
Workshop TAG+5, Paris, 25-27 May 2000

A redefinition of Embedded Push-Down Automata∗

Miguel A. Alonso†, Eric de la Clergerie‡ and Manuel Vilares†

†Departamento de Computación, Universidad de La Coruña
Campus de Elviña s/n, 15071 La Coruña (Spain)
{alonso,vilares}@dc.fi.udc.es

‡INRIA, Domaine de Voluceau
Rocquecourt, B.P. 105, 78153 Le Chesnay (France)

Eric.De_La_Clergerie@inria.fr

Abstract
A new definition of Embedded Push-Down Automata is provided. We prove this new definition
preserves the equivalence with tree adjoining languages andwe provide a tabulation framework
to execute any automaton in polynomial time with respect to the length of the input string.

1. Introduction
Embedded Push-Down Automata (EPDA) were defined in (Vijay-Shanker, 1988) as an exten-
sion of Push-Down Automata that accept exactly the class of Tree Adjoining Languages. They
can also be seen as a level-2 automata in a progression of linear iterated pushdowns involving
nested stacks (Weir, 1994).
An EPDA consists of a finite state control, an input tape and a stack made up of non-empty
stacks containing stack symbols. A transition can consult the state, the input string and the
top element of the top stack and then change the state, read a character of the input string and
replace the top element by a finite sequence of stack elementsto give a new top stack, and new
stacks can be placed above and below the top stack.
EPDA can describe parsing strategies for tree adjoining grammars in which adjunctions are
recognized top-down. The same kind of strategies can be described in strongly-driven 2-stack
automata (de la Clergerie & Alonso Pardo, 1998) and linear indexed automata (Nederhof, 1999),
which has associated tabulation frameworks allowing thoseautomata to be executed in polyno-
mial time with respect to the size of the input string. In thispaper we propose a redefinition of
EPDA in order to provide a tabulation framework for this class of automata.

2. EPDA without states
Finite-state control is not a fundamental component of push-down automata, as the current state
in a configuration can be stored in the top element of the stackof the automaton (Lang, 1991).
Finite-state control can also be eliminated from EPDA, obtaining a new definition that considers
a EPDA as a tuple(VT , VS, Θ, $0, $f) whereVT is a finite set of terminal symbols,VS is a finite
set of stack symbols,$0 ∈ VS is the initial stack symbol,$f ∈ VS is the final stack symbol and
Θ is a finite set of six types of transition:

SWAP: Transitions of the formC
a
7−→ F that replace the top element of the top stack while

scanninga. The application of such a transition on a stackΥ αB returns the stackΥ αC.

∗ This research was partially supported by the FEDER of EU (Grant 1FD97-0047-C04-02) and Xunta de
Galicia (Grant PGIDT99XI10502B).

Miguel A. Alonso, Eric de la Clergerie & Manuel Vilares

PUSH: Transitions of the formC
a
7−→ C F that pushF onto C. The application of such a

transition on a stackΥ αC returns the stackΥ αCF .

POP: Transitions of the formC F
a
7−→ G that replaceC andF by G. The application of such

a transition onΥ αCF returns the stackΥ αG.

WRAP-A: Transitionswrap-aboveof the formC
a
7−→ C, F that push a new stackF on the

top of the automaton stack. The application of such a transition on a stackΥ αC returns
the stackΥ αC F .

WRAP-B: Transitionswrap-belowof the formC
a
7−→ C,F that store a new stackC just

below the top stack, and change fromC to F the top element of the top stack. The
application of such a transition on a stackΥ αC returns the stackΥ C αF .

UNWRAP: Transitions of the formC, F
a
7−→ G that delete the top stackF and replace the

new top element byG. The application of such a transition on a stackΥ αC F returns
the stackΥ αG.

whereC,F,G ∈ VS, Υ ∈ (V ∗
S)∗, α ∈ V ∗

S , a ∈ VT ∪ {ǫ} and 6∈ VS is a new symbol used
as stack separator. It can be proved that transitions of a EPDA with states can be emulated by
transitions inΘ and vice versa.
An instantaneous configurationis a pair(Υ, w), whereΥ represents the contents of the automa-
ton stack andw is the part of the input string that is yet to be read. A configuration (Υ, aw)
derives a configuration(Υ′, w), denoted(Υ, aw) ⊢ (Υ′, w), if and only if there exists a transition
that applied toΥ givesΥ′ and scansa from the input string. We use⊢ ∗ to denote the reflexive
and transitive closure of⊢. An input string is accepted by an EPDA if($0, w) ⊢ ∗($f , ǫ). The
language accepted by an EPDA is the set ofw ∈ V ∗

T such that($0, w) ⊢ ∗($f , ǫ).

3. Compiling TAG into EPDA
We consider each elementary treeγ of a TAG as formed by a set of context-free produc-
tionsP(γ): a nodeNγ and itsg childrenN

γ
1 . . . Nγ

g are represented by a productionNγ →
N

γ
1 . . . Nγ

g . The elements of the productions are the nodes of the tree, except for the case of
elements belonging toVT ∪ {ε} in the right-hand side of production. Those elements may have
no children and can not be adjoined, so we identify such nodeslabeled by a terminal with that
terminal. We useβ ∈ adj(Nγ) to denote that a treeβ may be adjoined at nodeNγ. If ad-
junction is not mandatory atNγ, thennil ∈ adj(Nγ). We consider the additional productions
⊤α → R

α, ⊤β → R
β andF

β → ⊥ for each initial treeα ∈ I and each auxiliary treeβ ∈ A,
whereR

α is the root node ofα andR
β andF

β are the root node and foot node ofβ, respec-
tively. After disabling⊤γ and⊥ as adjunction nodes the generative capability of the grammar
remains intact.
Figure 1 shows the generic compilation schema from TAG to EPDA, where symbols∇γ

r,s have
been introduced to denote dotted productions. The meaning of each compilation rule is graph-
ically shown in figure 2. This schema is parameterized by

−→
Nγ, the information propagated

top-down w.r.t. the nodeNγ, and by
←−
Nγ, the information propagated bottom-up. When the

schema is used to implement a top-down strategy
−→
Nγ = Nγ and

←−
Nγ = �, where� is a fresh

stack symbol. A bottom-up strategy requires
−→
Nγ = � and

←−
Nγ = Nγ. For a Earley-like parsing

strategy,
−→
Nγ = Nγ and

←−
Nγ = Nγ, whereNγ andNγ are used to distinguish the top-down

prediction from the bottom-up propagation of a node.
We can observe in figure 1 that each stack stores pending adjunctions with respect to the node
placed on the top of the stack in a top-down treatment of adjunctions: when an adjunction node

A redefinition of Embedded Push-Down Automata

[INIT] $0 7−→ $0 ∇
α
0,0 α ∈ I

[CALL] ∇γ
r,s 7−→ ∇

γ
r,s

−−−→
N

γ
r,s+1 N

γ
r,s+1 6∈ spine(γ), nil ∈ adj(Nγ

r,s+1)

[SCALL] ∇β
r,s 7−→ ∇β

r,s,
−−−→
N

β
r,s+1 N

β
r,s+1 ∈ spine(β), nil ∈ adj(Nβ

r,s+1)

[SEL]
−−→
N

γ
r,0 7−→ ∇

γ
r,0

[TAB] ∇γ
r,nr
7−→
←−−
N

γ
r,0

[RET] ∇γ
r,s,

←−−−
N

γ
r,s+1 7−→ ∇

γ
r,s+1 N

γ
r,s+1 6∈ spine(γ), nil ∈ adj(Nγ

r,s+1)

[SRET] ∇β
r,s,

←−−−
N

β
r,s+1 7−→ ∇

β
r,s+1 N

γ
r,s+1 ∈ spine(β), nil ∈ adj(Nβ

r,s+1)

[SCAN]
−−→
N

γ
r,0

a
7−→

←−−
N

γ
r,0 N

γ
r,0 → a

[ACALL-a] ∇γ
r,s 7−→ ∇γ

r,s, ∆γ
r,s adj(Nγ

r,s+1) 6= {nil}

[ACALL-b] ∆γ
r,s 7−→ ∆γ

r,s

−→
⊤β β ∈ adj(Nγ

r,s+1)

[ARET] ∇γ
r,s,

←−
⊤β 7−→ ∇γ

r,s+1 β ∈ adj(Nγ
r,s+1)

[FCALL-a] ∇β
f,0 7−→ ∇β

f,0, ⊥ N
β
f,0 = F

β

[FCALL-b] ∆γ
r,s ⊥ 7−→

−−−→
N

γ
r,s+1

[FRET] ∇β
f,0,

←−−−
N

γ
r,s+1 7−→ ∇

β
f,1 N

β
f,0 = F

β, β ∈ adj(Nγ
r,s+1)

[FINAL] $0 ∇
α
0,1 7−→ $f α ∈ I

Figure 1: Generic compilation schema from TAG to EPDA

γ

FRETFCALL

RETCALL

SCALL SRET

ACALL ARET

β

Figure 2: Meaning of compilation rules

Miguel A. Alonso, Eric de la Clergerie & Manuel Vilares

Transition EPDA L-LIA

SWAP C
a
7−→ F C[◦◦]

a
7−→ F [◦◦]

PUSH C
a
7−→ CF C[◦◦]

a
7−→ F [◦◦C]

POP CF
a
7−→ G F [◦◦C]

a
7−→ G[◦◦]

WRAP-A C
a
7−→ C, F C[◦◦]

a
7−→ C[◦◦] F []

WRAP-B C
a
7−→ C,F C[◦◦]

a
7−→ C[] F [◦◦]

UNWRAP C, F
a
7−→ G C[◦◦] F []

a
7−→ G[◦◦]

WRAP-B+PUSH C
a
7−→ C,X F C[◦◦]

a
7−→ C[] F [◦◦X]

WRAP-B+POP X C
a
7−→ C,F C[◦◦X]

a
7−→ C[] F [◦◦]

Figure 3: Equivalence between EPDA and L-LIA

is reached, the adjunction node is stored on the top of the stack ([ACALL-a]) and the traversal
of the auxiliary tree is started ([ACALL-b]); the adjunction stack is propagated through the
spine ([SCALL]) down to the foot node, where the traversal of the auxiliary tree is suspended
to resume the traversal of the subtree rooted by the adjunction node ([FCALL-a]), which is
eliminated of the stack ([FCALL-b]). To avoid confusion, we store∆γ

r,s instead of∇γ
r,s to

indicate that an adjunction was started at nodeN
γ
r,s+1. A symbol∆ can be seen as a symbol∇

waiting an adjunction to be completed.

4. EPDA and Left-oriented Linear Indexed Automata
Left-oriented Linear Indexed Automata (L-LIA) is a class ofautomata defined by Neder-
hof (1999) that can be used to implement parsing strategies for TAG in which adjunctions are
recognized in a top-down way. Given a EPDA, the equivalent L-LIA is obtained by means of a
simple change in the notations: if we consider the top element of a stack as a stack symbol, and
the rest of the stack as the indices list associated to them, we obtain the correspondence shown
in figure 3.
This change in notation is also useful to show that EPDA accept exactly the class of tree adjoin-
ing languages. That tree adjoining languages are accepted by EPDA is shown by the compila-
tion schema defined previously. To prove that the languages accepted by EPDA are tree adjoined
languages, we exhibit a procedure that, given an EPDAA = (VT , VS, Θ, $0, $f), builds a linear
indexed grammar (Gazdar, 1987)G = (VT , VN , VI , S, P) that recognizes the language accepted
byA. Non-terminals inVN are pairs〈A,B〉, whereA,B ∈ VS, andVI = VS. Productions inP
are obtained from transitions inΘ as follows:

• For each transitionC
a
7−→ F and for eachE ∈ VS, a production〈C,E〉[◦◦] →

a 〈F,E〉[◦◦] is created.

• For each transitionC
a
7−→ CF and for eachE ∈ VS, a production〈C,E〉[◦◦] →

a 〈F,E〉[◦◦C] is created.

• For each transitionC F
a
7−→ G and for eachE ∈ VS, a production〈F,E〉[◦◦C] →

a 〈G,E〉[◦◦] is created.

A redefinition of Embedded Push-Down Automata

• For each pair of transitionsC
b
7−→ C, F ′ andC, F

a
7−→ G, and for eachE ∈ VS, a

production〈C,E〉[◦◦]→ b 〈F ′, F 〉[] a 〈G,E〉[◦◦] is created.

• For each pair of transitionsC
b
7−→ C,F ′ andC, F

a
7−→ G, and for eachE ∈ VS, a

production〈C,E〉[◦◦]→ b 〈F ′, F 〉[◦◦] a 〈G,E〉[] is created.

• For eachE ∈ VS, a production〈E,E〉[]→ ǫ is created.

The axiom of the grammar isS = 〈$0, $f〉. Applying induction in the length of derivations, we
can prove that〈C,E〉[α]

∗
⇒ w if and only if (αC,w) ⊢ ∗(E, ǫ).

5. Tabulation
The direct execution of EPDA may be exponential with respectto the length of the input string
and may even loop. To get polynomial complexity, we must avoid duplicating computations by
tabulating traces of configurations calleditems. The amount of information to keep in an item
is the crucial point to determine to get efficient executions.
The tabulation of EPDA using PUSH and POP transitions without restrictions seems to be
difficult. By studying the compilation schema of figure 1, we observe that the compilation
rules[ACALL-a] and[ACALL-b] can be combined to form a single rule[ACALL] generating
transitions WRAP-B+PUSH of the formC 7−→ C,X F :

[ACALL] ∇γ
r,s 7−→ ∇γ

r,s, ∆γ
r,s ⊤

β

such thatβ ∈ adj(Nγ
r,s+1). The[FCALL-a] and[FCALL-b] can be combined to form a single

rule generating transitions WRAP-B+POP of the formX C 7−→ C,F :

[FCALL] ∆γ
r,s ∇

β
f,0 7−→ ∇β

f,0, N
γ
r,s+1

such thatNβ
f,0 = F

β andβ ∈ adj(Nγ
r,s+1).

In this section, we consider the tabulation of a subset of EPDA consisting of transitions SWAP,
WRAP-A, WRAP-B, UNWRAP, WRAP-B+PUSH and WRAP-B+POP.
In order to define items and attending to the form of the transitions, we classify derivations of
EPDA into the following types:

Call derivations. Correspond to the propagation of a stack by means of WRAP-B,
WRAP-B+PUSH and WRAP-B+POP transitions:

(Υ αA, ah+1 . . . an)

⊢ ∗ (Υ A Υ1 αXB, ai+1 . . . an)

⊢ ∗ (Υ A Υ1 αXC, aj+1 . . . an)

whereA,B,C,X ∈ VS, α ∈ V ∗
S andΥ, Υ1 ∈ (V ∗

S)∗. The two occurrences ofα denote
the same stack in the sense thatα is neither consulted nor modified through the derivation.
These derivations are independent ofΥ andα, so they can be represented by items

[A, h | B, i,X,C, j,X | −,−,−,−]

Miguel A. Alonso, Eric de la Clergerie & Manuel Vilares

Return derivations. Correspond to the bottom-up propagation of unitary stack by means of
UNWRAP transitions:

(Υ αA, ah+1 . . . an)

⊢ ∗ (Υ A Υ1 αXB, ai+1 . . . an)

⊢ ∗ (Υ A Υ1 B Υ2 αD, ap+1 . . . an)

⊢ ∗ (Υ A Υ1 B Υ2 E, aq+1 . . . an)

⊢ ∗ (Υ A Υ1 C, aj+1 . . . an)

whereA,B,C,D,E,X ∈ VS, α ∈ V ∗
S , Υ, Υ1, Υ2 ∈ (V ∗

S)∗ andα is passed unaffected
through derivation. These derivations are independent ofΥ but not with respect to the
subderivation(αD, ap+1 . . . an) ⊢ ∗(E, aq+1 . . . an), so they are be represented in com-
pact form by items

[A, h | B, i,X,C, j,− | D, p,E, q]

Special point derivations. WhenαX = ǫ we have a particular case of previous derivations:

(Υ B, ai+1 . . . an) ⊢ ∗(Υ C, aj+1 . . . an)

whereB,C ∈ VS, andΥ ∈ (V ∗
S)∗. These derivations can be represented by items

[−,− | B, i,−, C, j,− | −,−,−,−]

To combine items, we use the set of inference rules shown in figures 4 and 5. Each
rule is of the form η1,...,ηk

η′
trans, meaning that if all antecedentsηi are tabulated items and

there exist the transitionstrans, then the consequent itemη′ should be created. In order to
simplify the inference rules, but without loss of generality, we have considered that scan-
ning is only performed by SWAP transitions. The computationstarts with the initial item
[−,− | $0, 0,−, $0, 0,− | −,−,−,−]. An input stringa1 . . . an has been recognized if the final
item [−,− | $0, 0,−, $f , n,− | −,−,−,−] is present. It can be proved that handling items with
the inference rules is equivalent to applying the transitions on the whole stacks.
To illustrate the relation between EPDA and L-LIA, figures 4 and 5 show the transitions of
both models of automata that must be considered to apply a given inference rule. Therefore,
the proposed tabulated technique can be also applied to L-LIA working with transitions SWAP,
WRAP-A, WRAP-B, UNWRAP, WRAP-B+PUSH and WRAP-B+POP.

6. Conclusion
Embedded Push-Down Automata have been redefined: finite-state control has been eliminated
and several kinds of transition have been defined. We have also shown that the new defini-
tion preserves the equivalence with tree adjoining languages and that tabulation techniques are
possible to execute these automata in polynomial time with respect to the length of the input
string.

References
DE LA CLERGERIEE. & A LONSO PARDO M. (1998). A tabular interpretation of a class of 2-Stack Au-
tomata. InCOLING-ACL’98, 36th Annual Meeting of the Association for Computational Linguistics and
17th International Conference on Computational Linguistics, Proceedings of the Conference, volume II,
p. 1333–1339, Montreal, Quebec, Canada: ACL.

A redefinition of Embedded Push-Down Automata

Rule EPDA transition L-LIA transition

[A, h | B, i,X,C, j,X | −,−,−,−]

[A, h | B, i,X, F, k,X | −,−,−,−]
C

a
7−→ F C[◦◦]

a
7−→ F [◦◦]

wherek = j if a = ǫ andk = j + 1 if a ∈ VT

[A, h | B, i,X,C, j,− | D, p,E, q]

[A, h | B, i,X, F, k,− | D, p,E, q]
C

a
7−→ F C[◦◦]

a
7−→ F [◦◦]

wherek = j if a = ǫ andk = j + 1 if a ∈ VT

[A, h | B, i,X,C, j,X | −,−,−,−]

[−,− | F, j,−, F, j,− | −,−,−,−]
C 7−→ C, F C[◦◦] 7−→ C[◦◦] F []

[A, h | B, i,X,C, j,− | D, p,E, q]

[−,− | F, j,−, F, j,− | −,−,−,−]
C 7−→ C, F C[◦◦] 7−→ C[◦◦] F []

[A, h | B, i,X,C, j,X | −,−,−,−]

[A, h | F, j,X, F, j,X | −,−,−,−]
C 7−→ C,F C[◦◦] 7−→ C[] F [◦◦]

[A, h | B, i,X,C, j,− | D, p,E, q]

[−,− | F, j,−, F, j,− | −,−,−,−]
C 7−→ C,F C[◦◦] 7−→ C[] F [◦◦]

[A, h | B, i,X,C, j,X | −,−,−,−]

[C, j | F, j,X ′, F, j,X ′ | −,−,−,−]
C 7−→ C,X ′F C[◦◦] 7−→ C[] F [◦◦X ′]

[A, h | B, i,X,C, j,− | D, p,E, q]

[C, j | F, j,X ′, F, j,X ′ | −,−,−,−]
C 7−→ C,X ′F C[◦◦] 7−→ C[] F [◦◦X ′]

[A, h | B, i,X,C, j,X | −,−,−,−]
[M,m | N, t,X ′, A, h,X ′ | −,−,−,−]

[M,m | F, j,X ′, F, j,X ′ | −,−,−,−]
XC 7−→ C,F C[◦◦X] 7−→ C[] F [◦◦]

[A, h | B, i,X,C, j,X | −,−,−,−]
[M,m | N, t,X ′, A, h,− | D, p,E, q]

[−,− | F, j,−, F, j,− | −,−,−,−]
XC 7−→ C,F C[◦◦X] 7−→ C[] F [◦◦]

Figure 4: Tabulation rules

GAZDAR G. (1987). Applicability of indexed grammars to natural languages. In U. REYLE & C.
ROHRER, Eds.,Natural Language Parsing and Linguistic Theories, p. 69–94. D. Reidel Publishing Com-
pany.

LANG B. (1991). Towards a uniform formal framework for parsing. In M. TOMITA , Ed.,Current Issues
in Parsing Technology, p. 153–171. Norwell, MA, USA: Kluwer Academic Publishers.

NEDERHOF M.-J. (1999). Models of tabulation for TAG parsing. InProc. of the Sixth Meeting on
Mathematics of Language (MOL 6), p. 143–158, Orlando, Florida, USA.

V IJAY-SHANKER K. (1988). A Study of Tree Adjoining Grammars. PhD thesis, University of Pennsyl-
vania. Available as Technical Report MS-CIS-88-03 LINC LAB 95 of the Department of Computer and
Information Science, University of Pennsylvania.

WEIR D. J. (1994). Linear iterated pushdowns.Computational Intelligence, 10 (4), p. 422–430.

Miguel A. Alonso, Eric de la Clergerie & Manuel Vilares

Rule EPDA transition L-LIA transition

[−,− | F ′, j,−, F, k,− | −,−,−,−]
[A, h | B, i,X,C, j,X | −,−,−,−]

[A, h | B, i,X,G, k,X | −,−,−,−]

C 7−→ C, F ′

C, F 7−→ G

C[◦◦] 7−→ C[◦◦] F ′[]
C[◦◦] F [] 7−→ G[◦◦]

[−,− | F ′, j,−, F, k,− | −,−,−,−]
[A, h | B, i,X,C, j,− | D, p,E, q]

[A, h | B, i,X,G, k,− | D, p,E, q]

C 7−→ C, F ′

C, F 7−→ G

C[◦◦] 7−→ C[◦◦] F ′[]
C[◦◦] F [] 7−→ G[◦◦]

[A, h | F ′, j,X, F, k,− | D, p,E, q]
[A, h | B, i,X,C, j,X | −,−,−,−]

[A, h | B, i,X,G, k,− | D, p,E, q]

C 7−→ C,F ′

C, F 7−→ G

C[◦◦] 7−→ C[] F ′[◦◦]
C[◦◦] F [] 7−→ G[◦◦]

[−,− | F ′, j,−, F, k,− | −,−,−,−]
[A, h | B, i,X,C, j,− | D, p,E, q]

[A, h | B, i,X,G, k,− | D, p,E, q]

C 7−→ C,F ′

C, F 7−→ G

C[◦◦] 7−→ C[] F ′[◦◦]
C[◦◦] F [] 7−→ G[◦◦]

[C, j | F ′, j,X ′, F, k,− | D, p,E, q]
[A, h | B, i,X,C, j,X | −,−,−,−]
[A, h | D, p,X,E, q,− | O, u, P, v]

[A, h | B, i,X,G, k,− | O, u, P, v]

C 7−→ C,X ′F ′

C, F 7−→ G

C[◦◦] 7−→ C[] F ′[◦◦X ′]
C[◦◦] F [] 7−→ G[◦◦]

[C, j | F ′, j,X ′, F, k,− | O, u, P, v]
[A, h | B, i,X,C, j,− | D, p,E, q]
[−,− | O, u,−, P, v,− | −,−,−,−]

[A, h | B, i,X,G, k,− | D, p,E, q]

C 7−→ C,X ′F ′

C, F 7−→ G

C[◦◦] 7−→ C[] F ′[◦◦X ′]
C[◦◦] F [] 7−→ G[◦◦]

[M,m | F ′, j,X ′, F, k,− | D, p,E, q]
[A, h | B, i,X,C, j,X | −,−,−,−]
[M,m | N, t,X ′, A, h,X ′ | −,−,−,−]

[A, h | B, i,X,G, k,− | F ′, j, F, k]

XC 7−→ C,F ′

C, F 7−→ G

C[◦◦X] 7−→ C[] F ′[◦◦]
C[◦◦] F [] 7−→ G[◦◦]

[−,− | F ′, j,−, F, k,− | −,−,−,−]
[A, h | B, i,X,C, j,X | −,−,−,−]
[M,m | N, t,X ′, A, h,− | D, p,E, q]

[A, h | B, i,X,G, k,− | F ′, j, F, k]

XC 7−→ C,F ′

C, F 7−→ G

C[◦◦X] 7−→ C[] F ′[◦◦]
C[◦◦] F [] 7−→ G[◦◦]

Figure 5: Tabulation rules

