earley−TAG =

[h | Nγ → δ •Mγν, i, j | −,−]
[h | Mγ → •υ, j, j | −,−]

Mγ ∈ spine(γ),
nil ∈ adj(Mγ)

Prediction of adjunction is performed by steps equivalent to the con-
secutive application of two steps in DPred[◦◦][◦◦]

Earley−LIG and DPred[◦◦][◦◦η]
Earley−LIG :

DAdjPred
Earley−TAG =

[h | Nγ → δ •Mγν, i, j | p, q]
[j | > → •Rβ , j, j | −,−]

β ∈ adj(Mγ)

Each step performing the prediction at a foot node of the excised
subtree rooted by Mγ corresponds to the consecutive application of the
counterparts of a step in DPred[◦◦η][◦◦]

Earley−LIG and a step in DPred[ ]
Earley−LIG if Mγ is

not on a spine:

DFootPredNoSpine
Earley−TAG =

[h | Fβ → •⊥, j, j | −,−],
[m | Nγ → δ •Mγν, i, h | p, q]

[− | Mγ → •υ, j, j | −,−]
β ∈ adj(Mγ),
Mγ 6∈ spine(γ)
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but if Mγ is placed on the spine of γ then the resulting step corre-
sponds to the consecutive application of the counterparts of a step in
DPred[◦◦η][◦◦]

Earley−LIG and a step in DPred[◦◦][◦◦]
Earley−LIG:

DFootPredSpine
Earley−TAG =

[h | Fβ → •⊥, j, j | −,−],
[m | Nγ → δ •Mγν, i, h | −,−]

[m | Mγ → •υ, j, j | −,−]
β ∈ adj(Mγ),
Mγ ∈ spine(γ)

The counterparts of DComp[ ]
E−LIG and DComp[◦◦][◦◦]

E−TAG corresponds to steps
traversing elementary trees bottom-up:

DCompNoSpine
Earley−TAG =

[h | Nγ → δ •Mγν, i, j | p, q],
[− | Mγ → υ•, j, k | −,−]
[h | Nγ → δMγ • ν, i, k | p, q]

Mγ 6∈ spine(γ)
nil ∈ adj(Mγ)

DCompSpine
Earley−TAG =

[h | Nγ → δ •Mγν, i, j | −,−],
[h | Mγ → υ•, j, k | p, q]
[h | Nγ → δMγ • ν, i, k | p, q]

Mγ ∈ spine(γ)
nil ∈ adj(Mγ)

Upon completion of the traversal of the subtree rooted at a node Mγ ,
not on the spine, and predicted at a foot node Fβ , the traversal of β
is resumed by the following step which is the result of the consecutive
application of the counterparts of DComp[◦◦η][◦◦]

Earley−LIG and DComp[ ]
Earley−LIG:

DFootCompNoSpine
Earley−TAG =

[h | Fβ → •⊥, j, j | −,−],
[m | Nγ → δ •Mγν, i, h | p, q],
[− | Mγ → υ•, j, k | −,−]

[h | Fβ → ⊥•, j, k | j, k]
β ∈ adj(Mγ),
Mγ 6∈ spine(γ)

If Mγ is not in the spine of γ then the set of deduction steps for the
completion of foot is the counterpart of DComp[◦◦η][◦◦]

E−LIG :

DFootCompSpine
Earley−TAG =

[h | Fβ → •⊥, j, j | −,−],
[m | Nγ → δ •Mγν, i, h | −,−],
[m | Mγ → υ•, j, k | p, q]

[h | Fβ → ⊥•, j, k | j, k]
β ∈ adj(Mγ),
Mγ ∈ spine(γ)

Upon completion of the traversal of β, a deduction step in the coun-
terpart of DComp[◦◦][◦◦η]

Earley−LIG checks if the subtree attached to the foot of β
corresponds to the one rooted at the adjunction node Mγ . When Mγ is
on a spine, each step works in coordination with a DComp[◦◦][◦◦]

Earley−LIG step:

DAdjCompSpine
Earley−TAG =

[h | Nγ → δ •Mγν, i, j | −,−],
[j | > → Rβ•, j, k | p, q],
[h | Mγ → υ•, p, q | r, s]
[h | Nγ → δMγ • ν, i, k | r, s]

β ∈ adj(Mγ),
Mγ ∈ spine(γ)
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If the adjunction node is not on a spine, then deduction steps for the
completion of adjunction are equivalent to the consecutive application
of two steps in the counterparts of DComp[◦◦][◦◦η]

Earley−LIG and DComp[ ]
Earley−LIG:

DAdjCompNoSpine
Earley−TAG =

[h | Nγ → δ •Mγν, i, j | p′, q′],
[j | > → Rβ•, j, k | p, q],
[− | Mγ → υ•, p, q | −,−]
[h | Nγ → δMγ • ν, i, k | p′, q′]

β ∈ adj(Mγ),
Mγ 6∈ spine(γ)

The time complexity of this algorithm, with respect to the length
n of the input string, is O(n7), and is given by the adjunction com-
pletion steps. To reduce it to the standard O(n6) time complexity,
we must apply the same technique used in the case of LIG parsing,
splitting DAdjCompSpine

Earley−TAG into DAdjComp0

Earley−TAG and DAdjCompSpine1

Earley−TAG , whereas

DAdjCompNOSpine
Earley−TAG is split into DAdjComp0

Earley−TAG and DAdjCompNoSpine1

Earley−TAG :

DAdjComp0

Earley−TAG =

[j | > → Rβ•, j, k | p, q],
[h | Mγ → δ•, p, q | r, s]
[[Mγ → δ•, j, k | r, s]]

β ∈ adj(Mγ)

DAdjCompSpine1

Earley−TAG =

[[Mγ → υ•, j, k | r, s]],
[h | Nγ → δ •Mγν, i, j | −,−],
[h | Mγ → υ•, p, q | r, s]
[h | Nγ → δMγ • ν, i, k | r, s]

β ∈ adj(Mγ),
Mγ ∈ spine(γ)

DAdjCompNoSpine1

Earley−TAG =

[[Mγ → υ•, j, k | r, s]],
[h | Nγ → δ •Mγν, i, j | p′, q′],
[− | Mγ → υ•, p, q | −,−]
[h | Nγ → δMγ • ν, i, k | p′, q′]

β ∈ adj(Mγ),
Mγ 6∈ spine(γ)

7. Bidirectional Parsing
Bidirectional parsing strategies can start computations at any posi-

tion of the input string and can span to the right and to the left to
include substrings which were scanned in a bidirectional manner by sub-
computations. Although these kinds of strategies seems to be naturally
adapted for TAG, only a few bidirectional parsing algorithms have been
proposed (Lavelli and Satta, 1991; van Noord, 1994; Dı́az et al., 2000).
In the case of LIG, to the best of our knowledge, only a bottom-up
head-corner parser has been defined (Schneider, 2000).

In this section we propose a new bidirectional bottom-up parser for
LIG derived from the context-free parser defined by De Vreught and
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Honig (Sikkel, 1997). Intermediate results of the parsing process are
stored as items of the form

[A → Υ1 •Υ2 •Υ3, η, i, j | B, p, q]

with double-dotted productions. Each item represents one of the follow-
ing kinds of derivation:

Υ2
∗⇒ Υ2′ E[η] Υ2′′

∗⇒ ai+1 · · · ap B[ ] aq+1 · · · aj iff (B, p, q) 6=
(−,−,−), where B[ ] is a dependent descendent of E[η] and
(p, q) ≤ (i, j).

Υ2
∗⇒ ai+1 · · · aj iff η = − and (B, p, q) = (−,−,−).

The input string a1 · · · an is recognized if an item in F = { [S →
•Υ• ,−, 0, n | −,−,−] } is generated.

The parsing process starts by recognizing a terminal symbol or the
empty string:

DScan
dVH−LIG =

[a, j, j + 1]
[A[ ] → •a•,−, j, j + 1 | −,−,−]

Dε
dVH−LIG =

[A[ ] → •ε•,−, j, j | −,−,−]

Upon recognition of a production defining non-terminal B, the
bottom-up recognition of productions having B in their body is trig-
gered:

DInc[ ]
dVH−LIG =

[B → •Υ3•,−, i, j | −,−,−]
[A → Υ1 • B[ ] •Υ2,−, i, j | −,−,−]

DInc[◦◦][◦◦]
dVH−LIG =

[B → •Υ3•, η, i, j | C, p, q]
[A[◦◦] → Υ1 • B[◦◦] •Υ2, η, i, j | C, p, q]

DInc[◦◦η][◦◦]
dVH−LIG =

[B → •Υ3•, η′, i, j | C, p, q]
[A[◦◦η] → Υ1 • B[◦◦] •Υ2, η, i, j | B, i, j]

DInc[◦◦][◦◦η]
dVH−LIG =

[B → •Υ3•, η, i, j | C, p, q],
[C → •Υ4•, η′, p, q | D, r, s]

[A[◦◦η] → Υ1 • B[◦◦] •Υ2, η′, i, j | D, r, s]

When two consecutive parts of the right-hand side of a rule have been
recognized, they are concatenated:

DConc[ ]
dVH−LIG =

[A → Υ1 •Υ2 •Υ3Υ4, η, i, j | C, p, q],
[A → Υ1Υ2 •Υ3 •Υ4, η

′, j, k | C ′, p′, q′],
[A → Υ1 •Υ2Υ3 •Υ4, η ∪ η′, i, k | C ∪ C ′, p ∪ p′, q ∪ q′]
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where, given X and Y , we define X ∪ Y as X if Y is unbound, as Y if
X is unbound, and being undefined otherwise.

The translation of this algorithm to TAG uses items of the form

[Nγ → ν • δ • ω, Mγ′
, i, j | Mγ′

, p, q]

representing one of the following two situations:

δ
∗⇒ ai+1 · · · ap Fγ aq+1 · · · aj ⇒f ai+1 · · · ap υ aq+1 · · · aj

∗⇒f

ai+1 · · · aj , Mγ′ → υ, and γ ∈ adj(Mγ′
) iff (p, q) 6= (−,−).

δ
∗⇒ ai+1 · · · aj iff (p, q) = (−,−).

As already mentioned for other TAG parsing algorithms, the element
Mγ is redundant, allowing more compact items (Dı́az et al., 2000) of the
form:

[Nγ → ν • δ • ω, i, j | p, q]

As before, the parsing process is started bottom-up by means of the
recognition of terminal symbols or the empty string:

DScan
dVH−TAG =

[a, j, j + 1]
[Nγ → ν •Mγ • ω, j, j + 1 | −,−]

a = label(Mγ)

Dε
dVH−TAG =

[Nγ → ν •Mγ • ω, j, j | −,−]
ε = label(Mγ)

Steps in DInc[ ]
dVH−LIG correspond to the bottom-up traversal of nodes

not placed on the spine:

DIncNoSpine
dVH−TAG =

[Mγ → •δ•, i, j | −,−]
[Nγ → ν •Mγ • ω, i, j | −,−]

Mγ 6∈ spine(γ), nil ∈ adj(Mγ)

whereas steps in DInc[◦◦][◦◦]
dVH−LIG correspond to the bottom-up traversal of

nodes in the spine of an auxiliary tree, propagating the list of pending
adjunctions:

DIncNoSpine
dVH−TAG =

[Mγ → •δ•, i, j | p, q]
[Nγ → ν •Mγ • ω, i, j | p, q]

Mγ ∈ spine(γ), nil ∈ adj(Mγ)

Steps in DInc[◦◦η][◦◦]
dVH−LIG correspond to the bottom-up starting of an a

adjunction operation at the foot node of an auxiliary tree:

DFoot
dVH−TAG =

[Mγ → •δ•, i, j | p, q]
[Fβ → •⊥•, i, j | i, j]

β ∈ adj(Mγ)
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whereas steps in DInc[◦◦][◦◦η]
dVH−LIG correspond to finishing the adjunction op-

eration once the auxiliary tree has been completely traversed:

DAdj
dVH−TAG =

[> → •Rβ•, i, j | p, q]
[Mγ → •δ•, p, q | r, s]

[Nγ → ν •Mγ • ω, i, j | r, s]
β ∈ adj(Mγ)

Steps in DConc
dVH−LIG correspond to the combination of two partial anal-

yses spanning consecutive parts of the input string:

DConc
dVH−TAG =

[Nγ → ν • δ1 • δ2ω, i, j | p, q]
[Nγ → νδ1 • δ2 • ω, j, k | p′, q′]

[Nγ → ν • δ1δ2 • ω, i, j | p ∪ p′, q ∪ q′]

The same relations between dVH-LIG and dVH-TAG can be found
between the bottom-up head-corner parser defined by (Schneider, 2000)
and a bottom-up head-corner parser for TAG. It is also possible to de-
fine bidirectional parsing algorithms for LIG that mimic the head-corner
algorithm for TAG defined by (van Noord, 1994) or the algorithm pro-
posed by (Lavelli and Satta, 1991).

8. Specialized TAG parsers
We have shown in the previous sections that TAG and LIG are very

closely related and that a parsing schema for one formalism may easily
be transposed to the other formalism. However, LIG is more generic
than TAG (with an easy encoding of TAG as LIG) which means that
more specialized and efficient schemata are possible for TAG. Actually,
this fact has been used in previous schemata to simplify the items for
TAG by deleting redundant or useless information. These simplifications
exploited the facts that (a) the traversal of an auxiliary tree does not
need any information about the adjunction node, and that (b) the foot
node of an auxiliary tree resumes the traversal of the subtree rooted at
the adjunction node and attached to the foot node.

There is another particularity that may help us to design special-
ized parsing algorithms for TAG, namely that elementary trees repre-
sent domains of locality that are lost when converting to LIG clauses.
A simple algorithm based on this notion of domain of locality has been
presented in (De la Clergerie, 2001). An item of the form [h | Nγ →
δ • Mγν, j | p, q | S] retraces the history of the traversal of some ele-
mentary tree γ, from the point h where it was started up to the cur-
rent point j, with (possibly) some hole p, q covered by a foot node, and
a (possibly empty) stack S of pairs (u, v) denoting adjunctions which
have been predicted but not yet completed. In such a pair, u denotes
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the point where the traversal was suspended because of an adjunction
and v denotes the point where the traversal was resumed after leav-
ing the foot node of an auxiliary tree. We note (u, v) = (−,−) in
case of null adjunction. Parsing succeeds if a final item belonging to
F = { [0 | Rα → υ•, n | −,− | ∅] | α ∈ I and S = label(Rα)} is
derivable.

DInit
Weak−TAG =

[0 | > → •Rα, 0 | −,− | ∅]
α ∈ I, S = label(α)

DScan
Weak−TAG =

[h | Nγ → δ •Mγν, j | p, q | S],
[a, j, j + 1]

[h, Nγ → δMγ • ν, j + 1 | p, q | S]
a = label(Mγ)

Dε
Weak−TAG =

[h | Nγ → δ •Mγν, j | p, q | S]
[h, Nγ → δMγ • ν, j | p, q | S]

ε = label(Mγ)

DPred
Weak−TAG =

[h | Nγ → δ •Mγν, j | p, q | S]
[h | Mγ → •υ, j | p, q | S, (−,−)]

nil ∈ adj(Mγ)

DComp
Weak−TAG =

[h | Mγ → υ•, j | p, q | S, (−,−)]
[h | Nγ → δMγ • ν, j | p, q | S]

nil ∈ adj(Mγ)

DAdjPred
Weak−TAG =

[h | Nγ → δ •Mγν, j | p, q | S]
[j | > → •Rβ , j | −,− | ∅]

β ∈ adj(Mγ)

DFootPred
Weak−TAG =

[h | Fβ → •⊥, i | −,− | S ′],
[m | Nγ → υ •Mγν, h | p, q | S]
[m | Mγ → •υ, i | p, q | S, (h, i)]

β ∈ adj(Mγ)

DFootComp
Weak−TAG =

[h | Fβ → •⊥, i | −,− | S ′],
[m | Mγ → υ•, j | p, q | S, (h, i)]

[h | Fβ → ⊥•, j | i, j | S ′]
β ∈ adj(Mγ)

DAdjComp
Weak−TAG =

[h | > → Rβ•, k | i, j | ∅],
[m | Mγ → υ•, j | p, q | S, (h, i)]
[m | Nγ → δMγ • ν, k | p, q | S]

β ∈ adj(Mγ)

The resulting algorithm corresponds to a left-to-right top-down pars-
ing strategy preserving the correct prefix property and is simpler than
many other algorithms. Its worst-case complexity is O(n4+2d) in space
and O(n5+2d) in time where d denotes the maximal depth of elementary
trees, and hence the maximal number of uncompleted adjunctions at
some point in an elementary tree. These complexities are not optimal
but experiments performed with linguistic grammars have nevertheless
shown that this algorithm can be efficient (De la Clergerie, 2001).
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9. Conclusion
We have presented a set of algorithms for LIG and TAG parsing, in-

cluding pure bottom-up algorithms, Earley-like algorithms with weak
prediction, Earley-like algorithms with strong prediction that preserves
the correct prefix property and bidirectional algorithms. Other algo-
rithms could also have been included, but for reasons of space we have
chosen to show only the algorithms we consider milestones in the devel-
opment of parsers for LIG and TAG.

We have also studied the relations among the steps in charge of rec-
ognizing the adjunction operation in a TAG and the steps in charge of
transmitting information through the spine in a LIG, obtaining fruit-
ful results. For example, the TAG formalism restricts combination of
items by means of (explicit or implicit) adjoining constraints. These
constraints are not present in LIG, and so LIG parsing algorithms must
take into account phenomena that never occur in TAG parsing. As a
result, items in TAG parsers are more compact than their counterparts
in LIG parsers. In addition, some practical optimizations for TAG pars-
ing algorithms (e.g., the weak tabular interpretation presented by De la
Clergerie, 2001) are not valid for LIG parsers.
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noloǵıa (HP2001-0044), by Xunta de Galicia (PGIDT01PXI10506PN,
PGIDIT02PXIB30501PR, PGIDIT02SIN01E), and by Universidade da
Coruña.

References
Alonso, M. A., Cabrero, D., De la Clergerie, É., and Vilares, M. (1999).
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