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Abstract

A general framework for the development of parsing
algorithms in dynamic programming for Linear In-
dexed Grammars (LIG) is derived from the concept
of Logic Push-down Automata (LPDA), an opera-
tional device for the construction of parsers for logic
grammars. By exploiting several properties of the
LIG formalism, we can guarantee both termination
and completeness, which is not possible in the gen-
eral case of logic grammars. In this paper we cen-
ter our attention on the class of weakly predictive
parsing strategies, which include bottom-up algo-
rithms. The interpretation in dynamic programming
of parsing algorithms belonging to this class can be
performed in O(n6) complexity, which is the lower
bound achieved for LIG. In this context, a version
for LIG of the LR parsing strategy is developed. The
results are also applicable to other automata-based
strategies, such as Left Corner.

Keywords: Linear Indexed Grammars, Logic Push-
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INTRODUCTION

Tree Adjoining Grammars [14] (TAG) and Linear In-
dexed Grammars [5] (LIG) are the two most relevant
members of the class of Mildly Context-sensitive
Grammars (MCSG), which is placed between
Context-free Grammars and Context Sensitive Gram-
mars. The importance of TAG is due to its abil-
ity to express certain linguistic fenomena naturally.
The relevance of LIG is due to its greater suitability
for computational treatment. In fact, parsing algo-
rithms for TAG and related formalisms often con-
sider the compilation of the source grammar to an
equivalent LIG [16, 10].

In recent years there has also been a great activity
in the study of parsing techniques for logic grammar
formalisms. Among the several devices developed
with this purpose, we can notably cite Logic Push-
down Automata [4] (LPDA) which constitute the ba-
sis of the general dynamic programming framework
for the efficient implementation of resolution strate-
gies for Horn-clause programs.

A specialized version of LPDA can be used as a
general framework for describing parsing strategies
for MCSG in dynamic programming, guaranteeing
termination and completeness, which are achieved
by using several properties derived from the lesser
descriptive power of MCSG with respect to logic
formalisms. In this paper, after describing the LIG
formalism, we show how to translate LIG to DCG
and how to interpret in dynamic programming the



LPDA that analyze the resulting grammars. A gen-
eral framework for parsing algorithms belonging to
the class of weakly predictive parsing strategies is
described. In order to show the applicability of this
framework, the LR parsing algorithm for Context-
free Grammars is extended to LIG. The paper ends
with a discussion of the work.

Linear Indexed Grammars

Indexed Grammars [1] are an extension of Context-
free Grammars in which stacks of symbols are as-
sociated with non-terminals. Linear Indexed Gram-
mars [5] are a restricted form of Indexed Grammars
in which the dependences between stacks of non-
terminals in each rule have been limited: at most
one stack on the right-hand side is related with the
stack of the left-hand side. The other stacks of the
rule must have a bounded stack size.

Definition 1 A LIG G is denoted by
(VN , VT , VI , P, S) where VN ,VT ,VI and P denote fi-
nite sets of non-terminals, terminals, stack symbols
and productions, and S is the start symbol of the
grammar. 2

Following Gazdar [5], we will consider rules with
the form:

A[◦◦] → φB[◦◦]φ′

A[◦◦] → φB[γ ◦ ◦]φ′

A[γ ◦ ◦] → φB[◦◦]φ′

A[ ] → w

where A,B ∈ VN , w ∈ VT , γ ∈ VI and φ, φ′ ∈
(VN [ ])∗. Stacks are written with the top in the left-
most position. In each rule, the element composed
by B and its associate stack is called the primary
constituent of the rule and elements in φ and φ′ are
called the secondary constituents of the rule.

LIG PARSING IN DYNAMIC

PROGRAMMNG

From a grammatical point of view, LPDA are nat-
urally adapted to parsing of Definite Clause Gram-
mars [8] (DCG), a logical grammar formalism. All
kind of parsing strategies for DCG can be described
using LPDA, which are in fact a generalization of
Push-Down Automata (PDA), the operational mech-
anism for CFG. Instead of single symbols, the ele-
ments of the stack in LPDA are logic atoms in some
sets of predicate, function and variable symbols. In
order to avoid confusion between the stack of LPDA
and the stacks of LIG, we will write LPDA-stack for
the former and LIG-stacks for the latter.

A very interesting property of LPDA is that they
can be interpreted in dynamic programming. Be-
cause LPDA computations never use information be-
low the top of the LPDA-stack until a pop action,
computations can be factorized with respect to a
bounded number of elements on the top of the LPDA-
stack. Each of these pieces of information is called
an item [4].

Considering that LIG-stacks can be represented as
lists in DCG, as in the case of the programming lan-
guage Prolog, we can define the following translation
of LIG symbols to DCG, in which non-terminal sym-
bols of LIG are unary predicates of DCG, LIG-stacks
in the form of lists are the arguments of predicates,
and variables are used to represent dependent parts
of the LIG-stacks:

A[ ] ; A([ ])
A[◦◦] ; A(X)
A[γ ◦ ◦] ; A([γ | X])

This translation is extended to rules as follows,
where φT represent the result of translating the ele-
ments in φ:

A[◦◦] → φ B[◦◦]φ′

; A(X) → φT B(X)φ′

T

A[γ ◦ ◦] → φ B[◦◦]φ′

; A([γ | X]) → φT B(X)φ′

T

A[◦◦] → φ B[γ ◦ ◦]φ′

; A (X) → φT B([γ | X])φ′

T

A[ ] → w

; A([ ]) → w

Using this translation from LIG to DCG, LPDA
can be used as an operational mechanism for LIG
parsing. The LPDA-stack elements will be of the
form [VN ∪ VT , η, i, j], where η = [VI

∗] ∪ [VI
∗ | X],

in order to represent the recognition of a terminal or
non-terminal symbol and its associated LIG-stack
between position i and j of the input string.

Every parsing algorithm developed for DCG us-
ing LPDA can be applied to LIG. Completeness is
therefore guaranteed, as in the general case, but
the DCG obtained from LIG may not have classi-
cal properties guaranteeing termination, like off-line
parseability [8] or depth-boundness [6]. However,
the termination can be ensured because each step in
a derivation depends only on which of a finite set of
“states” the derivation is in. This property, known
as context-freeness property of LIG [15], implies that
if the item

[A, [γδγ | X], i, j]

can be derived from

[A, [γ | X], i, j]



then the set of items

[A, [γδγδγ | X], i, j]
...
[A, [γδ . . . γδγ | X], i, j]

will also be derived. This set of items in fact repre-
sents the possibility of pushing the symbols γδ′ on
the LIG-stack an unbounded number of times. Reg-
ular expressions can be used to finitely represent this
kind of behavior, generating items such as

[A, [(γδ)∗γ | X], i, j]

and therefore allowing cycles to be represented in
finite form. The use of regular expression in pars-
ing strategies for MCSG was also suggested in [3],
although in that case applied to TAG parsing. How-
ever, dealing with items in the previous form involves
manipulating arbitrarily complicated regular expres-
sions. Items can be simplified if we consider that:

1. Only the top element of a LIG-stack is consid-
ered in each derivation step.

2. Regular expressions, other than simple catena-
tion of symbols, are only needed when there are
cycles.

The first point suggest that we can think of items
storing only the top element of a LIG-stack, but in
order to access the rest of the LIG-stack1 we also
need a class of pointer that allows us to retrieve that
information. Thus, items will be composed of two
different parts: a head, which will store at least one
element on the top of the LIG-stack associated to
the top element of the LPDA, and a rest, which will
point to the head of another item. Following the
chain of rest pointers, you can retrieve the complete
LIG-stack associated with an LPDA-stack element.

Bottom-up Parsing

In the case of CFG and DCG, weakly predictive
parsing algorithms, that is algorithms in which the
results of non-deterministic computations are con-
strained only by bottom-up propagation, can be in-
terpreted in dynamic programming using items which
only contain one element on the top of the LPDA-
stack [4]. In the case of LIG, that element will be
in the form of a head, composed of the non-terminal
that has been recognized, the top element of its LIG-
stack and two indexes of the input string, and a rest
containing the head of the item storing the second
element on the top of the LIG-stack:

[A, γ, i, j | A′, γ′, i′, j′]

In particular, a cycle that could be represented us-
ing items with regular expressions, such as

1In rules popping elements of the LIG-stack, we need to
access the element below the top.

[A, [(γδ)∗γη], i, j], will now be represented by the fol-
lowing set of items:

0) [A, γ, i, j | A′, η1, i
′, j′]

1) [A, γ, i, j | A1, δ1, i, j]
3) [A1, δ1, i, j | A2, δ2, i, j]

...
n) [An, δn, i, j | A, γ, i, j]

where the item 0 represents the state of the parsing
process in which the symbol A has been recognized:
the top of the LIG-stack associated to A is γ and
the rest of the LIG-stack can be retrieved from the
item with head A′, η1, i

′, j′, with η1 the top of η. The
items from 1 to n represent the cycle by indicating
in each step the symbol recognized, the top element
of its LIG-stack and how to retrieve the rest of the
LIG-stack.

The class of items studied in [15] for CYK-like
parsing is very close to this class. This is not surpris-
ing, since CYK is a bottom-up algorithm based on
dynamic programming, and is therefore constrained
to using this kind of items.

LR PARSING FOR LIG

The class of LR parsing strategies constitutes one
of the strongest and most efficient class of parsing
strategies for Context-free Grammars. The class of
grammars that can be deterministically analyzed us-
ing LR parsing with k lookahead symbols are called
LR(k) grammars [2]. They are useful for describing
programming languages, but they are very limited
when they are used for other purposes, for example
parsing of natural languages. If we consider LR pars-
ing tables in which each entry can contain several ac-
tions, we obtain non-deterministic LR parsing, often
known as generalized LR parsing. A kind of general-
ized LR parsing was proposed by Tomita in [13]. It
was implemented in dynamic programming using a
graph-structured stack instead of a single stack in or-
der to deal with multiple parses of a single sentence.
Tomita’s algorithm has problems with cyclicity and
hidden left recursive constructions. Moreover, the
complexity of Tomita’s algorithm is O(np+1), where
p is the length of the longer right-hand side of a rule.

All kind of parsing algorithms for CFG can be
described in the general framework for parsing laid
down by Lang in [7], which is at the basis of dynamic
programming interpretation of LPDA [4]. This frame-
work was used in [17] to implement an efficient gener-
alized LALR parsing algorithm for arbitrary Context-
free Grammars which has O(n3) as worst case com-
plexity, regardless of the length of the rules. This
parser was latter used as a backbone for developing
the efficient parsing algorithm for DCG described
in [18].



Construction of the LR automaton

In the case of LIG, as in the case of DCG, there are
two possibilities for constructing of the LR automa-
ton:

1. To consider only the context-free backbone of
the Linear Indexed Grammar considered.

2. To include contextual information in the au-
tomaton.

The first option is simpler but it is less efficient be-
cause there is information in the grammar about the
form of the LIG-stacks that is not considered dur-
ing the construction of the automaton and therefore
there will be more conflicts in the run-time phase of
the algorithm. These conflicts could be avoided by
including that kind of contextual information dur-
ing the compilation of the LR automaton. In order
to do that, we need to change the definition of the
functions first and follow [2]:

Definition 2 The function first(Γ), with Γ ∈ VT ∪
VN [VI

∗] is defined as follows:

1. If Γ = a ∈ VT first(a) = {a}.
2. If Γ → ε then ε ∈ first(Γ).
3. If Γ′ → Γ1 . . . Γi . . . Γn ∧ σ = mgu(Γ,Γ′)

then first(Γ1σ) ⊆ first(Γ) ∧ ∀j=i−1

j=1
Γj such

that ε ∈ first(Γj), first(Γj+1σ) ⊆ first(Γ)

where mgu stands for more general unifier. 2

Definition 3 The function follow(Γ), with Γ ∈
VN [VI

∗] is computed using the following rules:

1. If Γ = S[ ] then $ ∈ follow(Γ), where $ is
the end-marker of the input string and S is the
axiom of the grammar.

2. If Γ′′ → φΓ′φ′ ∧ σ = mgu(Γ,Γ′) then
first(φ′σ) ⊆ follow(Γ).

3. If Γ′′ → φΓ′φ′ ∧ σ = mgu(Γ,Γ′) ∧ ε ∈
first(φ′σ) then follow(Γ′′σ) ⊆ follow(Γ). 2

The closure of the states in the LR automaton
is computed as in [2] except for the use of the new
definition of the functions first and follow. As the
closure operation is predictive in essence, problems
can arise due to non-termination, because unifica-
tion can produce an infinite number of new elements
to be considered. This is a well known problem in
logic grammars, a field in which several solutions
have been proposed. Among these, the best adapted
to LIG is the application of restriction as proposed
by Shieber in [12]. In effect, as we only need to
consider the top element of each LIG-stack in or-
der to determine whether one rule can be used in
a derivation or not, we can restrict the scope of the

unification to the first element of the LIG-stack, con-
sidering the rest as a logic variable. Using this tech-
nique, only a finite set of elements will need to be
considered during the compilation of the automaton.
Once the automaton is constructed, the tables goto
and action are computed as in [2].

Interpretation of the LR automaton in

Dynamic Programming

As a first step, we must include a new element in
the head and rest part of items: the state which the
LR automaton is in when a grammatical symbol is
recognized. The new form of items is

[A, γ, st, i, j | A′, γ′, st′, i′, j′]

which means that non-terminal A with γ as top of its
LIG-stack has been recognized in state st and it ex-
pands the part of the input string between positions
i and j. The rest of the LIG-stack can be retrieved
from items having (A′, γ′, st′, i′, j′) as head.

The initial item is [S, ε, st0, 0, 0 | −,−,−,−,−].
For each item, we must check if some of the following
operations can be performed:

1. Shift. If there exists an item
[A, γ, st, i, j | A′, γ′, st′, i′, j′] and the correspond-
ing action is a shift with terminal aj to state st′′,
we will create the item
[a, ε, st′′, j, j + 1 | −,−,−,−,−].

2. Reduction. If there exists an item [A, γ, st, i, j |
A′, γ′, st′, i′, j′] and the corresponding action is
a reduction by rule r, we will create the item
[∇r,nr

, ε, st, j, j | −,−,−,−,−], where nr is the
length of the right-hand side of rule r. Follow-
ing [18], Symbols ∇ are used to indicated the
part of the rule that has been reduced and Ar,s

will be used to indicate the symbol in position
s in the right-hand side of rule r. Then the
following steps are applied:

(a) Reduction-step. For each item
[∇r,s, γ, st, i, j | A′, γ′, st′, i′, j′], if Ar,s is not
the primary constituent of rule r, we will seek
an item [Ar,s, ε, st, k, i | −,−,−,−,−] and we
will generate the item
[∇r,s−1, ε, st

′′, k, j | A′, γ′, st′, i′, j′], such that
st ∈ goto(st′′, Ar,s). If Ar,s is the primary
constituent of the rule r, the item
involved must be of the form
[∇r,s, ε, st, i, j | −,−,−,−,−] and we will seek
an item [Ar,s, γ, st, k, j | B, γB , stb, iB , jB ]. If
the application of the rule involves a push
on the LIG-stack, the item generated will be
[∇r,s−1, γ

′, st′′, k, j | Ar,s, γ, st, k, j], where γ′

is the element pushed on the LIG-stack. If
the application of the rule involves a pop in
the LIG-stack, we will must follow the rest



pointer in order to retrieve the rest part
(C, γC , stC , iC , jC) of the second element be-
low the top of the LIG-stack. This last case
gives the O(n6) worst case complexity. We
will then generate the item
[∇r,s−1, γB , st′′, k, j | C, γC , stC , iC , jC ].

(b) Head-step. If the item
[∇r,0, st, γ, i, j | A′, γ′, st′, i′, j′] exists then the
right-hand side of rule r has been completely
reduced and we will generate the item
[Ar,0, γ, st′′, i, j | A′, γ′, st′, i′, j′], where st′′ ∈
goto(st, Ar,0).

If the item [S, ε, stf , 0, n | −,−,−,−,−] is gener-
ated, where S is the axiom of the grammar, stf is the
final state of the LR automaton and n is the length
of the input string, then the input string have been
recognized.

CONCLUSION

We have shown how Logic Push-down Automata,
an operational mechanism developed for describing
resolution strategies in the domain of logic program-
ming, can be tuned for the analysis of Linear Indexed
Grammar, resulting in a general framework for the
construction of efficient LIG parsing algorithms in
dynamic programming. In this context, the LR al-
gorithm is extended to LIG, modifying the construc-
tion of the automaton in order to include contextual
information provided by the grammar. The tech-
nique can be generalized for other parsing algorithms
that use a compiled automaton during the run-time
phase, for example Left Corner (LC) parsing [9]. The
construction of states of the LC automaton must be
performed as is described in [9] except for the func-
tions first and follow, which must be substituted for
the respective functions introduced in this paper.
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