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Abstract. We propose a modular design of tabular parsing algorithms for tree-
adjoining languages. The modularity is made possible by a separation of the parsing
strategy from the mechanism of tabulation. The parsing strategy is expressed in
terms of the construction of a nondeterministic automaton from a grammar; three
distinct types of automaton will be discussed. The mechanism of tabulation leads to
the simulation of these nondeterministic automata in polynomial time, independent
of the parsing strategy.

The proposed application of this work is the design of efficient parsing algorithms
for tree-adjoining grammars and related formalisms.

Keywords: automata, linear indexed grammars, parsing, tabulation, tree-adjoining
grammars

1. Introduction

Design of correct and efficient parsing algorithms for tree-adjoining
grammars (TAGs) and equivalent formalisms such as linear indexed
grammars (LIGs) is a difficult task. A promising way of simplifying
this task is to apply well-known techniques from the realm of context-
free parsing and logical programming, which allow tabulation to be
seen separately from the parsing strategy: the actual parsing strategy
can be described by means of the construction of a (nondeterministic)
pushdown automaton or a set of Horn clauses, and tabulation is intro-
duced by means of some generic mechanism such as memoization. For
example, if we choose the parsing strategy to be LR parsing (Sippu and
Soisalon-Soininen, 1990) and construct a nondeterministic LR parser in
the form of a pushdown automaton, then we may construct a tabular

LR parser by applying the generic technique from (Lang, 1974) and
(Billot and Lang, 1989), which allows tabulation of any pushdown
automaton.

This modular way of constructing tabular algorithms has obvious
advantages over direct constructions, as exemplified for tabular LR
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parsing by (Tomita, 1986). For example, it allows more straightforward
proofs of correctness, is easier to understand and cheaper to implement.

The first modular approach to TAG parsing was proposed by (Lang,
1988b): a TAG is compiled into a logical pushdown automaton, which is
interpreted by means of dynamic programming. However, it turns out
that the chosen dynamic programming technique is too general for this
particular task, and therefore requires fine-tuning in order to obtain an
appropriate TAG parsing algorithm.

For further relevant work we refer to (Lang, 1994), who proposes to
separate the parsing problem into the intersection of the grammar with
an input and reduction of the resulting grammar.

The approach chosen in this paper relies on tabulation as originally
devised for context-free parsing. We use three types of recognizer for
tree-adjoining languages (TALs), which are notational variants of exist-
ing types such as (bottom-up) embedded pushdown automata (Schabes
and Vijay-Shanker, 1990), 2-SA (Becker, 1994) and bottom-up 2-SA
(de la Clergerie et al., 1998), SD-2SA (Villemonte de la Clergerie
and Alonso Pardo, 1998), and P2

lin-automata (Weir, 1994). The use
of our notation simplifies the task of adapting tabulation techniques
for context-free parsing to TALs.

We present the three types of recognizer as being closely related, and
we show that together they allow a wide spectrum of different parsing
strategies, including bottom-up, top-down and Earley strategies on two
distinct levels. We do this by specifying schemata to compile LIGs into
automata; altogether, 15 different schemata, representing 9 different
parsing strategies, are warranted by our definitions.

We present the tabulation algorithms for each of the three types
of automaton, and show that these algorithms are independent of
the parsing strategy that was used to produce an automaton from a
grammar.

The article may be outlined as follows: In Section 2 we recall the
definition of linear indexed grammars. In Section 3 we present three
types of recognizer, and Section 4 presents a number of ways to compile
grammars into such recognizers. Tabulation of the recognizers and the
correctness thereof are discussed in Sections 5 and 6. Section 7 presents
final conclusions.

2. Linear indexed grammars

Tree-adjoining languages are by definition generated by tree-adjoining
grammars (Joshi, 1987). The same class of languages is generated
by linear indexed grammars (Gazdar, 1987), by head grammars, and
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by combinatory categorial grammars (Vijay-Shanker and Weir, 1994).
This class is a strict subclass of mildly context-sensitive languages
(Joshi et al., 1991).

The present paper concentrates on LIGs as representations of tree-
adjoining languages, because they allow the simplest explanation of
the principles underlying tabulation for tree-adjoining languages. Our
results are however equally valid for any of the other representations
mentioned above. (Note in particular that it has been demonstrated
by (Vijay-Shanker and Weir, 1993b) that parse trees for a TAG can be
computed through the computation of a parse forest for a LIG.)

We define a linear indexed grammar as a 5-tuple (Σ,N , S, I,P),
where Σ is a finite set of terminals, N is a finite set of nonterminals,
S ∈ N is the start symbol , and I is a finite set of indices. We assume
the sets Σ, N and I are pairwise disjoint, and none of them contains
the symbols “[” or “]”. Further, P is a finite set of productions, each
being of one of the following forms:

− A[◦◦ η]→ α B[◦◦ η′] β, where A, B ∈ N , η, η′ ∈ I ∪ {ǫ} and either
η or η′ (or both) are ǫ, and α and β are lists of objects of the form
C[ ], where C ∈ N ; or

− A[ ]→ z, where A ∈ N , and z ∈ Σ ∪ {ǫ}.

(In this paper, the empty string is denoted by ǫ.)
We now define the binary relation⇒ on elements from (Σ∪N ∪I ∪

{[, ]})∗ as the least relation such that:

− v A[η′′η] w ⇒ v αB[η′′η′]β w, for any production A[◦◦η] →
α B[◦◦η′] β, any v, w ∈ (Σ ∪ N ∪ I ∪ {[, ]})∗, and any η′′ ∈ I∗;
and

− v A[ ]w ⇒ v z w, for any production A[ ] → z, and any v, w ∈
(Σ ∪N ∪ I ∪ {[, ]})∗.

The transitive and reflexive closure of ⇒ is denoted by ⇒∗. The lan-
guage generated by a LIG is now defined to be the set of all strings
w ∈ Σ∗ such that S[ ]⇒∗ w.

An example of a LIG is given by the following set of productions:

(1) S[◦◦] → A[ ] S[◦◦ p] D[ ] (5) A[ ] → a

(2) S[◦◦] → Q[◦◦] (6) B[ ] → b

(3) Q[◦◦ p] → B[ ] Q[◦◦] C[ ] (7) C[ ] → c

(4) Q[ ] → ǫ (8) D[ ] → d

The language it generates is {anbncndn | n ≥ 0}. A parse tree for the
string aabbccdd is given in Figure 1. The dotted arrows indicate how
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Figure 1. Parse tree for a LIG, with a spine along the dotted arrows.

lists of indices are passed from one node to the next. (The daughter
node to which a list of indices is passed is called the distinguished child

in (Vijay-Shanker and Weir, 1993).) A path along such dotted arrows
will be called a spine. In general, there may be several such spines in a
parse tree for a LIG.

In the running example, we may decide whether a given string of
a’s, b’s, c’s and d’s, in this order, is in the language if we verify that
the numbers of a’s, b’s, c’s and d’s are equal. This may be done by
dividing the problem into smaller tasks as follows. First we may verify
the following condition: 1) for each a there is a corresponding d and
vice versa, and for each b there is a corresponding c and vice versa. In
addition, we should verify either 2) for each a there is a corresponding
b and vice versa, or 2’) for each c there is a corresponding d and vice
versa. By virtue of the first condition, condition 2) ensures that also c’s
and d’s occur in equal numbers, and conversely, condition 2’) ensures
that also a’s and b’s occur in equal numbers. More precisely, 1) and 2)
together imply 2’), and 1) and 2’) together imply 2).

The first condition can be checked by a traditional pushdown au-
tomaton, which would push symbols on its stack for the a’s and b’s
it finds on the left side of the spine, and which would then pop the
corresponding c’s and d’s it may find on the right side of the spine. The
three types of automaton we will discuss in the sequel would all verify
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the second condition by means of a refinement of the pushdown model
used for verifying the first condition. In this refinement, lists of indices
are manipulated as stacks embedded within the main stack. (We will
mostly abstain from referring to lists of indices as stacks because of the
obvious confusion ensuing from this.)

Intuitively, the respective types of automaton differ in the choice
whether condition 2) is checked, on the left side of the spine, or whether
condition 2’) is checked, on the right side, or whether both 2) and 2’)
are checked. Although the latter case in this simple example entails re-
dundant computation, in general the corresponding type of automaton
allows parsing strategies that cannot be expressed by any of the two
other types.

3. Linear indexed automata

We discuss three types of recognizer that are equivalent to linear
indexed grammars and that are based on the well-known pushdown au-
tomata, which are equivalent to context-free grammars. The rationale
is that LIGs are nothing more than context-free grammars extended
with parameters in the form of lists of indices, and therefore pushdown
automata extended with the same kind of parameter suffice to built
recognizers for languages generated by LIGs. All types of automaton we
will discuss here can be seen as restricted forms of indexed pushdown
automata (Parchmann et al., 1980), which are themselves restricted
forms of logical pushdown automata (Lang, 1988a).

Each automaton of one of the types is a 7-tuple (Σ, ΓL, ΓR, I, J, I, T ),
where Σ is a finite set of terminals as before, ΓL and ΓR are two disjoin
finite sets of stack symbols, I ∈ ΓL is the initial stack symbol , J ∈ ΓR

is the final stack symbol , I is a finite set of indices as before, and T
is a finite set of transitions. We denote the set of all stack symbols by
Γ = ΓL ∪ ΓR.

A transition has the form α
z
7→ β, where z ∈ Σ∪{ǫ}, and α and β are

lists of objects of the form A[ ] or A[◦◦ η], where A ∈ Γ and η ∈ I ∪{ǫ}.
The three types of automaton differ in the allowable kinds of transition.

We define a configuration to be an element of (Γ× I∗)∗ ×Σ∗. Each
element from Γ×I∗ contains a stack symbol and a list of indices. A list
of such elements from Γ × I∗ represents the stack of the automaton.
The stack is constructed from left to right, i.e. the bottom element will
be represented as the leftmost element. An element from Σ∗ represents
the remaining suffix of the input v after a certain number of symbols
at the left end have been consumed.

mol.tex; 25/04/2000; 16:53; p.5



6 Miguel A. Alonso, M.-J. Nederhof & Eric de la Clergerie

We define the binary relation ⊢ between configurations as follows.
We have (αβ, zw) ⊢ (αγ, w) if and only if there exists some transition

β′ z
7→ γ′ in T and a list of indices η ∈ I∗ so that, by consistently

substituting all occurrences of ◦◦ in the transition by η, we create β

and γ out of β′ and γ′, respectively. The transitive and reflexive closure
of ⊢ is denoted by ⊢∗.

Some input v is recognized if (I[ ], v) ⊢∗ (J [ ], ǫ). The language ac-

cepted by an automaton M is defined to be the set of all v that are
recognized.

Conceptually, the first type of automaton we define manipulates the
indices both on the left and right sides of a spine. It has no left-to-right
or right-to-left bias, and, in this sense, is “universal”, as opposed to
two other types of automaton to be discussed later that are specialized
to one or the other direction.

Thus, a universal linear indexed automaton (U-LIA) is a 7-tuple as
explained above, and each transition should be of one of the following
forms:

− A[ ]
z
7→ B[ ], where A ∈ ΓL and B ∈ ΓR;

− A[◦◦ η]
ǫ
7→ B[ ] C[◦◦ η′], where A, C ∈ ΓL;

− B[ ] C[◦◦ η]
ǫ
7→ A[◦◦ η′], where C, A ∈ ΓR;

− A[◦◦]
ǫ
7→ B[◦◦] C[ ], where A, B ∈ Γd, for some d ∈ {L, R}, and

C ∈ ΓL; or

− B[◦◦] C[ ]
ǫ
7→ A[◦◦], where B, A ∈ Γd, for some d ∈ {L, R}, and

C ∈ ΓR,

and for transitions of the second and third forms, either η or η′ (or both)
must be the empty string. We further impose the following restriction:
For each pair of transitions of the form A1[X1]

ǫ
7→ B[Y1] C1[Z1] and

B[Y2] C2[Z2]
ǫ
7→ A2[X2] from T , one of these two conditions must

hold:

1. Y1 = Y2 = ǫ, |X1| = |X2|, and |Z1| = |Z2|, or

2. X1 = Y1 = Y2 = X2 = ◦◦, Z1 = Z2 = ǫ.

This restriction ensures that a pushing transition of the second type
can only be “coupled” to a popping transition of the third type (case
1 in the restriction), and similarly, that a transition of the fourth type
can only be coupled to a transition of the fifth type (case 2). More
precisely, if the stack height has increased by one element by means
of a certain type of pushing transition, then we know which type of
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popping transition will be used later on to decrease it again to the
former height.

Furthermore, the restriction in the first case ensures that the length
of the list of indices associated to symbol A1 is identical to that asso-
ciated to A2, by virtue of the same restriction imposed recursively on
C1 and C2, and due to the fact that the change of the length of the list
of indices caused by a choice of X1 and Z1 is the reverse of the change
caused by a choice of Z2 and X2, since |X1| = |X2| and |Z1| = |Z2|.

Note that here, as in the two other types of automaton to be dis-
cussed in the sequel, the stack symbols in ΓL allow lists of indices to be
carried to higher regions of the stack, whereas those in ΓR take lists of
indices to lower regions of the stack. Typically, when we build a U-LIA
from a LIG, this automaton will use symbols from ΓL at the left side
of a spine and symbols from ΓR at the right side.

For comparison with existing types of automaton, we introduce two
variants of U-LIA, called R-LIA and L-LIA. Conceptually, an R-LIA
manipulates lists of indices only on the right side of a spine, and an L-
LIA manipulates them only on the left side. On a technical level, either
the second type of transition of U-LIA is changed so that all lists of
indices are empty, which yields R-LIA, or the third type of transition
is changed in the same way, which yields L-LIA.

Thus, a right-oriented linear indexed automaton (R-LIA) is a 7-tuple
as before, where each transition is of one of the following forms:

− A[ ]
z
7→ B[ ], where A ∈ ΓL and B ∈ ΓR;

− A[ ]
ǫ
7→ B[ ] C[ ], where A, C ∈ ΓL;

− B[ ] C[◦◦ η]
ǫ
7→ A[◦◦ η′], where C, A ∈ ΓR;

− A[◦◦]
ǫ
7→ B[◦◦] C[ ], where A, B ∈ Γd, for some d ∈ {L, R}, and

C ∈ ΓL; or

− B[◦◦] C[ ]
ǫ
7→ A[◦◦], where B, A ∈ Γd, for some d ∈ {L, R}, and

C ∈ ΓR,

with the same restrictions as before on η and η′. We further impose the
following restriction: For each pair of transitions of the form A1[X1]

ǫ
7→

B[Y1] C1[Z1] and B[Y2] C2[Z2]
ǫ
7→ A2[X2] from T , one of these two

conditions must hold:

1. Y1 = Y2 = ǫ, or

2. X1 = Y1 = Y2 = X2 = ◦◦ and Z1 = Z2 = ǫ.
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This restriction on transitions is not essential, but reduces the num-
ber of cases to be considered for tabulation, in Section 5. Actually,
transitions of the second type are redundant (see (Nederhof, 1998) for
an alternative definition of R-LIA without them). Furthermore, the
distinction between ΓL and ΓR is unnecessary. The definition of R-LIA
in this paper however is chosen to stress the relation to U-LIA.

Note that, in an R-LIA, a (non-empty) list of indices cannot be
carried to higher regions of the stack. The converse holds for the dual
type of automaton: in an L-LIA, lists of indices cannot be carried to
lower regions.

Thus, a left-oriented linear indexed automaton (L-LIA) is a 7-tuple
as before, where each transition is of one of the following forms:

− A[ ]
z
7→ B[ ], where A ∈ ΓL and B ∈ ΓR;

− A[◦◦ η]
ǫ
7→ B[ ] C[◦◦ η′], where A, C ∈ ΓL;

− B[ ] C[ ]
ǫ
7→ A[ ], where C, A ∈ ΓR;

− A[◦◦]
ǫ
7→ B[◦◦] C[ ], where A, B ∈ Γd, for some d ∈ {L, R}, and

C ∈ ΓL; or

− B[◦◦] C[ ]
ǫ
7→ A[◦◦], where B, A ∈ Γd, for some d ∈ {L, R}, and

C ∈ ΓR,

with the same restrictions as before on η and η′, and the same
restriction on the “coupling” of pairs of transitions as for R-LIA.

U-LIA correspond to SD-2SA (Villemonte de la Clergerie and
Alonso Pardo, 1998), in which modes and marks have the same role
as our two disjoint set ΓL and ΓR and the restrictions on the set
of transitions; in both cases the motivation is to reduce the class of
languages accepted by the automaton models to precisely the class of
TALs. L-LIAs correspond to embedded pushdown automata (Schabes
and Vijay-Shanker, 1990) and 2-SA (Becker, 1994), whereas R-LIAs
correspond to bottom-up embedded pushdown automata (Schabes and
Vijay-Shanker, 1990) and bottom-up 2-SA (de la Clergerie et al., 1998).
The difference between our types of automaton and those presented
in existing literature is restricted to notation. However, the chosen
notation will simplify the development of tabulation techniques, to be
discussed in Section 5.
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Table I. Generic compilation schema

Rule Transition Production

[INIT] I[◦◦]
ǫ
7→ I[ ]

−→
S [◦◦]

[CALL] ∇r,s[◦◦]
ǫ
7→ ∇r,s[◦◦]

−−−−→
Ar,s+1[ ] Xr,s+1=Ar,s+1[]

[SCALL]∇r,s[−−→◦◦ η ]
ǫ
7→ ∇r,s[ ]

−−−−→
Ar,s+1[

−−−→
◦◦ η′ ] Xr,0=Ar,0[◦◦ η],Xr,s+1=Ar,s+1[◦◦ η′]

[SEL]
−−→
Ar,0[◦◦]

ǫ
7→
−−→
Ar,0[ ] ∇r,0[◦◦]

[PUB]
−−→
Ar,0[ ] ∇r,nr

[◦◦]
ǫ
7→
←−−
Ar,0[◦◦]

[RET] ∇r,s[◦◦]
←−−−−
Ar,s+1[ ]

ǫ
7→ ∇r,s+1[◦◦] Xr,s+1=Ar,s+1[]

[SRET] ∇r,s[ ]
←−−−−
Ar,s+1[

←−−−
◦◦ η′]

ǫ
7→ ∇r,s+1[←−−◦◦ η] Xr,0=Ar,0[◦◦ η],Xr,s+1=Ar,s+1[◦◦ η′]

[SCAN] ∇r,0[ ]
z
7→ ∇r,nr

[ ] Xr,1=z

[FINAL] I[ ]
←−
S [◦◦]

ǫ
7→ J [◦◦]

4. Compilation schemata for LIGs

A compilation schema translates the set of productions of a source
grammar into a set of transitions of a given class of automata. Ta-
ble I shows a generic compilation schema transforming a linear indexed
grammar into a set of transitions of a linear indexed automaton, where
−→
X and

←−
X denote the information propagated top-down and bottom-

up, respectively, with respect to X, which can be a nonterminal or
an expression pertaining to a list of indices. Each row presents one
compilation rule: the first column contains its name, the second column
is the resulting transition and the third contains conditions on the form
that productions must have to be considered by a rule.

For a production r with nonterminals in the right-hand side, we
define nr as the number of those nonterminals, and let Xr,0, . . . , Xnr

and Ar,0, . . . , Anr ∈ N to be such that production r can be written
as Xr,0 → Xr,1 · · ·Xr,nr , where each Xr,i (0 ≤ i ≤ nr) is of the form
Ar,i[] or Ar,i[◦◦ η]. For a production r without nonterminals in the right-
hand side, we define nr = 1 and let Xr,0, Xr,1 and Ar,0 be such that
production r can be written as Xr,0[] → Xr,1, where Xr,0 = Ar,0[]
and Xr,1 ∈ Σ ∪ {ǫ}. For each production, the automaton contains the
symbols ∇r,0, . . . ,∇r,nr . A symbol ∇r,j is used to indicate that the part
Xr,1 · · ·Xr,j of a production r has been recognized.

The function of the transitions produced by the compilation rules
is as follows. The [INIT] transition is used to start the computa-
tion; [CALL] transitions are used to call a nonterminal that does
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Table II. Parameters for the context-free strategy

Context-free strategy
−−−−→
Ar,s+1

←−−−−
Ar,s+1

Bottom-up � Ar,s+1

Top-down Ar,s+1 �

Earley Ar,s+1 Ar,s+1

Table III. Parameters for the indices strategy

R-LIA L-LIA U-LIA

indices strategy −−→◦◦ η ←−−◦◦ η −−→◦◦ η ←−−◦◦ η −−→◦◦ η ←−−◦◦ η

Bottom-up ǫ ◦◦ η ◦◦♦ ◦◦ η

Top-down ◦◦ η ǫ ◦◦ η ◦◦♦

Earley ◦◦ η ◦◦ η

not represent a distinguished child; [SCALL] (spine call) transitions
call a nonterminal representing a distinguished child; [SEL] transi-
tions select a production; [PUB] transitions finish the parsing of a
production; [RET] transitions continue the parsing process after a
non-distinguished child has been processed; [SRET] (spine return)
transitions continue the parsing process after a distinguished child has
been processed; [SCAN] transitions are used to match a terminal z in
a rule r of the form A[]→ z to a symbol from the input (or to merely
recognize the empty string when z = ǫ); and the [FINAL] transition
is used to finish the computation.

Parsing strategies may be specified using a pair of strategies control-
ling the flow of information, the first one (context-free strategy) dealing
with nonterminals, while the other (indices strategy) deals with the
indices. Table II shows the context-free strategies obtained by different
instantiations of

−→
A and

←−
A in the generic compilation schema above,

where � is a fresh stack symbol. If a nonterminal A is propagated
both top-down and bottom-up, we distinguish the two cases by the

stack symbols A and A, respectively. The different indices strategies
obtained by instantiating −−→◦◦ η and ←−−◦◦ η are shown in Table III, where
♦ is a fresh index.

All 9 combinations of the 3 context-free parsing strategies from Ta-
ble II and the 3 indices strategies from Table III can be implemented in
U-LIA, as this class of automata does not restrict the information that
can be propagated in either direction. The stack symbols are divided
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Table IV. Compilation schema for R-LIA

Rule Transition Production

[INIT] I[◦◦]
ǫ
7→ I[ ]

−→
S [◦◦]

[CALL] ∇r,s[◦◦]
ǫ
7→ ∇r,s[◦◦]

−−−−→
Ar,s+1[ ] Xr,s+1=Ar,s+1[]

[SCALL] ∇r,s[ ]
ǫ
7→ ∇r,s[ ]

−−−−→
Ar,s+1[ ] Xr,0=Ar,0[◦◦ η], Xr,s+1=Ar,s+1[◦◦ η′]

[SEL]
−−→
Ar,0[◦◦]

ǫ
7→
−−→
Ar,0[ ] ∇r,0[◦◦]

[PUB]
−−→
Ar,0[ ] ∇r,nr

[◦◦]
ǫ
7→
←−−
Ar,0[◦◦]

[RET] ∇r,s[◦◦]
←−−−−
Ar,s+1[ ]

ǫ
7→ ∇r,s+1[◦◦] Xr,s+1=Ar,s+1[]

[SRET] ∇r,s[ ]
←−−−−
Ar,s+1[◦◦ η′]

ǫ
7→ ∇r,s+1[◦◦ η] Xr,0=Ar,0[◦◦ η], Xr,s+1=Ar,s+1[◦◦ η′]

[SCAN] ∇r,0[ ]
z
7→ ∇r,nr

[ ] Xr,1=z

[FINAL] I[ ]
←−
S [◦◦]

ǫ
7→ J [◦◦]

in two sets as follows. For every nonterminal A, we have
−→
A ∈ ΓL and

←−
A ∈ ΓR, and for each production

Ar,0[◦◦ η]→ Ar,1[ ] · · ·Ar,i−1[ ] Ar,i[◦◦ η
′] Ar,i+1[ ] · · ·Ar,nr [ ]

we have ∇r,j ∈ ΓL for all j < i and ∇r,j ∈ ΓR for all j ≥ i. and for each
rule r of the form A[] → z we have ∇r,0 ∈ ΓL and ∇r,1 ∈ ΓR. It can
easily be shown that the requirements imposed on the set of transitions
for U-LIA in Section 3 are then satisfied.

In the case of a R-LIA, top-down propagation of indices is not
allowed, and therefore the generic compilation schema of Table I is
constrained to parsing strategies incorporating a bottom-up indices
strategy. With this limitation, we can compile a LIG into a R-LIA
according to Table IV, where ΓL and ΓR are as before. This generic
compilation schema still allows a choice of one of the three context-free
strategies.

Conversely, L-LIA does not allow bottom-up propagation of indices.
With this restriction, Table I can be specialized to L-LIA, with a top-
down indices strategy, resulting in Table V.

To illustrate the compilation schemata, we show the compilation
of the linear indexed grammar presented in Section 2 into a U-LIA,
by an Earley strategy both on the context-free level and on the level
of indices. Table VI presents the set of transitions. Table VII shows
a sequence of steps of the automaton in the recognition of the input
string abcd. The first column lists the transitions that were applied to
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12 Miguel A. Alonso, M.-J. Nederhof & Eric de la Clergerie

Table V. Compilation schema for L-LIA

Rule Transition Production

[INIT] I[◦◦]
ǫ
7→ I[ ]

−→
S [◦◦]

[CALL] ∇r,s[◦◦]
ǫ
7→ ∇r,s[◦◦]

−−−−→
Ar,s+1[ ] Xr,s+1=Ar,s+1[]

[SCALL] ∇r,s[◦◦ η]
ǫ
7→ ∇r,s[ ]

−−−−→
Ar,s+1[◦◦ η′] Xr,0=Ar,0[◦◦ η], Xr,s+1=Ar,s+1[◦◦ η′]

[SEL]
−−→
Ar,0[◦◦]

ǫ
7→
−−→
Ar,0[ ] ∇r,0[◦◦]

[PUB]
−−→
Ar,0[ ] ∇r,nr

[◦◦]
ǫ
7→
←−−
Ar,0[◦◦]

[RET] ∇r,s[◦◦]
←−−−−
Ar,s+1[ ]

ǫ
7→ ∇r,s+1[◦◦] Xr,s+1=Ar,s+1[]

[SRET] ∇r,s[ ]
←−−−−
Ar,s+1[ ]

ǫ
7→ ∇r,s+1[ ] Xr,0=Ar,0[◦◦ η], Xr,s+1=Ar,s+1[◦◦ η′]

[SCAN] ∇r,0[ ]
z
7→ ∇r,nr

[ ] Xr,1=z

[FINAL] I[ ]
←−
S [◦◦]

ǫ
7→ J [◦◦]

obtain the stacks in the second column, with the remainders of the
input string in the third column.

5. Tabulation

The automata we have defined in Section 3 manipulate stacks on two
levels, since the lists of indices act as stacks embedded within the main
stack. This observation allows us to apply, in a generalized way, a
tabulation technique originally devised for pushdown automata with
only one kind of stack, as presented in (Lang, 1974; Billot and Lang,
1989).

The essence of the tabulation algorithm is described as follows.
Given a linear indexed automaton and an input v = a1 · · · an ∈ Σ∗,
for some n ≥ 0, we construct a table U in polynomial time. From the
presence of a certain object in U , we can effectively decide whether the
input is a string in the language. The procedure can be extended so
that a representation of all parse trees, the parse forest, is produced as
a side-effect of the construction of U . In addition, the procedure can
be extended to handle feature structures, analogously to the extension
of tabular context-free parsing to handle logic terms (Villemonte de la
Clergerie and Barthélemy, 1998).

The objects in the table U will be called items, and indicate the
existence of certain computations of the automata that may be per-
formed between certain positions in the input v and that involve local
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Table VI. Transitions of the example U-LIA

Rule Transition

(0a) [INIT] I[◦◦] 7→ I[ ] S[◦◦]

(1a) [SEL] S[◦◦]
ǫ
7→ S[ ] ∇1,0[◦◦]

(1b) [CALL] ∇1,0[◦◦]
ǫ
7→ ∇1,0[◦◦] A[ ]

(1c) [RET] ∇1,0[◦◦] A[ ]
ǫ
7→ ∇1,1[◦◦]

(1d) [SCALL] ∇1,1[◦◦]
ǫ
7→ ∇1,1[ ] S[◦◦ p]

(1e) [SRET] ∇1,1[ ] S[◦◦ p]
ǫ
7→ ∇1,2[◦◦]

(1f) [CALL] ∇1,2[◦◦]
ǫ
7→ ∇1,2[◦◦] D[ ]

(1g) [RET] ∇1,2[◦◦] D[ ]
ǫ
7→ ∇1,3[◦◦]

(1h) [PUB] S[ ] ∇1,3[◦◦]
ǫ
7→ S[◦◦]

(2a) [SEL] S[◦◦]
ǫ
7→ S[ ] ∇2,0[◦◦]

(2b) [SCALL] ∇2,0[◦◦]
ǫ
7→ ∇2,0[ ] Q[◦◦]

(2c) [SRET] ∇2,0[ ] Q[◦◦]
ǫ
7→ ∇2,1[◦◦]

(2d) [PUB] S[ ] ∇2,1[◦◦]
ǫ
7→ S[◦◦]

(3a) [SEL] Q[◦◦]
ǫ
7→ Q[ ] ∇3,0[◦◦]

(3b) [CALL] ∇3,0[◦◦]
ǫ
7→ ∇3,0[◦◦] B[ ]

(3c) [RET] ∇3,0[◦◦] B[ ]
ǫ
7→ ∇3,1[◦◦]

(3d) [SCALL] ∇3,1[◦◦ p]
ǫ
7→ ∇3,1[ ] Q[◦◦]

(3e) [SRET] ∇3,1[ ] Q[◦◦]
ǫ
7→ ∇3,2[◦◦ p]

(3f) [CALL] ∇3,2[◦◦]
ǫ
7→ ∇3,2[◦◦] C[ ]

(3g) [RET] ∇3,2[◦◦] C[ ]
ǫ
7→ ∇3,3[◦◦]

(3h) [PUB] Q[ ] ∇3,3[◦◦]
ǫ
7→ Q[◦◦]

Rule Transition

(4a) [SEL] Q[◦◦]
ǫ
7→ Q[ ] ∇4,0[◦◦]

(4b) [SCAN] ∇4,0[ ]
ǫ
7→ ∇4,1[ ]

(4c) [PUB] Q[ ] ∇4,1[◦◦]
ǫ
7→ Q[◦◦]

(5a) [SEL] A[◦◦]
ǫ
7→ A[ ] ∇5,0[◦◦]

(5b) [SCAN] ∇5,0[ ]
a
7→ ∇5,1[ ]

(5c) [PUB] A[ ] ∇5,1[◦◦]
ǫ
7→ A[◦◦]

(6a) [SEL] B[◦◦]
ǫ
7→ B[ ] ∇6,0[◦◦]

(6b) [SCAN] ∇6,0[ ]
b
7→ ∇6,1[ ]

(6c) [PUB] B[ ] ∇6,1[◦◦]
ǫ
7→ B[◦◦]

(7a) [SEL] C[◦◦]
ǫ
7→ C[ ] ∇7,0[◦◦]

(7b) [SCAN] ∇7,0[ ]
c
7→ ∇7,1[ ]

(7c) [PUB] C[ ] ∇7,1[◦◦]
ǫ
7→ C[◦◦]

(8a) [SEL] D[◦◦]
ǫ
7→ D[ ] ∇8,0[◦◦]

(8b) [SCAN] ∇8,0[ ]
d
7→ ∇8,1[ ]

(8c) [PUB] D[ ] ∇8,1[◦◦]
ǫ
7→ D[◦◦]

(0b) [FINAL] I[ ] S[◦◦]
ǫ
7→ J [◦◦]

changes in the (main) stack and in the lists of indices. The form of
items is slightly different for the different types of automaton.

5.1. Tabulation for U-LIA

For the tabulation of U-LIA, we need two types of item. The simpler
of the two has the form [H, h | A, B, i, j | p], where H, A, B ∈ ΓL,
h, i, j ∈ {0, 1, . . . , n} and p ∈ I, and will be referred to as a call item.
We need this item to keep track of a list of indices while the main stack
grows in size and the list of indices is manipulated and carried to higher
regions of the stack; see Figure 2 for a pictorial representation.
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14 Miguel A. Alonso, M.-J. Nederhof & Eric de la Clergerie

Table VII. Configurations during the recognition of abcd

trans. stack string

I[ ] abcd

(0a) I[ ] S0,0[ ] abcd

(1a) I[ ] S0,0[ ] ∇1,0[ ] abcd

(1b) I[ ] S0,0[ ] ∇1,0[ ] A[ ] abcd

(5a) I[ ] S0,0[ ] ∇1,0[ ] A[ ] ∇5,0[ ] abcd

(5b) I[ ] S0,0[ ] ∇1,0[ ] A[ ] ∇5,1[ ] bcd

(5c) I[ ] S0,0[ ] ∇1,0[ ] A[ ] bcd

(1c) I[ ] S0,0[ ] ∇1,1[ ] bcd

(1d) I[ ] S0,0[ ] ∇1,1[ ] S[p] bcd

(2a) I[ ] S0,0[ ] ∇1,1[ ] S[ ] ∇2,0[p] bcd

(2b) I[ ] S0,0[ ] ∇1,1[ ] S[ ] ∇2,0[ ] Q[p] bcd

(3a) I[ ] S0,0[ ] ∇1,1[ ] S[ ] ∇2,0[ ] Q[ ] ∇3,0[p] bcd

(3b) I[ ] S0,0[ ] ∇1,1[ ] S[ ] ∇2,0[ ] Q[ ] ∇3,0[p] B[ ] bcd

(6a) I[ ] S0,0[ ] ∇1,1[ ] S[ ] ∇2,0[ ] Q[ ] ∇3,0[p] B[ ] ∇6,0[ ] bcd

(6b) I[ ] S0,0[ ] ∇1,1[ ] S[ ] ∇2,0[ ] Q[ ] ∇3,0[p] B[ ] ∇6,1[ ] cd

(6c) I[ ] S0,0[ ] ∇1,1[ ] S[ ] ∇2,0[ ] Q[ ] ∇3,0[p] B[ ] cd

(3c) I[ ] S0,0[ ] ∇1,1[ ] S[ ] ∇2,0[ ] Q[ ] ∇3,1[p] cd

(3d) I[ ] S0,0[ ] ∇1,1[ ] S[ ] ∇2,0[ ] Q[ ] ∇3,1[ ] Q[ ] cd

(4a) I[ ] S0,0[ ] ∇1,1[ ] S[ ] ∇2,0[ ] Q[ ] ∇3,1[ ] Q[ ] ∇4,0[ ] cd

(4b) I[ ] S0,0[ ] ∇1,1[ ] S[ ] ∇2,0[ ] Q[ ] ∇3,1[ ] Q[ ] ∇4,1[ ] cd

(4c) I[ ] S0,0[ ] ∇1,1[ ] S[ ] ∇2,0[ ] Q[ ] ∇3,1[ ] Q[ ] cd

(3e) I[ ] S0,0[ ] ∇1,1[ ] S[ ] ∇2,0[ ] Q[ ] ∇3,2[p] cd

(3f) I[ ] S0,0[ ] ∇1,1[ ] S[ ] ∇2,0[ ] Q[ ] ∇3,2[p] C[ ] cd

(7a) I[ ] S0,0[ ] ∇1,1[ ] S[ ] ∇2,0[ ] Q[ ] ∇3,2[p] C[ ] ∇7,0[ ] cd

(7b) I[ ] S0,0[ ] ∇1,1[ ] S[ ] ∇2,0[ ] Q[ ] ∇3,2[p] C[ ] ∇7,1[ ] d

(7c) I[ ] S0,0[ ] ∇1,1[ ] S[ ] ∇2,0[ ] Q[ ] ∇3,2[p] C[ ] d

(3g) I[ ] S0,0[ ] ∇1,1[ ] S[ ] ∇2,0[ ] Q[ ] ∇3,3[p] d

(3h) I[ ] S0,0[ ] ∇1,1[ ] S[ ] ∇2,0[ ] Q[p] d

(2c) I[ ] S0,0[ ] ∇1,1[ ] S[ ] ∇2,1[p] d

(2d) I[ ] S0,0[ ] ∇1,1[ ] S[p] d

(1e) I[ ] S0,0[ ] ∇1,2[ ] d

(1f) I[ ] S0,0[ ] ∇1,2[ ] D[ ] d

(8a) I[ ] S0,0[ ] ∇1,2[ ] D[ ] ∇8,0[ ] d

(8b) I[ ] S0,0[ ] ∇1,2[ ] D[ ] ∇8,1[ ]

(8c) I[ ] S0,0[ ] ∇1,2[ ] D[ ]

(1g) I[ ] S0,0[ ] ∇1,3[ ]

(1h) I[ ] S0,0[ ]

(0b) J [ ]
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Figure 2. Meaning of an item [H, h | A, B, i, j | p]. Time tk is when symbol ak is
read from the input.

Formally, an item [H, h | A, B, i, j | p] represents the existence of a
sequence of steps of the automaton of the form

(0) (I[ ], a0 · · · an) ⊢∗

(1) (w H[η], ah+1 · · · an) ⊢
(2) (w H ′[ ] G[η p], ah+1 · · · an) ⊢∗

(3) (w H ′[ ] w′ A[η p], ai+1 · · · an) ⊢∗

(4) (w H ′[ ] w′ B[η p], aj+1 · · · an)

such that nowhere between configurations (3) and (4) does the stack
shrink to access stack symbols in w′, and all occurrences of η denote
the same list, in the sense that it is passed on unaffected through this
sequence of steps. It is allowed that indices are pushed on η and then
popped again, but it is not allowed that elements from η are popped
and then other elements are pushed to accidentally result in the same
list. Also, p is not popped between (3) and (4).

In the case that A and B are connected to the empty list of indices,
we let p, H, h be the dummy index ♦, dummy stack symbol �, and
dummy input position −, respectively.

The second type of item is of the form [H, h | A, B, i, j | p, q |
E, F, l, m], where H, A, E ∈ ΓL and B, F ∈ ΓR. It is used when the
stack shrinks again, as represented in Figure 3. Formally, such an item
indicates the existence of a sequence of steps of the automaton of the
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Figure 3. Meaning of an item [H, h | A, B, i, j | p, q | E, F, l, m].

form

(0) (I[ ], a0 · · · an) ⊢∗

(1) (w H[η], ah+1 · · · an) ⊢
(2) (w H ′[ ] G[η p], ah+1 · · · an) ⊢∗

(3) (w H ′[ ] w′ A[η p], ai+1 · · · an) ⊢∗

(4) (w H ′[ ] w′ w′′ E′[η p], al+1 · · · an) ⊢
(5) (w H ′[ ] w′ w′′ D[ ] E[η], al+1 · · · an) ⊢∗

(6) (w H ′[ ] w′ w′′ D[ ] F [µ], am+1 · · · an) ⊢
(7) (w H ′[ ] w′ w′′ F ′[µ q], am+1 · · · an) ⊢∗

(8) (w H ′[ ] w′ B[µ q], aj+1 · · · an)

such that nowhere between configurations (3) and (8) does the stack
shrink to access stack symbols in w′, and nowhere between configura-
tions (5) and (6) does the stack shrink to access D[ ], all occurrences
of η denote the same list (in the same sense as before) and p is not
popped between (3) and (4), and all occurrence of µ are the same list
and q is not popped between (7) and (8).

The constraints imposed on U-LIA in Section 3 ensure that the
manipulations affecting the length of the list of indices while the (main)
stack shrinks are the reverse of the changes that took place while the
stack was growing. This means that η and µ must have equal length.
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How items are derived from other items will be specified by means
of inference rules. Each such rule consists of a list of antecedents,
a consequent and a list of side conditions. The antecedents and the
consequent are items. The side conditions refer to transitions of the
automaton and to terminals from the input string. We omit further
discussion of the meaning of inference rules and assume the reader is
familiar with deductive parsing (Shieber et al., 1995).

The first rule has no antecedents and no side conditions. It
corresponds to the initial configuration of the automaton.

[�,− | I, I, 0, 0 | ♦]

The following two rules correspond to the creation of a fresh list of
indices. In terms of parse trees, these steps typically correspond to the
beginning of a new spine; in the first rule, this spine “branches off”
from another spine at the left, in the second rule, it branches off at the
right.

[H, h | D, A, i, j | p]

[�,− | C, C, j, j | ♦]

{

A[◦◦]
ǫ
7→ B[◦◦] C[ ]

[H, h | D, A, i, j | p, q | E, F, l, m]

[�,− | C, C, j, j | ♦]

{

A[◦◦]
ǫ
7→ B[◦◦] C[ ]

The transitions that increase the height of the stack, while lists of
indices are manipulated and carried to higher regions of the stack, are
tabulated by the following rules.

[H, h | D, A, i, j | p]

[H, h | C, C, j, j | p]

{

A[◦◦]
ǫ
7→ B[ ] C[◦◦]

[H, h | D, A, i, j | p]

[A, j | C, C, j, j | q]

{

A[◦◦]
ǫ
7→ B[ ] C[◦◦ q]

[F, m | E, H, k, h | q]
[H, h | D, A, i, j | p]

[F, m | C, C, j, j | q]

{

A[◦◦ p]
ǫ
7→ B[ ] C[◦◦]

When a certain list of indices has been carried to the highest region
in the stack that it will occupy, we stop using call items and switch to
return items. Since at this point the list of indices is empty, both items
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contain many dummy symbols. In terms of parse trees, this rule is used
at the lowest nodes in a spine:

[�,− | D, A, i, j | ♦]

[�,− | D, B, i, k | ♦, ♦ | �, �,−,−]







A[ ]
z
7→ B[ ]

(z = ǫ ∧ k = j) ∨
(z = aj+1 ∧ k = j + 1)

While the stack shrinks, the manipulation of the list of indices
is matched to the corresponding manipulation that occurred while
the stack was still growing. We distinguish between three kinds of
manipulation of indices, leading to the following three rules.

[H, h | D, A1, i, j | p]
[H, h | C1, C2, j, k | p, q | E, F, l, m]

[H, h | D, A2, i, k | p, q | E, F, l, m]

{

A1[◦◦]
ǫ
7→ B[ ] C1[◦◦]

B[ ] C2[◦◦]
ǫ
7→ A2[◦◦]

[H, h | D, A1, i, j | p′]
[H, h | E, F, l, m | p′, q′ | E′, F ′, l′, m′]
[A1, j | C1, C2, j, k | p, q | E, F, l, m]

[H, h | D, A2, i, k | p′, q′ | E′, F ′, l′, m′]

{

A1[◦◦]
ǫ
7→ B[ ] C1[◦◦ p]

B[ ] C2[◦◦ q]
ǫ
7→ A2[◦◦]

[H ′, h′ | D′, H, h′′, h | p′]
[H, h | D, A1, i, j | p]
[H ′, h′ | C1, C2, j, k | p′, q′ | E, F, l, m]

[H, h | D, A2, i, k | p, q | C1, C2, j, k]

{

A1[◦◦ p]
ǫ
7→ B[ ] C1[◦◦]

B[ ] C2[◦◦]
ǫ
7→ A2[◦◦ q]

In terms of the parse tree, when a spine has been completely treated,
then we resume the treatment of the older spine from which it had
branched off. The newer spine may have branched off at the left or at
the right of the older spine, and these respective cases are treated by
the following two rules.

[H, h | D, A1, i, j | p]
[�,− | C1, C2, j, k | ♦, ♦ | �, �,−,−]

[H, h | D, A2, i, k | p]

{

A1[◦◦]
ǫ
7→ B[◦◦] C1[ ]

B[◦◦] C2[ ]
ǫ
7→ A2[◦◦]

[H, h | D, A1, i, j | p, q | E, F, l, m]
[�,− | C1, C2, j, k | ♦, ♦ | �, �,−,−]

[H, h | D, A2, i, k | p, q | E, F, l, m]

{

A1[◦◦]
ǫ
7→ B[◦◦] C1[ ]

B[◦◦] C2[ ]
ǫ
7→ A2[◦◦]

After applying the inference rules until no more new
items can be added to table U , the existence of an item
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[�,− | I, J, 0, n | ♦, ♦ | �, �,−,−] in U indicates that the input
is recognized, i.e. that the string a1 · · · an is in the language.

Table VIII shows the tabular simulation of the U-LIA from Table VI
for the input string abcd. Each item is assigned a number. The third
column refers to such a number where the item is used in the antecedent
of an inference rule deriving another item. We have omitted items that
can be derived but do not contribute to recognition of the input. By
comparing Tables VII and VIII we can see that every configuration in
the former corresponds to an item in the latter.

5.2. Tabulation for L-LIA

Tabulation for L-LIA is very similar to that for U-LIA above. The differ-
ence in behaviour of such automata is that while the stack shrinks with
symbols from ΓR on top, the list of indices is empty. This means that
return items can be somewhat simplified by omitting the second index,
so that we obtain items of the form [H, h | A, B, i, j | p | E, F, l, m].
The same number of inference rules is needed as before, but they can
be slightly simplified with respect to U-LIA.

5.3. Tabulation for R-LIA

Although R-LIA is the dual of L-LIA, tabulation for R-LIA is much
simpler than that for L-LIA or U-LIA. This paradox is resolved by the
observation that all automata are assumed to read from left to right,
and the tabular simulation of the automata adheres to the same order,
which creates the asymmetry between right-oriented automata simu-
lated left-to-right and left-oriented automata simulated left-to-right as
well.

Tabulation of R-LIA was defined before in (Nederhof, 1998), gener-
alizing the tabular, LR-like algorithm from (Alonso Pardo et al., 1997).
The first observation leading to a simplification with respect to U-LIA is
that the lists of indices are empty while the stack grows, which means
that the call items are of the form [�,− | A, B, i, j | ♦], which we
simplify to [A, B, i, j | ♦]. Similarly, we may omit the components H, h

and p from return items, so that we obtain [A, B, i, j | q | E, F, l, m]. By
extending the meaning of return items to include the case A, B ∈ ΓL,
we may write call items as [A, B, i, j | ♦ | �, �,−,−] so that we obtain
a uniform structure for both kinds of item. The consequence is that
now only one rule is needed for a transition A[◦◦]

ǫ
7→ B[◦◦] C[ ], whereas

we needed two for U-LIA, and only one rule is needed for a pair of
transitions A1[◦◦]

ǫ
7→ B[◦◦] C1[ ] and B[◦◦] C2[ ]

ǫ
7→ A2[◦◦], where we

needed two inference rules for U-LIA. The other inference rules from
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Table VIII. Items generated during the recognition of abcd

Nr. Item in U Derived from

0 [�,− | I, I, 0, 0 | ♦]

1 [�,− | S, S, 0, 0 | ♦] (0a) and 0

2 [�,− | ∇1,0,∇1,0, 0, 0 | ♦] (1a) and 1

3 [�,− | A, A, 0, 0 | ♦] (1b) and 2

4 [�,− | ∇5,0,∇5,0, 0, 0 | ♦] (5a) and 3

5 [�,− | ∇5,1,∇5,1, 0, 1 | ♦, ♦ | �, �,−,−] (5b) and 4

6 [�,− | A, A, 0, 1 | ♦, ♦ | �, �,−,−] (5a), (5c), 3 and 5

7 [�,− | ∇1,0,∇1,1, 0, 1 | ♦] (1b), (1c), 2 and 6

8 [∇1,1, 1 | S, S, 1, 1 | p] (1d) and 7

9 [∇1,1, 1 | ∇2,0,∇2,0, 1, 1 | p] (2a) and 8

10 [∇1,1, 1 | Q, Q, 1, 1 | p] (2b) and 9

11 [∇1,1, 1 | ∇3,0,∇3,0, 1, 1 | p] (3a) and 10

12 [�,− | B, B, 1, 1 | ♦] (3b) and 11

13 [�,− | ∇6,0,∇6,0, 1, 1 | ♦] (6a) and 12

14 [�,− | ∇6,0,∇6,1, 1, 2 | ♦, ♦ | �, �,−,−] (6b) and 13

15 [�,− | B, B, 1, 2 | ♦, ♦ | �, �,−,−] (6a), (6c), 12 and 14

16 [∇1,1, 1 | ∇3,0,∇3,1, 1, 2 | p] (3b), (3c), 11 and 15

17 [�,− | Q, Q, 2, 2 | ♦] (3d) and 16

18 [�,− | ∇4,0,∇4,0, 2, 2 | ♦] (4a) and 17

19 [�,− | ∇4,0,∇4,1, 2, 2 | ♦, ♦ | �, �,−,−] (4b) and 18

20 [�,− | Q, Q, 2, 2 | ♦, ♦ | �, �,−,−] (4a), (4c), 17 and 19

21 [∇1,1, 1 | ∇3,0,∇3,2, 1, 2 | p, p | Q, Q, 2, 2] (3d), (3e), 7, 16 and 20

22 [�,− | C, C, 2, 2 | ♦] (3f) and 21

23 [�,− | ∇7,0,∇7,0, 2, 2 | ♦] (7a) and 22

24 [�,− | ∇7,0,∇7,1, 2, 3 | ♦] (7b) and 23

25 [�,− | C, C, 2, 3 | ♦] (7a), (7c), 22 and 24

26 [∇1,1, 1 | ∇3,0,∇3,3, 1, 3 | p, p | Q, Q, 2, 2] (3f), (3g), 21 and 25

27 [∇1,1, 1 | Q, Q, 1, 3 | p, p | Q, Q, 2, 2] (3a), (3h), 10 and 26

28 [∇1,1, 1 | ∇2,0,∇2,1, 1, 3 | p, p | Q, Q, 2, 2] (2b), (2c), 9 and 27

29 [∇1,1, 1 | s, S, 1, 3 | p, p | Q, Q, 2, 2] (2a), (2d), 8 and 28

30 [�,− | ∇1,0,∇1,2, 0, 3 | ♦, ♦ | �, �,−,−] (1d), (1e), 7, 20 and 29

31 [�,− | D, D, 3, 3 | ♦] (1f) and 30

32 [�,− | ∇8,0,∇8,0, 3, 3 | ♦] (8a) and 31

33 [�,− | ∇8,0,∇8,1, 3, 4 | ♦] (8b) and 32

34 [�,− | D, D, 3, 4 | ♦] (8a), (8c), 31 and 33

35 [�,− | ∇1,0,∇1,3, 0, 4 | ♦, ♦ | �, �,−,−] (1f), (1g), 30 and 34

36 [�,− | S, S, 0, 4 | ♦, ♦ | �, �,−,−] (1a), (1h), 1 and 35

37 [�,− | I, J, 0, 0 | ♦, ♦ | �, �,−,−] (0a), (0b), 0 and 36
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U-LIA can also be much simplified when they are adapted to R-LIA,
especially where they involve call items.

6. Correctness

We sketch the proof of a number of properties of the tabulation of U-
LIA. First, we can show that a string is recognized by the tabular
algorithm if and only if it is recognized by the automaton. In one
direction of the proof, we can show that if items in the antecedents
of inference rules satisfy the characterization of items (see Figures 2
and 3 and the accompanying running text), then also the items in
the consequents satisfy the characterization. It then follows that the
presence of an item [�,− | I, J, 0, n | ♦, ♦ | �, �,−,−] in U implies
the recognition of the input by the automaton by means of a sequence
(I[ ], a1 · · · an) ⊢∗ (J [ ], ǫ).

For the other direction of the proof, we can show that any se-
quence of steps of the automaton that can be represented by an
item can be broken up into smaller sequences of steps that can also
be represented by items, in such a way that conceptually some in-
ference rule is applied backwards, creating a number of antecedents
from the consequent. Formally, this is a proof by induction on the
length of sequences of steps, which is tedious but straightforward, and
shows that recognition of input by the automaton, via a sequence
of steps of the form (I[ ], a1 · · · an) ⊢∗ (J [ ], ǫ), can be mimicked by
application of inference rules, which eventually results in the item
[�,− | I, J, 0, n | ♦, ♦ | �, �,−,−] being added to U .

The soundness and completeness of items as established in the
proofs outlined above also lead to a proof of a second property of
tabulation: the j-th input symbol is read in a sequence of steps
(I[ ], a1 · · · an) ⊢∗ (w, ajaj+1 · · · an) ⊢ (w′, aj+1 · · · an) of the automaton
if and only if some item of the form [H, h | A, B, i, j | p] or of the
form [H, h | A, B, i, j | p, q | E, F, l, m] is added to the table U by the
tabular algorithm. This implies that if the input is not in the language,
the automaton and the tabulated simulation of the automaton consult
an identical prefix of the input, or informally, they both get stuck
at the same input position. A consequence is that if the automaton
satisfies the correct-prefix property , then this property is preserved in
the tabulation.1

The above can also be proved to hold for L-LIA and R-LIA. In
general however, the preservation of the correct-prefix property for R-
LIAs by tabulation is irrelevant, since usually R-LIAs constructed from
LIGs, e.g. following the compilation schemata from Section 4, do not
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satisfy the correct-prefix property. An informal explanation based on
the example from Figure 1 is that if the string contains unequal num-
bers of a’s and b’s, then this is detected only indirectly, in the second
half of the string, by matching a’s and b’s to d’s and c’s, respectively,
and by comparing the numbers of c’s and d’s; recall that an R-LIA
manipulates indices at the right side of a spine. Therefore, a longer
prefix of the input must be consulted by the R-LIA than is strictly
necessary to detect that the input cannot be in the language.

Generally, U-LIAs and L-LIAs do satisfy the correct-prefix property
if they are constructed from a LIG by means of a top-down or Earley
context-free strategy, and a top-down or Earley indices strategy, except
if the grammar warrants a derivation S ⇒∗ v A[η] w, for some A ∈
N , η ∈ I∗, v, w ∈ (Σ ∪ N ∪ I ∪ {[, ]})∗, but no derivation A[η] ⇒∗ x

for any x ∈ Σ∗. Any grammar can however be transformed into one
that generates the same language, but for which this problem does not
occur (Nederhof, 1999b, Appendix A).

We can further show that the tabulation for U-LIA, L-LIA and R-
LIA can be implemented to have a time complexity of O(n6). This
requires breaking up some inference rules, in the same way as this time
complexity was achieved in (Nederhof, 1999a), for a parsing algorithm
for TALs with the correct-prefix property.

7. Conclusion

We have proposed a modular design of tabular parsing algorithms
for a class of languages represented by, amongst others, tree-adjoining
grammars and linear indexed grammars. This modular design relies on
a separation of the parsing strategy from the mechanism of tabulation.
The parsing strategy is expressed in terms of the construction of U-
LIAs, L-LIAs or R-LIAs from linear indexed grammars. We have shown
that these three types of automaton together allow a wide range of
different parsing strategies.

Although each parsing strategy can only be realized using one of
the three types of automaton, the mechanism of tabulation for such
a type of automaton is independent of the chosen parsing strategy.
This modularity allows simple proofs of correctness and straightfor-
ward implementation of tabular parsing algorithms for tree-adjoining
languages.
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Notes

1 We say a recognizer for language L satisfies the correct-prefix property if it does
not read past the position of the first syntax error in the input. This position can
be defined as the rightmost symbol of the shortest prefix of the input that cannot
be extended to be a correct sentence in the language L. In formal notation, this
prefix for a given erroneous input v /∈ L is defined as the string wa, where v = wax,
for some x, such that wy ∈ L, for some y, but waz /∈ L, for any z. The occurrence
of a in v indicates the error position. The term “correct-prefix property” is used in
(Sippu and Soisalon-Soininen, 1988), but in other publications we also find “prefix
property”, “valid prefix property” or “viable prefix property”.
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