Workshop TAG+5, Paris, 25-27 May 2000

A redefinition of Embedded Push-Down Automata

Miguel A. Alonsd, Eric de la Clergerie and Manuel Vilarels

TDepartamento de Computacién, Universidad de La Corufia
Campus de Elvifia s/n, 15071 La Coruia (Spain)
{al onso, vilares} @Ic. fi.udc. es
YINRIA, Domaine de Voluceau
Rocquecourt, B.P. 105, 78153 Le Chesnay (France)
Eric.De_La _Clergerie@nria.fr

Abstract

A new definition of Embedded Push-Down Automata is providedprdve this new definition
preserves the equivalence with tree adjoining languageswaprovide a tabulation framework
to execute any automaton in polynomial time with respectdddahgth of the input string.

1. Introduction

Embedded Push-Down Automata (EPDA) were defined in (Vijagstker, 1988) as an exten-
sion of Push-Down Automata that accept exactly the classed Adjoining Languages. They
can also be seen as a level-2 automata in a progression af lteeated pushdowns involving

nested stacks (Weir, 1994).

An EPDA consists of a finite state control, an input tape antheksmade up of non-empty

stacks containing stack symbols. A transition can consdtstate, the input string and the
top element of the top stack and then change the state, rdaalacter of the input string and
replace the top element by a finite sequence of stack elentegige a new top stack, and new
stacks can be placed above and below the top stack.

EPDA can describe parsing strategies for tree adjoininghgrars in which adjunctions are
recognized top-down. The same kind of strategies can beidedadn strongly-driven 2-stack

automata (de la Clergerie & Alonso Pardo, 1998) and lineamiad automata (Nederhof, 1999),
which has associated tabulation frameworks allowing tlaagemata to be executed in polyno-
mial time with respect to the size of the input string. In thégoer we propose a redefinition of
EPDA in order to provide a tabulation framework for this sla$ automata.

2. EPDA without states

Finite-state control is not a fundamental component of glmlin automata, as the current state
in a configuration can be stored in the top element of the sthtike automaton (Lang, 1991).
Finite-state control can also be eliminated from EPDA, wiitg a new definition that considers
a EPDA as a tupléVr, Vs, ©, %, $¢) whereV is a finite set of terminal symbol§’s is a finite
set of stack symbols, € Vs is the initial stack symbol; € Vs is the final stack symbol and
O is a finite set of six types of transition:

SWAP: Transitions of the forrC' — F that replace the top element of the top stack while
scanning:. The application of such a transition on a stadk B returns the stack [aC.

* This research was partially supported by the FEDER of EU §Gi&D97-0047-C04-02) and Xunta de
Galicia (Grant PGIDT99X110502B).

Miguel A. Alonso, Eric de la Clergerie & Manuel Vilares

PUSH: Transitions of the fornC' s C F that pushF onto C. The application of such a
transition on a stack [aC returns the stack' [aCF.

POP: Transitions of the fornC’ F % G that replace” andF by G. The application of such
a transition or [«C'F returns the stack'[aG.

WRAP-A: Transitionswrap-aboveof the formC —— C, [F that push a new stadk’ on the
top of the automaton stack. The application of such a triansitn a stackl [aC returns
the stackr' [aC/[F.

WRAP-B: Transitionswrap-belowof the formC = [C, F that store a new stackC just
below the top stack, and change frarthto F' the top element of the top stack. The
application of such a transition on a stétkaC returns the stack’[C'[aF.

UNWRAP: Transitions of the fornC, [F —— G that delete the top stadk” and replace the
new top element byz. The application of such a transition on a statkaC[F returns
the stackf'[aG.

whereC, F,G € Vs, T € ([V&), a € V&, a € Vp U {e} and| ¢ Vs is a new symbol used
as stack separator. It can be proved that transitions of 2ABIKh states can be emulated by
transitions in® and vice versa.

An instantaneous configuratids a pair(T, w), whereY represents the contents of the automa-
ton stack andv is the part of the input string that is yet to be read. A configion (T, aw)
derives a configuratiofi(’, w), denoted Y, aw) - (Y’, w), if and only if there exists a transition
that applied toX’ givesY’ and scang from the input string. We use * to denote the reflexive
and transitive closure of. An input string is accepted by an EPDA({f$y, w) - *([$;, €). The
language accepted by an EPDA is the sebaf V;: such that[$,, w) - *([$;, €).

3. Compiling TAG into EPDA

We consider each elementary treeof a TAG as formed by a set of context-free produc-
tionsP(v): a nodeN” and itsg children N} ... N7 are represented by a productioit —
N{...Nj. The elements of the productions are the nodes of the treepesor the case of
elements belonging t&r U {¢} in the right-hand side of production. Those elements mag hav
no children and can not be adjoined, so we identify such ntadeded by a terminal with that
terminal. We use5 € adj(/N”) to denote that a treg may be adjoined at nod®™. If ad-
junction is not mandatory av”, thennil € adj(/N7). We consider the additional productions
T - R, T? — R” andF? — L for each initial treex € I and each auxiliary treg € A,
whereR* is the root node ofr andR” andF”? are the root node and foot node @f respec-
tively. After disablingT” and L as adjunction nodes the generative capability of the gramma
remains intact.

Figure 1 shows the generic compilation schema from TAG to &Rithere symbols/) have
been introduced to denote dotted productions. The meariegah compilation rule is graph-
ically shown in figure 2. This schema is parameterized]v\b?y the information propagated
top-down w.r.t. the nodév”, and byﬁ’, the information propagated bottom-up. When the
schema is used to implement a top-down stra@y: N7 andN? = (1, whered is a fresh
stack symbol. A bottom-up strategy requid@ = OandN7 = N". Fora Earley-like parsing
strategy, N7 = N7 and N7 = N7, whereN” and N7 are used to distinguish the top-down
prediction from the bottom-up propagation of a node.

We can observe in figure 1 that each stack stores pendingdcidjns with respect to the node
placed on the top of the stack in a top-down treatment of adijoims: when an adjunction node

A redefinition of Embedded Push-Down Automata

[INIT]
[CALL]
[SCALL]
[SEL]
[TAB]
[RET]
[SRET]
[SCAN]
[ACALL-a]
[ACALL-b]
[ARET]
[FCALL-a]
[FCALL-b]
[FRET]
[FINAL]

$0 — $0 [V5,

vy NAVA 2
vr,s vr,s I:Nr,erl

B N B 4
vr,s I: vr,s? Nv',s+1
—

Y Y
NT,O — VT’,O

o Y
vr,nT NT,O

-

o Y vy
vr,s? I:Nr,s-l-l vr,s—l—l

8 B B
vr,s’ I:N’r,s-i-l vr,s—l—l
—> %

Y a Y
NT,O NT,O

Vi, — [V)

r,s) A;“y,s
AL, — Ay, TP
B o
vz,y I:T '—>vr,s+1
5 5
Vier— [V L
—
A;"Y,s J— L N:,s—&-l
BT — 3
Vio [Nl — Vi,

$o I:v%,l — |:$f

acl
N?Zerl ¢ spine(y),
NZ,,1 € spine(5),

N, o1 & spine(y),
N1 € spine(d),
Ny —a
adi(N7, 1) # {nil)
B € adj(N, 1)

B € adj(N,;41)
N{y=F*

Nl =F7 Beadj(N],,,)

acl

Figure 1. Generic compilation schema from TAG to EPDA

Figure 2: Meaning of compilation rules

nil € adj(N,,,,)

nil € adj(N/,,)

nil € adj(N),,,)

nil € adj(N/,,)

Miguel A. Alonso, Eric de la Clergerie & Manuel Vilares

Transition EPDA L-LIA
SWAP Cr—F Cloo] s Foo]
PUSH C+% CF C[oo] % Floo(]
POP CF %G FlooC] ¥ Goo]
WRAP-A % C[F C[oo] = C[oo] F]
WRAP-B Cv% [CF Cloo] = C[] Floo]
UNWRAP C,[F% G Cloo] F[] % G[oo]

WRAP-B+PUSH C+% [C,XF Cloo] % C[] FlooX]
WRAP-B+POP X C+% [C,F ClooX]+" C[] F[oo]

Figure 3. Equivalence between EPDA and L-LIA

Is reached, the adjunction node is stored on the top of tlok &CALL-a]) and the traversal
of the auxiliary tree is startedACALL-b]); the adjunction stack is propagated through the
spine (SCALL]) down to the foot node, where the traversal of the auxiliagg is suspended
to resume the traversal of the subtree rooted by the adpmaide [FCALL-a]), which is
eliminated of the stack[fCALL-b]). To avoid confusion, we stord) instead ofV) to
indicate that an adjunction was started at nagle, ;. A symbolA can be seen as a symbal
waiting an adjunction to be completed.

4. EPDA and Left-oriented Linear Indexed Automata

Left-oriented Linear Indexed Automata (L-LIA) is a class adfitomata defined by Neder-
hof (1999) that can be used to implement parsing strategreBAG in which adjunctions are
recognized in a top-down way. Given a EPDA, the equivalehtA is obtained by means of a
simple change in the notations: if we consider the top el¢miea stack as a stack symbol, and
the rest of the stack as the indices list associated to thenopbtain the correspondence shown
in figure 3.

This change in notation is also useful to show that EPDA aoeegrctly the class of tree adjoin-
ing languages. That tree adjoining languages are acceptE®DA is shown by the compila-
tion schema defined previously. To prove that the languagEepéed by EPDA are tree adjoined
languages, we exhibit a procedure that, given an ERDA (V, Vs, ©, $, 3¢), builds a linear
indexed grammar (Gazdar, 1987)= (Vr, Vi, V7, S, P) that recognizes the language accepted
by A. Non-terminals iy are pairs A, B), whereA, B € Vs, andV; = V. Productions inP
are obtained from transitions th as follows:

e For each transitiorC' —— F and for eachE € Vs, a production(C, E)[oc] —
a (F, E)[oo] is created.

e For each transitiorC —— CF and for eachE € Vs, a production(C, E)[oo] —
a (F, E)[ooC] is created.

e For each transitio® F + G and for each € Vg, a production(F, E)[ooC] —
a (G, E)[oo] is created.

A redefinition of Embedded Push-Down Automata

e For each pair of transition§' — C, [F andC, [F % G, and for eacht € Vs, a
production(C, E)[oo] — b (F', F)[] a (G, E)[oo] is created.

e For each pair of transition&’ N [C,F' andC, [F %~ G, and for eachE € Vg, a
production(C', E)[oo] — b (F', F)[oo] a (G, E)[] is created.

e For each® € Vg, a production £, E)[| — € is created.

The axiom of the grammar iS = (3, $;). Applying induction in the length of derivations, we
can prove thatC, E)[a] = w if and only if ([aC, w) F *([E, €).

5. Tabulation

The direct execution of EPDA may be exponential with respethe length of the input string
and may even loop. To get polynomial complexity, we must@wuiplicating computations by
tabulating traces of configurations calléeims The amount of information to keep in an item
Is the crucial point to determine to get efficient executions
The tabulation of EPDA using PUSH and POP transitions withrestrictions seems to be
difficult. By studying the compilation schema of figure 1, wesetve that the compilation
rules[ACALL-a] and[ACALL-b] can be combined to form a single rdFCALL] generating
transitions WRAP-B+PUSH of the fordl — [C, X F:
[ACALL] Vi, +— [Vi,, Ay, T°

such thats € adj(N,, ;). The[FCALL-a] and[FCALL-b] can be combined to form a single
rule generating transitions WRAP-B+POP of the fakinC' — [C, F:

[FCALL] A), Vi — [V} N
such thatN7, = F% andg € adj(N;,,,).
In this section, we consider the tabulation of a subset of AB@nsisting of transitions SWAP,
WRAP-A, WRAP-B, UNWRAP, WRAP-B+PUSH and WRAP-B+POP.

In order to define items and attending to the form of the tteors, we classify derivations of
EPDA into the following types:

Call derivations. Correspond to the propagation of a stack by means of WRAP-B,
WRAP-B+PUSH and WRAP-B+POP transitions:

(T I:OZA, Ah41 - - - an)
= (T I:A Tl I:OZXB,Gi+1...an>
Fro (T I:A T I:OZXC',ajH...an)

whereA, B,C, X € Vg, a € ViandY, T, € ([Vg)*. The two occurrences ef denote
the same stack in the sense thas$ neither consulted nor modified through the derivation.
These derivations are independenfioAndq, so they can be represented by items

[A7h‘ ’ B,i,X,C,j,X ’ _7_7_7_]

Miguel A. Alonso, Eric de la Clergerie & Manuel Vilares

Return derivations. Correspond to the bottom-up propagation of unitary stack bgams of
UNWRAP transitions:

(T [aA, apyy ... an)
F* (Y [A Ty [aXB, ai ... a,)
F* (Y [A Y, [B Yy [aD,ap ... a,)
F* (Y[A Yy [B Yy [E ags1...a,)
F* (T [A Yy [Crajpn...an)

whereA, B,C,D,E, X € Vg, a € V&, T, Y1, T, € ([V&)* anda is passed unaffected
through derivation. These derivations are independeft blit not with respect to the
subderivation[aD, ay1 ... a,) F *([E, aqy1 - . . a,), SO they are be represented in com-
pact form by items

[A,h| B,i,X,C,5,— | D,p, E, ¢

Special point derivations. Whena X = ¢ we have a particular case of previous derivations:
(Y [B,aiy1-..a,) F*(Y [Crajyi...a,)
whereB, C € Vs, andY € ([VZ)*. These derivations can be represented by items
[= B,i—Ch— |- - — -]

To combine items, we use the set of inference rules shown uresgg4 and 5. Each
rule is of the form ”1’;7';”“ trans, Meaning that if all antecedents are tabulated items and
there exist the transitionsans, then the consequent iteni should be created. In order to
simplify the inference rules, but without loss of genegalive have considered that scan-
ning is only performed by SWAP transitions. The computatstarts with the initial item
[—,—] %0,0,—,%0,0,— | —,—, —, —]. Aninput stringa; . .. a,, has been recognized if the final
item[—, — | $0,0, —,$;,n,— | —, —, —, —] is present. It can be proved that handling items with
the inference rules is equivalent to applying the transgion the whole stacks.

To illustrate the relation between EPDA and L-LIA, figuresnrda show the transitions of
both models of automata that must be considered to applyem gnference rule. Therefore,
the proposed tabulated technique can be also applied t&\lwbrking with transitions SWAP,
WRAP-A, WRAP-B, UNWRAP, WRAP-B+PUSH and WRAP-B+POP.

6. Conclusion

Embedded Push-Down Automata have been redefined: finiestatrol has been eliminated
and several kinds of transition have been defined. We haeeshlewn that the new defini-
tion preserves the equivalence with tree adjoining langsand that tabulation techniques are
possible to execute these automata in polynomial time veisipect to the length of the input
string.

References

DE LA CLERGERIEE. & ALONSOPARDO M. (1998). A tabular interpretation of a class of 2-Stack Au-
tomata. INCOLING-ACL’'98, 36th Annual Meeting of the Association for Computatibimguistics and
17th International Conference on Computational Linguistics, Proceadifithe Conferengevolume II,

p. 1333-1339, Montreal, Quebec, Canada: ACL.

A redefinition of Embedded Push-Down Automata

Rule EPDA transition L-LIA transition
Ah|B i, XC 3. X|— — — — a a
[) ‘ 7Z7) 737 ‘)))] O —_ F C[OO] N F[OO]

[A7h‘Bai7X7F7k7X ‘ _7_7_7_]
wherek = jifa=candk =j+1ifa € Vp
[Aah ‘ B,i,X,C,j,— ’ DvpaE7Q] a

A7 B.0i,X.F.k—|D.p.E.q c=r Cloo] = Floo]
wherek = jifa=candk =j+1ifa € Vp

[A,h‘B,i,X,C,j,X _7_7_7_]

[_7_|F7j7_7F7j7_ _7_7_7_] C'—>07 [F C[OO]I—>C[00] FH

[A7h|Bvi7chaj7_|D7p7E7Q]

[_7_’Faj7_7F7j7_ _7_7_7_] C'—>07 I:F C[OO]HC[OO] FH

[A,h|B,i,X,C,j,X|—,—,—,—]

[A7h|F7j7X7F7j7X _7_7_)_] C'—) I:C’F C[OO]’—)C[]F[OO]

A B,i, X ,— | D,p, E

[7h‘ 727 7C7j7 ’ 7p7 7q] OP—> I:C,F C[OO] — C[] F[OO]

[_7_|F7j7_7F7j7_ _7_7_7_]

[A7h|Bai7ch7j7X _a_7_7_]
[Ca] | F?.j?X/?FajaX/ | _7_7_7_]

C— [C,X'F Cloo] +—— C[] FlooX']

[A7h | B,Z',X,C,j,— ’ D7p7E7Q]
[C,j | F?j)XI7FajaX/ | _)_7_7_]
[A7h ’ B,i,X,C,j,X ’ _7_a_7_]
[M7m ‘ N,t,X’,A,h,X, | _7_7_7_]
[M,m | FJjJX/7F7j7X/ | _7_7_7_]

C+— [C,X'F Cloo] +—— C[] FlooX']

XC v+ [C,F ClooX] — C]] FJoo]

[Aah | B,i,X,C,j,X | _7_7_7_]
[Mam | Nath/7A7ha_ ‘ D7p7E7q]
[_7_|F7.j7_7F7j7_ _7_7_7_]

XC v+ [C,F ClooX] — C]] FJoo]

Figure 4: Tabulation rules

GAzZDAR G. (1987). Applicability of indexed grammars to natural languages. In EvLR & C.
ROHRER, Eds. Natural Language Parsing and Linguistic Theorips69-94. D. Reidel Publishing Com-

pany.
LANG B. (1991). Towards a uniform formal framework for parsing. In MoMiTA, Ed.,Current Issues
in Parsing Technologyp. 153—-171. Norwell, MA, USA: Kluwer Academic Publishers.

NEDERHOF M.-J. (1999). Models of tabulation for TAG parsing. Rroc. of the Sixth Meeting on
Mathematics of Language (MOL,§). 143-158, Orlando, Florida, USA.

V1JAY-SHANKER K. (1988). A Study of Tree Adjoining GrammarBhD thesis, University of Pennsyl-
vania. Available as Technical Report MS-CIS-88-03 LINC LAB 95 @ tepartment of Computer and
Information Science, University of Pennsylvania.

WEIR D. J. (1994). Linear iterated pushdowr@omputational IntelligencelO (4), p. 422—-430.

Miguel A. Alonso, Eric de la Clergerie & Manuel Vilares

Rule EPDA transition L-LIA transition

[_7_ | F/aja_7F7k)_ | _7_7_7_]

[A7h|Bvi7X707j7X|_a_7_a_] C’—>C,|:F/ C[OO]I—)C[OO] F/H
[Ah|B,i,X,G kX | —, —, —, —] C,[F— G Cloo] F[] — GJoo]
[_7_ | F/7j7_7F7k7_ ‘ _7_7_7_]

[A7h|Bai7Xac7j7_|D7p7E7Q] O'—>C,|:F/ C[OO]I—)O[OO] F/H
[A 1] B,i,X,G.k,— | D,p,E,q] C,[F—a Cloo] F[] = Gloo]
[Aah’ ‘ F/>j>X7F7k7_ ’ DapaE7Q]

[Ah| B,i,X,C,5, X | —, —,—,—] C— [C,F Cloo] — C[] F'[oo]
[A,h| B,i,X,G,k,— | D,p, E,q] C,[F— G Cloo] F[] +— G[oo]
[_’_ | Flaja_7F7k7_ | _7_7_7_]

[A,h| B,i,X,C,5,— | D,p, E,q| C»—>|:C',F’ C'loo] +—— C[] F'[oo]
[A,h| B,i,X,G,k,— | D,p, E,q] C [F—aG Cloo] F[] — GJoo]

[Caj | F,7j7X,7F7ka_ | D,p,E,Q]
[A’h | BaiaXa07j7X | _7_7_7_]

[A,h|D,p,X,E,(],—|O,U,,P,’U] C*—>[O,X,F, C[OO]F—)CHF/[OOX/]
[A,h | B,i, X, Gk, — | O,u, P, v] C,[Fr—a Cloo] F[]+— Gloo]

[Cuj | Fl?j’X/7F7k7_ | O,’LL,P,U]
[A7h | BaiaX707j7_ | D7P7E>Q]

[—,—|0,u,—, Pv,— | =, — —, —] C;—)[C,X’F’ Cloo] +—— C[] F'[oo X"
[A,h| B,i,X,G,k,— | D,p, E,q] C,[F— G Cloo] F[] — GJoo]

[M,m | F',j, X', F,k,— | D,p, E,q|

[Ah| B,i,X,C,5,X | — —, —, —]

[M,m | N,t, X", A,h, X" | —,—,— =] XC+— [C,F' ClooX]+— C[] F'[oc]
[Ah| B,i,X,G, k,— | F',j,F, k] C,[F+— G Cloo] F[] — Goo]
[_7_ | Flajv_akaa_ ‘ _7_7_7_]

[Ah| B,i,X,C,5,X | —,—,—,—]

[M,m | N,t,X',A,h,— | D,p,E,q XC+— [C,F'" (ClooX]+— C[] F'[o0]
[A,h| B,i,X,G, k,— | F', j, F, k] C [F— G Cloo] F[] +— G[oo]

Figure 5: Tabulation rules

