
A formal definition of

Bottom-up Embedded Push-Down Automata

and their tabulation technique

Miguel A. Alonso1, Eric de la Clergerie2 and Manuel Vilares3

1 Departamento de Computación, Universidad de La Coruña
Campus de Elviña s/n, 15071 La Coruña, Spain
alonso@dc.fi.udc.es, vilares@dc.fi.udc.es

http://coleweb.dc.fi.udc.es/
2 Institut National de Recherche en Informatique et en Automatique

Domaine de Voluceau, Rocquecourt, B.P. 105, 78153 Le Chesnay Cedex, France
Eric.De La Clergerie@inria.fr

http://atoll.inria.fr/

Abstract. The task of designing parsing algorithms for tree adjoining
grammars could be simplified by providing a separation between the de-
scription of the parsing strategy and the execution of the parser. This can
be accomplished through the use of Bottom-up Embedded Push-Down
Automata. Towards this aim, we provide a formal and consistent defini-
tion of this class of automata and, by removing the finite-state control, we
obtain an alternative definition which is adequate to define a tabulation
framework for this model of automata and to show the equivalence with
respect to other kinds of automata accepting tree adjoining languages.

1 Introduction

Tree Adjoining Languages (TAL) belong to the class of mildly context-sensitive
languages, placed between context-free languages and context-sensitive lan-
guages. They can be described by Tree Adjoining Grammars (TAG) [12] and sev-
eral grammar formalisms which have been shown to be equivalent to TAG with
respect to their weak generative capacity [23]: Linear Indexed Grammars [10],
Head Grammars [17], Combinatory Categorial Grammars [21], Context-Free Re-
cursive Matrix Systems of index 2 [5], Positive Range Concatenation Grammars
of arity 2 [6], Coupled Context-Free Grammars of range 2 [16], and Control
Grammars of level 2 [24]. Several parsing algorithms have been proposed for all
of them, but the design of correct and efficient parsing algorithms is a difficult
task that could be simplified by providing a separation between the description
of the parsing strategy and the execution of the parser. This can be accomplished
through the use of automata: the actual parsing strategy can be described by
means of the construction of a non-deterministic pushdown automaton, and tab-
ulation can be introduced by means of some generic mechanism such as memoiza-
tion. The construction of parsers in this way allows more straightforward proofs

of correctness and makes parsing strategies easier to understand and cheaper to
implement [4].

Bottom-up embedded push-down automata (BEPDA) have been described
in [19] as an extension of push-down automata adequate to implement pars-
ing strategies for TAG in which adjunctions are recognized in a bottom-up
way. In fact, BEPDA are the dual version of embedded push-down automata
(EPDA) [22, 2], a model of automata in which adjunctions must be recognized
in a top-down way. A less informal presentation of BEPDA has been shown
in [18], with some inconsistencies between the set of allowed transitions and the
set of configurations attainable.

Right-oriented linear indexed automata [14] and bottom-up 2–stack au-
tomata [8] can be used to implement parsing strategies similar to those of
BEPDA. Both models of automata have associated a tabulation framework al-
lowing their execution in polynomial time with respect to the size of the input
string.

This article is outlined as follows. The rest of this section is devoted to in-
troduce tree adjoining grammars. Section 2 provides a formal and consistent
definition of classic BEPDA. In Sect. 3 the finite-state control is removed to ob-
tain an alternative definition. Section 4 shows how this new definition is useful
to implement parsers by defining a compilation schema from TAG into BEPDA.
The relation between right-oriented linear indexed automata, bottom-up 2–stack
automata and BEPDA is considered in Sect. 5. Derivations of bottom-up em-
bedded push-down automata are studied in Sect. 6 in order to define a tabular
technique allowing them to be executed efficiently. Section 7 presents final con-
clusions.

1.1 Tree Adjoining Grammars

Tree adjoining grammars (TAG) [12] are an extension of context-free grammars
that use trees instead of productions as the primary representing structure. For-
mally, a TAG is a 5-tuple G = (VN , VT , S, I,A), where VN is a finite set of
non-terminal symbols, VT a finite set of terminal symbols, S ∈ VN is the axiom
of the grammar, I a finite set of initial trees and A a finite set of auxiliary trees.
I ∪A is the set of elementary trees. Internal nodes are labeled by non-terminals
and leaf nodes by terminals or ε, except for just one leaf per auxiliary tree (the
foot) which is labeled by the same non-terminal used as the label of its root
node. The path in an elementary tree from the root node to the foot node is
called the spine of the tree.

New trees are derived by adjoining: let α be a tree containing a node Nα

labeled by A and let β be an auxiliary tree whose root and foot nodes are also
labeled by A. Then, the adjoining of β at the adjunction node Nα is obtained
by excising the subtree of α with root Nα, attaching β to Nα and attaching the
excised subtree to the foot of β.

The operation of substitution does not increase the generative power of the
formalism but it is usually considered when we are dealing with lexicalized tree
adjoining grammars. In this case, non-terminals can also label leaf nodes (called

substitution nodes) of elementary trees. An initial tree can be substituted at a
substitution node if its root is labeled by the same non-terminal that labels the
substitution node.

2 A formal definition of BEPDA

Bottom-up embedded push-down automata are an extension of push-down au-
tomata (PDA), so we first introduce this last model of automata, the operational
device for parsing context-free grammars. A push-down automata [11] consists
of a finite-state control, an input tape and a stack made up of stack symbols.
Formally, a PDA can be defined as a tuple (Q,VT , VS , δ′, q0, QF , $f) where:

– Q is a finite set of states.
– VT is a finite set of terminal symbols.
– VS is a finite set of stack symbols.
– q0 ∈ Q is the initial state.
– QF ⊆ Q is the set of final states.
– $f ∈ VS is the final stack symbol.
– δ′ is a mapping from Q× VT ∪ {ǫ} × VS into finite subsets of Q× V ∗

S .

In the case of bottom-up embedded push-down automata, the stack (that we
call the main stack) is made up of non-empty stacks containing stack symbols.
Formally, a BEPDA is defined by a tuple (Q,VT , VS , δ, q0, QF , $f) where Q, VT ,
VS , q0 ∈ Q, QF ⊆ Q and $f ∈ VS are defined as before, but δ is now defined
as a mapping from Q× VT ∪ {ǫ} × (V +

S)∗ × V ∗

S × (V +

S)∗ into finite subsets of
Q× VS ∪ { VS}, where 6∈ VS is a new symbol used as stack separator.

An instantaneous configuration is a triple (q, Υ, w), where q is the current
state, Υ ∈ (V +

S)∗ represents the contents of the automaton stack and w is the
part of the input string that is yet to be read. It is important to remark that
every individual stack contained in the main stack must store at least one stack
symbol. The main stack will be empty only in the initial configuration (q0, ǫ, w).

Transitions in δ allow an automaton to derive a new configuration (q′, Υ ′, w)
from a configuration (q, Υ, aw), which is denoted (q, Υ, aw) ⊢ (q′, Υ ′, w). The

reflexive and transitive closure of ⊢ is denoted by
∗

⊢. There exist two different
types of transitions:

1. Transitions of the first type are of the form

(q′, Z) ∈ δ(q, a, ǫ, ǫ, ǫ)

and they can be applied to a configuration (q, Υ, aw) to yield a configuration
(q′, Υ Z,w).

2. Transitions of the second type are of the form

(q′, Z) ∈ δ(q, a, αk . . . αi+1, Zm . . . Z1, αi . . . α1)

(a) (q0, D) ∈ δ(q0, a, ǫ, ǫ, ǫ)

(b) (q1, C) ∈ δ(q0, b, ǫ, ǫ, ǫ)

(c) (q1, C) ∈ δ(q1, b, ǫ, ǫ, ǫ)

(d) (q2, B) ∈ δ(q1, c, ǫ, C, ǫ)

(e) (q2, B) ∈ δ(q2, c, C, ǫ, ǫ)

(f) (q3, B) ∈ δ(q2, d, D, BB, ǫ)

(g) (q3, B) ∈ δ(q3, d, D, BB, ǫ)

(h) (q3, $f) ∈ δ(q3, d, D, B, ǫ)

(i) (q0, $f) ∈ δ(q0, a, ǫ, ǫ, ǫ)

q0 aabbccdd

(a) q0 D abbccdd

(a) q0 D D bbccdd

(b) q1 D D C bccdd

(c) q1 D D C C ccdd

(d) q2 D D C B cdd

(e) q2 D D BB dd

(f) q3 D B d

(h) q3 $f

Fig. 1. BEPDA accepting {anbncndn | n > 0} and configurations for aabbccdd

where m ≥ 0 and k ≥ i ≥ 0. They can be applied to a configuration

(q, Υ αk . . . αi+1 αZm . . . Z1 αi . . . α1, aw)

to yield a configuration
(q′, Υ αZ,w)

The language accepted by final state by a BEPDA is the set w ∈ V ∗

T of input
strings such that (q0, ǫ, w) ⊢ ∗(p, Υ, ǫ), where p ∈ QF and Υ ∈ (V +

S)∗.
The language accepted by empty stack by a BEPDA is the set w ∈ V ∗

T of
input strings such that (q0, ǫ, w) ⊢ ∗(q, $f , ǫ) for any q ∈ Q. At this point
it is interesting to observe the duality with respect to embedded push-down
automata: computations in EPDA start with a stack $0 to finish with an empty
stack while computations in BEPDA start with an empty stack to finish with a
stack $f .

It can be proved that for any BEPDA accepting a language L by final state
there exists a BEPDA accepting the same language by empty stack and vice
versa1.

Example 1. The bottom-up embedded push-down automaton defined by the tu-
ple ({q0, q1, q2, q3}, {a, b, c, d}, {B,C,D}, δ, q0, ∅, $f), with δ containing the tran-
sitions shown in Fig. 1 (left box), accepts the language {anbncndn | n ≥ 0} by

1 The proof is analogous to the proof of equivalence of acceptance by final state and
empty stack in the case of push-down automata [11].

empty stack. The sequence of configurations for the recognition of the input
string aabbccdd is shown in Fig. 1 (right box), where the first column shows the
transition applied, the second one the current state, the third one the contents
of the stack and the fourth column shows the part of the input string to be read.

3 BEPDA without states

Finite-state control is not a fundamental component of push-down automata,
as the current state in a configuration can be stored in the top element of the
stack of the automaton [13]. Thus, we can obtain an alternative definition that
considers a PDA as a tuple (VT , VS , Θ′, $0, $f) where:

– VT is a finite set of terminal symbols.
– VS is a finite set of stack symbols.
– $0 ∈ VS is the initial stack symbol.
– $f ∈ VS is the final stack symbol.
– Θ′ is a finite set of three types of transition:

SWAP: Transitions of the form C
a
7−→ F that replace the top element of

the stack while scanning a. The application of such a transition on a
stack ξC returns the stack ξF .

PUSH: Transitions of the form C
a
7−→ C F that push F onto C. The appli-

cation of such a transition on a stack ξC returns the stack ξCF .
POP: Transitions of the form C F

a
7−→ G that replace C and F by G. The

application of such a transition on ξCF returns the stack ξG.
where C,F,G ∈ VS , ξ ∈ V ∗

S and a ∈ VT ∪ {ǫ}.

Finite-state control can also be eliminated from bottom-up embedded push-
down automata, obtaining a new definition that considers a BEPDA as a tuple
(VT , VS , Θ, $0, $f) where VT , VS , $0 ∈ VS and $f ∈ VS are defined as before but
Θ is now defined as a finite set of six types of transition:

SWAP: Transitions of the form C
a
7−→ F that replace the top element of the

top stack while scanning a. The application of such a transition on a stack
Υ αC returns the stack Υ αF .

PUSH: Transitions of the form C
a
7−→ C F that push F onto C. The application

of such a transition on a stack Υ αC returns the stack Υ αCF .
POP: Transitions of the form C F

a
7−→ G that replace C and F by G. The

application of such a transition on Υ αCF returns the stack Υ αG.
WRAP: Transitions of the form C

a
7−→ C, F that push a new stack F on the

top of the main stack. The application of such a transition on a stack Υ αC

returns the stack Υ αC F .
UNWRAP-A: Transitions unwrap-above of the form C, F

a
7−→ G that delete

the top stack F and replace the new top element by G. The application of
such a transition on a stack Υ αC F returns the stack Υ αG.

UNWRAP-B: Transitions unwrap-below of the form C,F
a
7−→ G that delete

the stack C placed just below the top stack and replace the top element
by G. The application of such a transition on a stack Υ C αF returns the
stack Υ αG.

(a) $0

a
7−→ $0, D

(b) D
a
7−→ D, D

(c) D 7−→ D, C

(d) C
b
7−→ C, C

(e) C 7−→ B

(f) B 7−→ BE

(g) C, E
c
7−→ C

(h) BC 7−→ B

(i) D, B
d
7−→ D

(j) BD 7−→ B

(k) $0, D 7−→ $f

$0 aabbccdd

(a) $0 D aabbccdd

(b) $0 D D abbccdd

(c) $0 D D C bbccdd

(d) $0 D D C C bccdd

(d) $0 D D C C C ccdd

(e) $0 D D C C B ccdd

(f) $0 D D C C BE ccdd

(g) $0 D D C BC cdd

(e) $0 D D C BB cdd

(f) $0 D D C BBE cdd

(g) $0 D D BBC dd

(h) $0 D D BB dd

(i) $0 D BD d

(j) $0 D B d

(i) $0 D

(k) $f

Fig. 2. BEPDA without finite-state control for {anbncndn | n > 0}

where C,F,G ∈ VS , Υ ∈ (V ∗

S)∗, α ∈ V ∗

S and a ∈ VT ∪ {ǫ}.
An instantaneous configuration is a pair (Υ,w), where Υ represents the con-

tents of the automaton stack and w is the part of the input string that is yet
to be read. A configuration (Υ, aw) derives a configuration (Υ ′, w), denoted
(Υ, aw) ⊢ (Υ ′, w), if and only if there exist a transition that applied to Υ

gives Υ ′ and scans a from the input string. We use ⊢ ∗ to denote the reflex-
ive and transitive closure of ⊢. An input string is accepted by an BEPDA if
($0, w) ⊢ ∗($f , ǫ). The language accepted by an BEPDA is the set of w ∈ V ∗

T

such that ($0, w) ⊢ ∗($f , ǫ).

Example 2. The bottom-up embedded push-down automaton without states
defined by the tuple ({a, b, c, d}, {B,C,D,E, F, $0, $f}, Θ, $0, $f), with Θ con-
taining the transitions shown in Fig. 2 (left box), accepts the language
{anbncndn | n ≥ 0}. The sequence of configurations to recognize the input string
aabbccdd is also shown in Fig. 2 (right-box), where the first column shows the
transition applied in each step, the second one shows the contents of the stack
and the third column shows the part of the input string to be read.

It can be proved that transitions of a BEPDA with states can be emulated
by transitions a BEPDA without states and vice versa.

Sketch of the proof : As a first step, we must consider a normalized version
of transitions for BEPDA with states. These transitions are of the form:

(q′, Z) ∈ δ(q, a, ǫ, ǫ, ǫ)

(q′, Z) ∈ δ(q, a, Z ′

k . . . Z ′

i+1, Zm . . . Z1, Z ′

i . . . Z ′

1)

where q, q′ ∈ Q, a ∈ VT ∪ {ǫ}, Z,Z1, . . . , Zm ∈ VS , Z ′

1, . . . , Z
′

k ∈ VS , 0 ≤ i ≤ k

and 0 ≤ m ≤ 2. Then, we show these transitions can be emulated by a set of
SWAP, PUSH, POP, WRAP, UNWRAP-A and UNWRAP-B transitions, and
vice versa, with the help of a kind of complex transitions of the form

Fk . . . Fi+1,DC1 . . . Cm, Fi . . . F1

a
7−→ DB

created by the application of a sequence of simple transitions, where a ∈ VT ∪{ǫ};
0 ≤ m ≤ 2; B,C1, . . . , Cm, F1, . . . , Fk,∈ VS ; and if m = 0 then D ∈ VS else
D = ǫ. 2

4 Compiling TAG into BEPDA

Automata are interesting for parsing because they allow us to separate two
different problems that arise during the definition of parsing algorithms: the
description of the parsing strategy and the execution of the parser. By means of
automata, a parsing strategy for a given grammar can be translated into a set
of transitions defining a (possibly non deterministic) automaton and then the
automaton can be executed using some standard technique.

In this section we define a generic compilation schema for tree adjoining
grammars based on a call/return model [9]. We consider each elementary tree
γ of a TAG as formed by a set of context-free productions P(γ): a node Nγ

and its g children N
γ
1 . . . Nγ

g are represented by a production Nγ → N
γ
1 . . . Nγ

g .
The elements of the productions are the nodes of the tree, except for the case
of elements belonging to VT ∪ {ε} in the right-hand side of production. Those
elements may not have children and are not candidates to be adjunction nodes,
so we identify such nodes labeled by a terminal with that terminal. We use
β ∈ adj(Nγ) to denote that a tree β ∈ A may be adjoined at node Nγ . If
adjunction is not mandatory at Nγ , then nil ∈ adj(Nγ). If a tree α ∈ I may
be substituted at node Nγ , then α ∈ subs(Nγ). We consider the additional
productions ⊤α → Rα, ⊤β → Rβ and Fβ → ⊥ for each initial tree α and each
auxiliary tree β, where Rα is the root node of α and Rβ and Fβ are the root
node and foot node of β, respectively.

Fig. 3 shows the compilation rules from TAG to BEPDA, where symbols ∇γ
r,s

has been introduced to denote dotted productions

N
γ
r,0 → N

γ
r,1 . . . Nγ

r,s •N
γ
r,s+1 . . . Nγ

r,nr

where nr is the length of the right hand side of the production. The meaning of
each compilation rule is graphically shown in Fig. 4. This schema is parameter-
ized by

−−→
Nγ , the information propagated top-down with respect to the node Nγ ,

[INIT] $0 7−→ $0

−−→
⊤α

α ∈ I , S = label(Rα)

[FINAL] $0

←−−
⊤α 7−→ $f α ∈ I , S = label(Rα)

[CALL] ∇γ
r,s 7−→ ∇

γ
r,s,

−−−−→
N

γ
r,s+1 N

γ
r,s+1 6∈ spine(γ), nil ∈ adj(Nr,s+1)

[SCALL] ∇β
r,s 7−→ ∇

β
r,s

−−−−→
N

β
r,s+1 N

β
r,s+1 ∈ spine(β), nil ∈ adj(Nβ

r,s+1)

[SEL]
−−→
N

γ
r,0 7−→ ∇

γ
r,0

[PUB] ∇γ
r,nr
7−→
←−−
N

γ
r,0

[RET] ∇γ
r,s,

←−−−−
N

γ
r,s+1 7−→ ∇

γ
r,s+1 N

γ
r,s+1 6∈ spine(γ), nil ∈ adj(Nr,s+1)

[SRET] ∇β
r,s,
←−−−−
N

β
r,s+1 7−→ ∇

β
r,s+1 N

β
r,s+1 ∈ spine(β), nil ∈ adj(Nβ

r,s+1)

[SCAN]
−−→
N

γ
r,0

a
7−→

←−−
N

γ
r,0 N

γ
r,0 → a

[AdjCALL] ∇γ
r,s 7−→ ∇

γ
r,s,

−−→
⊤β

β ∈ adj(Nγ
r,s+1)

[AdjRET-a] ∇γ
r,s,
←−−
⊤β 7−→ ⊤ β ∈ adj(Nγ

r,s+1)

[AdjRET-b] ∆γ
r,s ⊤ 7−→ ∇

γ
r,s+1

[FootCALL] ∇β
f,0 7−→ ∇

β
f,0,

−−−−→
N

γ
r,s+1 N

β
f,0 = Fβ , β ∈ adj(Nγ

r,s+1)

[FootRET-a] ∇β
f,0,
←−−−−
N

γ
r,s+1 7−→ ∆γ

r,s N
β
f,0 = Fβ , β ∈ adj(Nγ

r,s+1)

[FootRET-b] ∆γ
r,s 7−→ ∆γ

r,s ∇
β
f,1 N

β
f,0 = Fβ , β ∈ adj(Nγ

r,s+1)

[SubsCALL] ∇γ
r,s 7−→ ∇

γ
r,s,

−−→
⊤α

α ∈ subs(Nr,s+1)

[SubsRET] ∇γ
r,s,

←−−
⊤α 7−→ ∇γ

r,s+1 α ∈ subs(Nr,s+1)

Fig. 3. Generic compilation schema for TAG

and by
←−−
Nγ , the information propagated bottom-up. When the schema is used

to implement a top-down traversal of elementary trees
−−→
Nγ = Nγ and

←−−
Nγ = �,

where � is a fresh stack symbol. A bottom-up traversal requires
−−→
Nγ = � and

←−−
Nγ = Nγ . For a mixed traversal of elementary trees,

−−→
Nγ = Nγ and

←−−
Nγ = Nγ ,

where Nγ and Nγ are used to distinguish the top-down prediction from the
bottom-up propagation of a node.

With respect to adjunctions, we can observe in Fig. 3 that each stack stores
pending adjunctions with respect to the node placed on the top of the stack in
a bottom-up treatment of adjunctions: when a foot node is reached, the adjunc-
tion node is stored on the top of the stack ([FootCALL-a]); the traversal of

α

RET

SCALL SRET

β

γ

CALL

FootRET

AdjCALL AdjRET

FootCALL

SubsRETSubsCALL

Fig. 4. Meaning of compilation rules

the elementary tree is suspended to continue with the traversal of the adjoined
auxiliary tree ([FootCALL-b]); the adjunction stack is propagated through the
spine ([SRET]) up to the root node ([AdjRET-a]); and then the stack element
corresponding to the auxiliary tree is eliminated to resume the traversal of the
elementary tree ([AdjRET-b]). To avoid confusion, we store ∆γ

r,s instead of
∇γ

r,s to indicate that an adjunction was started at node N
γ
r,s+1. A symbol ∆ can

be seen as a symbol ∇ waiting an adjunction to be completed.

Substitution is managed trough transitions generated by compilation
rules [SubsCALL], which start the traversal of the substituted trees, and
[SubsRET], which resume the traversal of the tree containing the substitution
node once the substituted tree has been completely traversed.

5 BEPDA and other automata for TAG

5.1 Right-oriented linear indexed automata

Linear indexed automata (LIA) [4] are an extension of push-down automata in
which each stack symbol has been associated to a list of indices. Right-oriented
linear indexed automata (R-LIA) [14, 15] are a subclass of linear indexed au-
tomata that can be used to implement parsing strategies for TAG in which
adjunctions are recognized in a bottom-up way. BEPDA and R–LIA are equiv-
alent classes of automata. Given a BEPDA, the equivalent R-LIA is obtained
by means of a simple change in the notation: the top element of a stack is con-
sidered a stack symbol, and the rest of the stack is considered the indices list

Transition BEPDA R–LIA

SWAP C
a
7−→ F C[◦◦]

a
7−→ F [◦◦]

PUSH C
a
7−→ CF C[◦◦]

a
7−→ F [◦◦C]

POP CF
a
7−→ G F [◦◦C]

a
7−→ G[◦◦]

UNWRAP-A C, F
a
7−→ G C[◦◦] F []

a
7−→ G[◦◦]

UNWRAP-B C, F
a
7−→ G C[] F [◦◦]

a
7−→ G[◦◦]

WRAP C
a
7−→ C, F C[◦◦]

a
7−→ C[◦◦] F []

Fig. 5. Equivalence between BEPDA and R-LIA

associated to it, as is shown in Fig. 5. The same procedure also serves to obtain
the BEPDA equivalent to a given R–LIA.

5.2 Bottom-up 2–stack automata

Strongly-driven 2-stack automata (SD–2SA) [7] are an extension of push-down
automata working on a pair of asymmetric stacks, a master stack and an auxiliary
stack. These stacks are partitioned into sessions. Computations in each session
are performed in one of two modes write and erase. A session starts in mode
write and switches at some point to mode erase. In mode write (resp. erase), no
element can be popped from (resp. pushed to) the master stack. Switching back
from erase to write mode is not allowed. Bottom-up 2–stack automata (BU–
2SA) [8] are a projection of SD–2SA requiring the emptiness of the auxiliary
stack during computations in mode write. When a new session is created in a
BU–2SA, a mark |= is left on the master stack, other movements performed in
write mode leaving a mark �. These marks are popped in erase mode.

The full set of BU–2SA transitions is shown in Fig. 6. Transitions of type
SWAP2 are equivalent to C

a
7−→ F in BEPDA, compound transitions ob-

tained from the consecutive application of C 7−→ C, F ′ and C, F ′
a
7−→ F ,

where F ′ is a fresh stack symbol. In a similar way, transitions of typeրERASE
are translated into compound transitions formed by an UNWRAP-B and a
POP transition, and transitions of typeցERASE are translated into the com-
position of UNWRAP-B and PUSH transitions. Slightly different is the case
for transitions of type �WRITE, equivalent to C

a
7−→ C, F transitions

in BEPDA, which are obtained as the consecutive application of C
a
7−→ C ′

and C ′ 7−→ C ′, F , an additional transition C ′, G
b
7−→ K for each transition

C, G
b
7−→ K in the automaton, and an additional transition C ′, G

b
7−→ K for

each transition C, G
b
7−→ K, where C ′ is a fresh stack symbol.

As a consequence, it is possible to build a BEPDA for any given BU–2SA.
However, the reverse is not always true: PUSH and POP transitions can only

BEPDA transition BU–2SA transition

SWAP C
a
7−→ F (m, C, ǫ)

a
7−→ (m, F, ǫ) SWAP1

C
a
7−→ F (w, C, |=m)

a
7−→ (e, F, |=m) SWAP2

WRAP C
a
7−→ C, F (m, C, ǫ)

a
7−→ (w, C|=mF, |=m) |=WRITE

C
a
7−→ C, F (w, C, ǫ)

a
7−→ (w, C � F, ǫ) �WRITE

UNWRAP-A C, F
a
7−→ G (e, C|=mF, |=m)

a
7−→ (m, G, ǫ) |=ERASE

UNWRAP-B C, F
a
7−→ G (e, C � F, ǫ)

a
7−→ (e, G, ǫ) →ERASE

C, XF
a
7−→ G (e, C � F, X)

a
7−→ (e, G, ǫ) րERASE

C, F
a
7−→ XG (e, C � F, ǫ)

a
7−→ (e, G, X) ցERASE

Fig. 6. Correspondence between BEPDA and BU–2SA

be translated into BU–2SA if they are merged with an UNWRAP-B transition.
So, a BEPDA implementing a shift-reduce strategy (requiring the use of PUSH
and POP transitions in combination with UNWRAP-A transitions2) can not be
translated into a BU–2SA.

6 Tabulation

The direct execution of (bottom-up embedded) push-down automata may be
exponential with respect to the length of the input string and may even loop.
To get polynomial complexity, we must avoid duplicating stack contents when
several transitions may be applied to a given configuration. Instead of storing
all the information about a configuration, we must determine the information
we need to trace to retrieve that configuration. This information is stored into
a table of items.

6.1 Tabulation of PDA

In a context-free grammar, if B
∗

⇒ δ then αBβ
∗

⇒ αδβ for all α, β ∈ (VN ∪VT)∗.
This context-freeness property can be translated into push-down automata: given
a derivation

(B, ai+1 . . . aj+1 . . . an)
∗

⊢ (C, aj+1 . . . an)

for all ξ ∈ V ∗

S we also have

(ξB, ai+1 . . . aj+1 . . . an)
∗

⊢ (ξC, aj+1 . . . an)

2 A linear indexed automata implementing a LR-like strategy for linear indexed gram-
mars using this kind of transitions is described in [1].

Thus, the only information we need to store about this last derivation are the
stack elements B and C and the input positions i and j. We store this informa-
tion in the form of an item [B, i, C, j]. New items3 are derived from existing items
by means of inference rules of the form antecedents

consequent
conditions similar to those

used in grammatical deduction systems [20], meaning that if all antecedents are
present and conditions are satisfied then the consequent item should be gener-
ated. Conditions usually refer to transitions of the automaton and to terminals
from the input string.

In the case of PDA we have three inference rules, one for each type of tran-
sition:

– The inference rule for SWAP transitions

[B, i, C, j]

[B, i, F, k]
C

a
7−→ F

means that given a derivation (ξB, ai+1 . . . an)
∗

⊢ (ξC, aj+1 . . . an), the ap-

plication a a transition C
a
7−→ F yields a derivation (ξB, ai+1 . . . an)

∗

⊢
(ξF, ak+1 . . . an), where k = j + |a|.

– In the case of a PUSH transition, the inference rule

[B, i, C, j]

[F, k, F, k]
C

a
7−→ CF

means that given an derivation (ξB, ai+1 . . . an)
∗

⊢ (ξC, aj+1 . . . an), the ap-

plication of a transition C
a
7−→ CF yields a derivation (ξF, ak+1 . . . an)

0

⊢
(ξF, ak+1 . . . an), where k = j + |a|.

– In the case of a POP transition, the following inference rule

[F ′, k′, F, k]
[B, i, C, j]

[B, i,G, l]
C

b
7−→ CF ′

CF
a
7−→ G

is applied to indicate that given a derivation (ξB, ai+1 . . . an)
∗

⊢

(ξC, aj+1 . . . an), a PUSH transition C
b
7−→ CF ′ that yields a derivation

(ξC, aj+1 . . . an) ⊢ (ξCF ′, ak′+1 . . . an) and a derivation (ξF ′, ak′+1 . . . an)
∗

⊢

(ξF, ak+1 . . . an), the application of a POP transition CF
a
7−→ G yields a

derivation (ξCF, ak+1 . . . an) ⊢ (ξG, al+1 . . . an), where k′ = j + |b| and
l = k + |a|.

A PDA computation starts with the initial item [$0, 0, $0, 0]. An input string
a1 . . . an has been recognized if the final item [$0, 0, $f , n] is generated indicating

that a derivation ($0, a1 . . . an)
∗

⊢ ($f , ǫ) has been attained.

3 In this article we are considering items based on SWAP transitions, as in [15], but
items can be also defined based on PUSH transitions, as in [13].

C

i j

B

Fig. 7. Call derivations

6.2 Tabulation of BEPDA

For BEPDA, we extend the technique proposed for push-down automata in the
previous subsection. We must take into account that the push-down in BEPDA is
made up of stacks instead of single stack elements. So, an item [B, i, C, j] can only
be used to represent derivations of the form (B, ai+1 . . . an) ⊢ ∗(C, aj+1 . . . an).
We can generalize this result by considering items of the form [B, i, αC, j] in order
to represent derivations (B, ai+1 . . . an) ⊢ ∗(αC, aj+1 . . . an). However, the size
of α is not bounded and so the complexity of inference rules is not polynomial.
To get polynomial complexity we must study in detail the form of derivations.
We can observe that two different kinds of derivation can be attained in BEPDA:

Call derivations. Correspond to the placement of an unitary stack onto the
top of the main stack, typically by means of a WRAP transition:

(B, ai+1 . . . an) ⊢ ∗(C, aj+1 . . . an)

where B,C ∈ VS . These derivations are context-freeness in the sense that
for any Υ ∈ (V ∗

S)∗ we have

(Υ B, ai+1 . . . an) ⊢ ∗(Υ C, aj+1 . . . an)

Thus, they can be represented by call items of the form

[B, i, C, j,− | −,−,−,−]

A graphical representation of call derivations and items is shown in figure 7.
Return derivations. Correspond to the placement of a non-unitary stack onto

the top of the main stack:

(B, ai+1 . . . an)

⊢ ∗(B Υ1 D, ap+1 . . . an)

⊢ ∗(B Υ1 αE, aq+1 . . . an)

⊢ ∗(αXC, aj+1 . . . an)

C

��
��
��
��
��
��

��
��
��
��
��
��

���
���
���
���
���
���

���
���
���
���
���
���

i jp q

E

D

B B B

X

Fig. 8. Return derivations

where B,C,D,E,X ∈ VS and α ∈ V ∗

S . The two occurrences of α denote
the same stack in the sense that α is neither consulted nor modified through
derivation. These derivations are context-free with respect to the low part
of the main stack and so, for any Υ, Υ1 ∈ (V ∗

S)∗ we have

(Υ B, ai+1 . . . an)

⊢ ∗(Υ B Υ1 D, ap+1 . . . an)

⊢ ∗(Υ B Υ1 αE, aq+1 . . . an)

⊢ ∗(Υ αXC, aj+1 . . . an)

but they are not independent with respect to the subderivation

(D, ap+1 . . . an) ⊢ ∗(αE, aq+1 . . . an)

We can not store a entire subderivation into items if we want to get poly-
nomial complexity. To solve this problem, we need to consider an item as
formed by two different parts, a head storing some information about the
top elements of the initial and final configurations of the derivation we are
representing, and a tail that store information about a subderivation. The
tail acts like a pointer to another configuration. Following the tail pointers
we can retrieve the whole contents of a given stack. Therefore, for return
derivations we are considering return items of the form

[B, i, C, j,X | D, p,E, q]

where (B, i, C, j,X) is the head and (D, p,E, q) is the tail. A graphical rep-
resentation of call derivations and items is shown in figure 8.

Call and return items are combined by means of the following set of inference
rules:

[B, i, C, j,− | −,−,−,−]

[B, i, F, k,− | −,−,−,−]
C

a
7−→ F

[B, i, C, j,X | D, p,E, q]

[B, i, F, k,X | D, p,E, q]
C

a
7−→ F

[B, i, C, j,− | −,−,−,−]

[B, i, F, k, C | B, i, C, j]
C

a
7−→ CF

[B, i, C, j,X | D, p,E, q]

[B, i, F, k, C | B, i, C, j]
C

a
7−→ CF

[B, i, F, j, C | D, p,E, q]
[D, p,E, q,− | −,−,−,−]

[B, i,G, k,− | −,−,−,−]
CF

a
7−→ G

[B, i, F, j, C | D, p,E, q]
[D, p,E, q,X ′ | O, u, P, v]

[B, i,G, k,X ′ | O, u, P, v]
CF

a
7−→ G

[B, i, C, j,− | −,−,−,−]

[F, k, F, k,− | −,−,−,−]
C

a
7−→ C, F

[B, i, C, j,X | D, p,E, q]

[F, k, F, k,− | −,−,−,−]
C

a
7−→ C, F

[F, k, F ′, k′,− | −,−,−,−]
[B, i, C, j,− | −,−,−,−]

[B, i,G, l,− | −,−,−,−]

C
a
7−→ C, F

C, F ′
b
7−→ G

[F, k, F ′, k′,− | −,−,−,−]
[B, i, C, j,X | D, p,E, q]

[B, i,G, l,X | D, p,E, q]

C
a
7−→ C, F

C, F ′
b
7−→ G

[F, k, F ′, k′,− | −,−,−,−]
[B, i, C, j,− | −,−,−,−]

[B, i,G, l,− | −,−,−,−]

C
a
7−→ C, F

C, F ′
b
7−→ G

[F, k, F ′, k′,X | D, p,E, q]
[B, i, C, j,− | −,−,−,−]

[B, i,G, l,X | D, p,E, q]

C
a
7−→ C, F

C, F ′
b
7−→ G

where k = j if a = ǫ, k = j + 1 if a = aj+1, l = k′ if b = ǫ and l = k′ + 1 if
b = ak′+1.

Computations start with the initial item [$0, 0, $0, 0,− | −,−,−,−]. An input
string a1 . . . an has been recognized if the final item [$0, 0, $f , n,− | −,−,−,−]
is present. It can be proved that handling items with the inference rules is equiv-
alent to applying the transitions on the whole stacks.

Sketch of the proof : We show that each item represents a derivation and
that any derivation is represented by an item. Taking as base case the item and
derivation corresponding to the initial configuration, we must apply induction
on the length of the derivations. We can observe that given the set of antecedents
items (each of them representing a derivation, by induction hypothesis) and
the transitions specified by an inference rule, we obtain an item representing a
derivation when this rule is applied. We can also observe that, given an item,
it can be decomposed by some inference rule into a set of antecedent items
(representing derivations by induction hypothesis) and a set of transitions,
such that the application of the rule gives as a result this item representing
a derivation. The proof is tedious but not difficult. The important point is to
consider the exhaustive list of all kinds of derivation that can be involved in the
application of each inference rule. 2

The space complexity of the proposed tabulation technique with respect to
the length of the input string is O(n4), due to every item stores four positions of
the input string. The worst case time complexity is O(n6) due to the inference
rule

[B, i, F, j, C | D, p,E, q]
[D, p,E, q,X ′ | O, u, P, v]

[B, i,G, k,X ′ | O, u, P, v]
CF

a
7−→ G

that stores 6 independent input positions i, j, p, q, u and v.

7 Conclusion

We have provided a formal definition of bottom-up embedded push-down au-
tomata. We have also shown that finite-state control can be eliminated, obtaining
a new definition in which transitions are in a form useful to describe compilation
schemata for TAG and suitable for tabulation. The resulting definition has been
shown to be equivalent to right-oriented linear indexed automata and a superset
of bottom-up 2–stack automata with respect to the parsing strategies that can
be described in both models of automata.

Acknowledgments

A previous and shorter version of this article was presented at the Second In-
ternational Workshop on Parsing and Deduction (TAPD’2000)4 held in Vigo

4 http://coleweb.dc.fi.udc.es/tapd2000/

(Spain) in September 2000 [3]. We are grateful to the participants in this work-
shop for their comments and suggestions. The research reported in this article
has been partially supported by Plan Nacional de Investigación Cient́ıfica, De-
sarrollo e Innovación Tecnológica (Grant TIC2000-0370-C02-01), FEDER of EU
(Grant 1FD97-0047-C04-02) and Xunta de Galicia (Grant PGIDT99XI10502B).

References

1. Miguel A. Alonso, Eric de la Clergerie, and Manuel Vilares. Automata-based pars-
ing in dynamic programming for Linear Indexed Grammars. In A. S. Narin’yani,
editor, Proc. of DIALOGUE’97 Computational Linguistics and its Applications
International Workshop, pages 22–27, Moscow, Russia, June 1997.

2. Miguel A. Alonso, Eric de la Clergerie, and Manuel Vilares. A redefinition of
Embedded Push-Down Automata. In Proc. of 5th International Workshop on
Tree Adjoining Grammars and Related Formalisms (TAG+5), pages 19–26, Paris,
France, May 2000.

3. Miguel A. Alonso, Eric de la Clergerie, and Manuel Vilares. A formal definition
of Bottom-up Embedded Push-Down Automata and their tabulation technique.
In David S. Warren, Manuel Vilares, Leandro Rodŕıguez Liñares and Miguel A.
Alonso (eds.), Proc. of Second International Workshop on Tabulation in Parsing
and Deduction (TAPD 2000), pp. 101-112, Vigo, Spain, September 2000.

4. Miguel A. Alonso, Mark-Jan Nederhof, and Eric de la Clergerie. Tabulation of
automata for tree adjoining languages. Grammars 3 (2000) 89–110.

5. Tilman Becker and Dominik Heckmann. Recursive matrix systems (RMS) and
TAG. In Proc. of Fourth International Workshop on Tree Adjoining Grammars
and Related Frameworks (TAG+4), pages 9–12, Philadelphia, PA, USA, August
1998.

6. Pierre Boullier. A generalization of mildly context-sensitive formalisms. In Proc. of
Fourth International Workshop on Tree Adjoining Grammars and Related Frame-
works (TAG+4), pages 17–20, Philadelphia, PA, USA, August 1998.

7. Eric de la Clergerie and Miguel A. Alonso. A tabular interpretation of a class of 2-
Stack Automata. In COLING-ACL’98, 36th Annual Meeting of the Association for
Computational Linguistics and 17th International Conference on Computational
Linguistics, Proceedings of the Conference, volume II, pages 1333–1339, Montreal,
Quebec, Canada, August 1998. ACL.

8. Eric de la Clergerie, Miguel A. Alonso, and David Cabrero. A tabular interpreta-
tion of bottom-up automata for TAG. In Proc. of Fourth International Workshop
on Tree-Adjoining Grammars and Related Frameworks (TAG+4), pages 42–45,
Philadelphia, PA, USA, August 1998.

9. Eric de la Clergerie and François Barthélemy. Information flow in tabular inter-
pretations for generalized Push-Down Automata. Theoretical Computer Science,
199(1–2):167–198, 1998.

10. Gerald Gazdar. Applicability of indexed grammars to natural languages. In
U. Reyle and C. Rohrer, editors, Natural Language Parsing and Linguistic Theo-
ries, pages 69–94. D. Reidel Publishing Company, 1987.

11. John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory, Lan-
guages and Computation. Series in Computer Science. Addison-Wesley Publishing
Company, Reading, Massachussetts, USA, 1979.

12. Aravind K. Joshi and Yves Schabes. Tree-adjoining grammars. In Grzegorz Rozen-
berg and Arto Salomaa, editors, Handbook of Formal Languages. Vol 3: Beyond
Words, chapter 2, pages 69–123. Springer-Verlag, Berlin/Heidelberg/New York,
1997.

13. Bernard Lang. Towards a uniform formal framework for parsing. In Masaru
Tomita, editor, Current Issues in Parsing Technology, pages 153–171. Kluwer Aca-
demic Publishers, Norwell, MA, USA, 1991.

14. Mark-Jan Nederhof. Linear indexed automata and tabulation of TAG parsing. In
Proc. of First International Workshop on Tabulation in Parsing and Deduction
(TAPD’98), pages 1–9, Paris, France, April 1998.

15. Mark-Jan Nederhof. Models of tabulation for TAG parsing. In Proc. of the Sixth
Meeting on Mathematics of Language (MOL 6), pages 143–158, Orlando, Florida,
USA, July 1999.

16. Gisela Pitsch. LL(k) parsing of coupled-context-free grammars. Computational
Intelligence 10 (1994) 563–578.

17. C. Pollard. Generalized Phrase Structure Grammars, Head Grammars and Natural
Language. PhD thesis, Stanford University, 1984.

18. Owen Rambow. Formal and Computational Aspects of Natural Language Syntax.
PhD thesis, University of Pennsylvania, 1994. Available as IRCS Report 94-08 of
the Institute of Research in Cognitive Science, University of Pennsylvania.

19. Yves Schabes and K. Vijay-Shanker. Deterministic left to right parsing of tree
adjoining languages. In Proc. of 28th Annual Meeting of the Association for Com-
putational Linguistics, pages 276–283, Pittsburgh, Pennsylvania, USA, June 1990.
ACL.

20. Stuart M. Shieber, Yves Schabes, and Fernando C. N. Pereira. Principles and
implementation of deductive parsing. Journal of Logic Programming 24 (1995)
3–36.

21. M. Steedman. Combinators and grammars. In R. Oehrle, E. Bach, and D Wheeler,
editors, Categorial Grammars and Natural Language Structures, pages 417–442.
Foris, Dordrecht, 1986.

22. K. Vijay-Shanker. A Study of Tree Adjoining Grammars. PhD thesis, University of
Pennsylvania, January 1988. Available as Technical Report MS-CIS-88-03 LINC
LAB 95 of the Department of Computer and Information Science, University of
Pennsylvania.

23. K. Vijay-Shanker and David J. Weir. The equivalence of four extensions of context-
free grammars. Mathematical Systems Theory 27 (1994) 511–545.

24. K. Vijay-Shanker, David J. Weir, and Aravind K. Joshi. On the progression from
context-free to tree adjoining languages. In Alexis Manaster-Ramer, editor, Math-
ematics of Language, pages 389–401. John Benjamins Publishing Company, Ams-
terdam/Philadelphia, 1987.

