
Dynamic Programming of Partial Parses

David Cabrero Souto
�

, Jesús Vilares Ferro
�

, and Manuel Vilares Ferro
�

�

Universidad de A Coruña
Departamento de Computación

Campus de Elviña s/n, 15071 A Coruña, Spain
vilares@dc.fi.udc.es, jvilares@mail2.udc.es

�

Universidad de Vigo
Area de Ciencias de la Computación e Inteligencia Artificial

Edificio Politécnico
32004 Ourense, Spain
cabrero@uvigo.es

Abstract. The last years have seen a renewal of interest in applying dynamic
programming to natural language processing. The main advantage is the com-
pactness of the representations, which is turning this paradigm into a common
way of dealing with highly redundant computations related to phenomena such
as non-determinism.
Natural language parsing adds another challenge, since grammatical information
is often insufficient. We describe an extension of parsing techniques for partial
parsing in dynamic programming. Our aim is to obtain as much information as
possible, that is incomplete parses, while preserving compactness of the repre-
sentations.
Keywords: Partial parsing, dynamic programming, deductive parsing scheme.

1 Introduction

Highly redundant computations are usual when we deal with complex grammar for-
malisms. This claim has been used to motivate parsing techniques that encode trees and
computations in some kind of shared structure. A major area of application is natural
language processing (NLP), where dynamic programming has been known for a long
time [3]. In particular, natural language parsing comes across the problem of partial
information. This lack of information is due to the errors in former stages of analysis
and the fact that practical grammars and lexicons are incomplete and even incorrect.

We refer to standard parsing as complete parsing, reserving the term partial parsing
for all the possible subcomputations of a complete parsing. Our aim is to obtain every
correct partial parse even when there is no complete parse.

Previous studies have illustrated the practical suitability of dynamic programming
for dealing with context-free grammars (CFGs) [11], middle-sensitive grammars [1]
and definite clause grammars [10]. Our goal is to show the validity of these results for
partial parsing. We approach the problem by extending models from complete to partial
parsing while preserving the related benefits of dynamic programming.

Often, these techniques improve performance by pruning the search space by means
of the inclusion of static control. Unfortunately, while dealing with partial parses, the

static control will prune some analysis branches that are useless in a complete parse, but
which are necessary in some partial parses. To overcome this problem we deal with the
starting and finishing points of a partial parse like any other source of non determinism.
The static control is modified to take them into account.

In contrast to previous works in the domain of partial parsing, our proposal intro-
duces a parsing framework based on the notion of deduction scheme [7]. This clearly
differentiates our work from approaches oriented to particular parsing architectures [5,
9, 6], and provides a uniform description and operational formalism to validate the per-
formance in each case.

In Section 2 of this paper we introduce a uniform parsing framework, describing
different schema for both complete and partial parsing. These schema include classic
top-down and bottom-up approaches, but also mixed strategies with dynamic and static
control. Section 3 gives a survey of the dynamic interpretation process. In Section 4
we compare in practice the schema introduced, with preliminary experimental results.
Finally, Section 5 is a conclusion about the work presented.

a b a b a ba

Fig. 1. Partial parses of aababab

2 On partial parsing

In order to obtain a practical definition of partial parsing, we must relax the conditions
we apply to the standard concept. The notion of grammar includes an initial symbol
or axiom,

�
, leading to the parse of all sentences of the language generated by the

grammar. Instead of this, we use a set of initial symbols, � , following the entry point
concept [4], a classic auxiliary structure in the abstract syntax that enables the parsing
of program fragments. We introduce a CFG as a 4-tuple �������
	��
	���	���� , where �
is a finite set of non-terminal categories, � is a finite alphabet and � is a finite set of
context-free rules. As mentioned, � is the set of initial symbols leading to complete
or partial parses. We assume ������� to be the language generated by � , and we try to
determine the partial parses of an input string � ����� � , of length � .

In particular, we discuss the extension to the partial case of classical context-free
parsing methods including pure top-down and pure bottom-up architectures, Earley’s
algorithm [3] as representative of a mixed-strategy with dynamic prediction and a LR(1)
proposal as representative of a mixed-strategy with static prediction.

For the sake of a better exposition we have chosen a common descriptive frame-
work, the deductive parsing scheme [7], close to the parsing schemata proposal [8].

The deduction system consists of a set of items representing parsing states and a set of
deduction steps performing over those items.

As our running example we shall consider the language, � , of palindromes over the
alphabet � ����� 	���� , generated by the grammar that follows:

Palin �	� Palin �
�
Palin �	� Palin � Palin ��� Palin �

Observe, for example, that although the input string is �����
���
������ � , it contains sub-
strings that do belong to the language, as is the case of the trees in Fig. 1.

2.1 A top-down scheme

The scheme for top-down complete parsing is shown in Fig. 2. We have a single axiom
that predicts the analysis of the initial symbol, and a single goal that represents the parse
of the complete input sentence. Now we will make a short description of the scheme.
Each item has the form: ����� 	�� 	 ��� ��� , stating that we have constructed the derivation���� � ��� � � �"!#� , and � is the parse tree. The dot is a reference to position � in the input
string. The parse has reached this position and has to continue from there. Soundness
and correctness are proved in [7].

Item form $ %'&)(+*�(�,.-
Invariant /10243 �65�575 398 &
Axioms $ %�/:(<;=(
>@?+-
Goals $ %A(CBD(E,F-
Scanning

$ % 3 8�G � &9(@*�(�, � tree >�HI(KJL% 3 8MG � &:?+, � -$ %'&)(+*"NPO#(K, � tree >�HQ(�J 3 8�G � %)&:?+, � ?+-
Prediction

$ %#HR&)(+*�(K, � tree >�ST(�JU%�HR&V, � ?+-$ %'W�&9(+*�(K, � tree >�SX(KJ tree >�HI(<%
WV?+&:?+, � -LY[Z \X] H_^4Wa`cbed

Fig. 2. Top-down schema

The parse starts at position 0 and symbol
�

, yielding axiom item � � � 	Mf 	 ���K� . We then
apply the following deduction steps:

Scanning: It moves the point one position forward. This rule is obtained after observ-
ing that items ��� �g!Mh � � 	E� 	 �@����� and ����� 	��jilk 	 �����"!Mh � ��� represent the same state
in the derivation

� �� � �m� �#� �"!Mh � � .
Prediction: It takes the next non terminal symbol to parse (n) and rewrites it as the

right hand side of a matching rule (oApLq=nr�ts). It predicts the use of the rule oAp .

Item form $ JD%A(+*�(K,.-
Invariant J 398�G �657575 3�� 0243 � 57575 3��
Axioms $ %A(<;=('>@?+-
Goals $ /D% (CB (K,.-
Scanning

$ JD% (+*�(K,.-$ J 3 8�G � % (+*FNPO#(K, 3 8MG � -
Completion

$ J6WV%A(+*�(E, � , � -$ J:H %A(+*�(E, � tree >�HI(E, � ?+-
�
Z \T] H ^1Wa`ab (� W ����� , �

� �
Fig. 3. Bottom-up schema

Finally, � � ������� iff the goal item � � 	�� 	 �@����� is generated. This means that
� ��

� � � �#� � � , and � is the parse tree.
In order to adapt this scheme for partial parsing, we consider a modified item form,

adding a reference to the starting position of the potentially partial parse. A partial parse
covers any piece of the input string. So, instead of an axiom item starting at position 0,
we have now the following set of axioms:

Axioms ����� ��� 	
	 	
	�	 ���K� 	�� � � 	"f
��	�� ���
The deductive steps remain as before, but keeping the starting point. As a partial parse
may cover any piece of the input string, it may start at any position, and it may finish at
any position after the starting point. As consequence, we have that:

Goals � � ��� 	
	 	�� 	<�R� 	
� � ��	Ff���	�� ��� ���
We shall generate ���
� axioms, where � ������� and � is the input length. For each
of those axioms we will generate a new analysis branch, and, consequently, new items.
In our running grammar, for an input string ��� �'� and a complete top-down parse, we
need to create � f items, instead of ��� in the partial case.

2.2 A bottom-up scheme

We include in Fig. 3 the scheme for bottom-up complete parsing. Items are now of the
form � � � 	E� 	 �����K� , stating that � �"!Mh ��� �#� � � �� � �m�#� � � � , � being the parse tree. The
dot indicates that � reduces the input substring till position � .

Bottom-up parsing starts at position f before reducing any piece of the input string.
Therefore the axiom is � � 	Mf 	 ���K� . The deduction steps are:

Scanning: It shifts the next terminal and moves the dot one position forward.
Completion: It reduces the � symbols immediately after the dot. Those symbols must

match the right hand side of rule oAp .

As usual, � � ������� iff the goal item � � � 	�� 	 �����K� is generated. This means that
� ��

� � � �#� � � , where � is the parse tree.
In order to deal with partial parsing, items are extended with a reference to the

starting position. Regarding axioms, a partial parse may start at any position in the
input string. So, we have that:

Axioms ����� � 	 	�	 	�	 ����� 	�f � 	�� ���
In deduction steps we keep the starting position. Again, the goal item is replaced by a
set of items. To construct this set we must have taken into account that a partial parse
may finish at any symbol of � , at any input position. So, we have that:

Goals � � � � � 	
	�	E� 	<�R� 	
� � � 	.f � 	�� � � ���
As far as efficiency issues are concerned, the main difference with complete parsing is
the set of axioms. The size of this set is � , � being the length of the input. Retaking the
former example, this yields � � items for complete parsing and ��� for partial parsing.

Item form $ SP^ Jc%)&9(��K(+*�(�,.- , S ^4J6&�`cb
Invariant /10243 � 57575 3 8 &

J 398�G �657575 3�� 0243 � 57575 3��
Axioms $ /��V^ %#/ (K;=(<;=(7>@?+-
Goals $ / � ^ /D% (K;=(CB (�,.-
Scanning

$ SP^4JU% 3 8MG � &9(��K(+*�(�,.-$ SP^ J 3 8�G � %)&)(�K(@*"NPO#(�, 3 8�G � -
Prediction

$ SP^ JL%.HR&9(��K(@*�(K,F-$ H ^ %'W:(@*�(+*�('>@?+- Y[Z \X] H ^1W `cbRd
Completion

$ S ^4JL% HX&9(��K(
 (�, � -@$ H ^ WV%A(
 (+*�(�, � -$ SP^ J H %)&)(��C(+*�(�, � tree >�HI(�, � ?+-

Fig. 4. Earley’s scheme

2.3 Earley’s scheme

Earley’s algorithm [3] will illustrate the extension from complete to partial parsing us-
ing a mixed-strategy with dynamic prediction. The complete parsing scheme is shown
in Fig. 4.

We have now items of the form � � � � � � 	 	�	�� 	M�R� . The dot is still a reference
to position � , but now the item represents the state in recognizing the rule � � �)� ,
where � reduces some of the substring just before the dot and � remains to be parsed.
In relation to 	 , it points to the begining of the substring parsed by � . Consequently

items represent a local state of parsing process instead of a global one. Having local
information enclosed makes it easier to share computations among items.

The grammar is augmented with an artificial rule
��� � �

, where
���

is a distinct
symbol. This facilitates the definition for axioms and goals. The parse starts with the
axiom � ��� � � � 	Mf 	Mf 	 ���K� , at position f we want to reduce the initial symbol

�
. The

deduction steps are as follows:

Scanning: After recognition of terminal �e!Mh � , it moves the pointer from position � to
� i k .

Prediction: It predicts all the rules n ��s , because they may reduce n from position
� .

Completion: After we finish the parse of a rule nr��s , from position to � , it searches
for items whose next symbol to analyze is n at position . For those items it gen-
erates a new one by moving the dot to just after n , position � .

Once we generate the goal item � � � � � � 	Mf 	�� 	<�X� , we know ��� ����� � reduces to the
initial symbol

�
, and � � ��� � � .

We need to modify axioms and goal items in order to deal with partial parses. Ax-
ioms start with any initial symbol in � at any position:

Axioms � � � � � � � � 	
	�	 	�	 � ��� 	
� � ��	Ff���	�� ���
and goals finish at any position after the starting point:

Goals � � � � � � � � 	
	 	�� 	<�R� 	
� � � 	.f � 	�� � � ���
The comparison between complete and partial parsing is similar to that we made for

the top-down scheme, the number of axioms growing from one to � ��� , where � is the
input string length and � � ����� . So, returning to our running grammar, this increment
means that we need � � items for a complete parse and ��� for a partial one.

2.4 A mixed-strategy with static control

We introduce now the complete parsing scheme for an LR(0) based parse. A prelimi-
nary description of the deductive interpretation, where we have omitted the finite state
control in order to make the differences with Earley’s scheme clear, is shown in Fig. 5.
This difference is rooted in the meaning of the items. In Earley’s case, the sequence of
symbols � , immediately to the left of the dot, reduce the substring ��� ����� ! . In LR(0), only
the symbol

�
(� � � � �) immediately on the left of the dot reduces the substring. As a

consequence, we need different deduction steps to manage different items:

Shift: It is similar to scanning in Earley’s case. The starting position reflects the last
symbol analyzed, �g! .

Reduce: It replaces the completion step of Earley. In Earley’s scheme, we need an item
� n � �

��� � � �	� � 	E�
� 	E� � 	<� � � that reflects the recognition of n � �
�)�#� � ���

between positions ��� and � � .
In LR(0) we need � items of the form � nr� �

��
�

 � �
�

� � 	E����� � 	E��� 	M���@� . Each

item reflects the recognition of the � symbols of the right hand side of the rule at
adjacent positions between ��� and � � .

Item form $ S ^4JU%)&)(��K(+*�(�,.-
� SP^ J6&�`Ub (;�� ��� *�� B �

Invariant / 0243 � 57575 3���� &� 0243�� G � 575'5 3 8
J � J � � (�
 (

� �K(CJ � 02 3 \ G � 575�5 3 �

Axiom $ / ^ % Jm(<; (C;=(
>@?+-
Goal $ / ^4JD%A(<;=(KB (K,.-
Shift

$ SP^ JU% 3 8 &)(�K(@*�(K,.-$ S ^4J 3 8 %m&9(@*�(@*gN O�(3 8 -
Prediction

$ S ^4JL% HX&9(��K(@*�(K,.-$ H ^ %
W:(@*�(+*�('>@?+-

Reduce

$ H ^ � � � � 5'575 ��� % (�* �
� � (@* � (�, � -�(����� ($ H ^ % � � � �D575�5 � � (�*���(+* � ('>@?+-�($ SP^ Jc%�HR&)(��C(+* � (�, � -$ S ^ J HP%)&9(+*���(@* � (tree >�HQ(E, � ����� , � ?+-

Fig. 5. LR(0) scheme, omitting finite control

Prediction: The same as Earley’s scheme.

Next, we will get a more efficient scheme adding a finite state control. This implies
replacing dotted rules � � �L�)� by an state, ��� , representative of its equivalence class.
In order to build the finite state control, we init ��� � �t� � � ���D� . Then we build the
other states with the closure of their items � �r� � �RnQ�D� . More precisely, the closure
operation adds items � nr�
��s6� for each rule nr��s . The closure is in fact equivalent to
the prediction step. So, it will be removed from the LR parsing scheme with finite state
control, as shown in Fig. 6. Here, action(state, token) denotes a shift or reduce action in
the automaton for a given state and token. In the same way, goto(state, variable) looks
for a goto action. Finally, reveals(state) refers to all those states with a shift or goto
action over state.

To extend the scheme to partial parsing, it must be allowed to start the parsing at
any point of the input string, with any symbol of � :

Axioms ��� � ��� � 	
	�	 	�	 � ��� 	Mf���	�� �:�E�
and, to finish at any position after the starting point:

Goals �l��� ����� 	 	�	�� 	M�R� 	Mf
��	��P��� �:�E�
We need to change the initialization step when building the finite state control. So,
instead of ��� ����� � � �
� �9�E� , the first state must be ��� ����� � � �
� �9��� � � �X� .

We can improve the LR(0) parsers with a better finite state control. Now, when
building the states, we must add information about which lookahead symbols are com-
platible with their actions. This control could result in an LR(1) or LALR(1) parsing

Item form $ � � (��K(@*�(K,F-
Axiom $ � � � (K;=(<;=(7>@?+-
Goal $ � ��� (C; (CB (�,.-
Shift

$ � � (��K(+*�(�,.-$ � � � (@*�(+*gN O�(398 - Y shift �����9` action >	� � (398 ?Kd
Reduce

$ � � � (+* � � � (�* � (�, � -�(����� ($ � � � (+* � (@* � ('>@?+-�($ � � � (�K(@* � (�, � -$ � � (@* � (@* � (� Z
�
 > Z (@, � ����� , � ?+-
�

reduce
�� action ��������������������� !� reveals ������ �"$#%������&� goto ������'(� lhs �*)+������-,
length � rhs ��)���� .

Fig. 6. LR(0) schema

Item form $ � � (�/#(��K(+*�(�,.-
Axiom $ � � � (%0 (<; (C;=(
>@?+-
Goal $ � ��� (�0 (C; (CBD(E,F-
Shift

$ � � (�/#(��K(@*�(K,.-$ � � � (�/#(@*�(+*FNPO#(398 - Y shift �����9` action >	� � (398 ?Kd
Reduce

$ � � � (�/ �@(@* � � � (+* � (�, � -�(����� ($ � � � (�/ �+(@* � (@* � ('>@?+-�($ � � � (�/ (�C(�* � (E, � -$ � � (�/ (@* � (@* � (� Z
�
 > Z (E, � ����� , � ?+-
�

reduce
�� action �������1���2� � ������� !� reveals ������ *"3#�������&� goto ������'�� lhs �*)+������4,
length � rhs �*)+��� .

Fig. 7. LALR(1) schema

algoritm, depending on the computation of the lookahead symbols. Next, in order to
adapt the LR(0) scheme to use the LALR(1) control, we will add preconditions to de-
ductive steps. The preconditions will check that the lookahead is compatible with the
operation. The resulting scheme is shown in Fig. 7.

Actually action and goto are the core the table of the LALR(1) automaton. This
table changes for an LR(1) automaton, but its interpretation remains the same. As a
consecuence, we can use the same parsing schema for LALR(1) and LR(1), provinding
we change the finite state control.

Once again, the extension to partial parsing implies adding axioms and goals, but
with one new consideration. Because a partial parse may finish at any input position,
the finishing operation is compatible with any terminal, and not only with the end of the
input terminal. So, we have that the set of axioms is

Axioms � � � ��� � 	 	 	�	 	�	 � ��� 	Mf���	�� � 	�� � �X�

and the set of goals is

Goals ����� ��� ! 	 	
	�	E� 	<�R� 	Mf
��	�� � � � 	�� � �T�
To build now the finite state control, we need the concept of a variable terminal that
matches any terminal of the grammar. This may produce an exponential growth of the
number of states. To mimic the intended behavior without modifying the set of states we
make the input string ambiguous. At each position, we have both the original terminal,
� � , and the end of the input. The former is compatible with any operation that follows
the parsing process and the latter is compatible with finishing a parse which is probably
partial.

In our running example, the complete LR(0) scheme needs � � items, while the par-
tial one needs ��� . The LALR(1) schema need, respectively, � � and � � items.

Item form $ ST(�� � (��K(+*�(�,.-�� $ ����� � (�� � (��K(@*�(K,.-
Axiom $��R(%� � � (C; (<;=('>@?+-
Goal $ / � (�� ��� (K;=(CB (�,.-
InitShift

$ ST(%� � (��C(�*�(K,.-$ S	�
� � (�� � � (�*�(�*gN O�(3 8 -
� S���� �

� 3 8
�
shift ����� ` action >	� � (3 8 ? �

Shift
$ S	�
� � (%� � (��C(�*�(K,.-$ S ��� � G � (�� � � (+*�(@*gN O�(398 -

� S ��� � G �
� 398 �

shift �����D` action >	� � (398 ? �
Sel

$ S	�
� � (%� � (��C(�*�(K,.-$ ����� � (%� � (�*�(+*�('>@?+-jY reduce � ` action >	� � (398 ?Kd
Red

$ � ��� � (%� � (
 (�*�(E, � -:$ S ��� � (�� � (��K(
 (�, � -$ ���
� � � � (%� � � (��K(@*�(K, � , � - Y � � � ` reveals >	� � ?Kd
Head

$ ����� � (%� � (�C(+*�(�,.-$ S ��� ��(%� � � (��K(+*�(tree >�S ��� �#(�,g?+- Y � � � ` goto >	� � (CS ��� �'?Kd
Fig. 8. LALR(1) scheme with implicit binarization

3 The dynamic interpretation

Given that actions on the automaton depend on the first, and possibly the second, el-
ements in the stack, we implicitly consider a grammar which is a 2-form one. As a
consequence, we obtain two interesting features that are not usual in other context-free
parsing algorithms:

– Time complexity for the parser is �
� ��� � , where � is the length of the sentence. This
result is achieved without the need for the language grammar to be in Chomsky
Normal Form.

– Sharing of computations on the parsing of a tail of sons in a node is possible. More
exactly, bottom-up parsing may share only the rightmost constituents, while top-
down parsing may only share the leftmost ones. The reason is simple and relies to
the type of search used to built the forest. Breadth-first search results in bottom-
up constructions and depth-first search results in top-down ones, as is shown in
figure 9.

�������
�������
�������
�������
���������
���������
���������
���������

�������
�������
�������
�������

�������
�������
�������
�������

�������
�������
�������
�������

�����
�����
�����
�����

	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	

�
�

�
�

�
�

�
�

�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

���������������
���������������
���������������
���������������
���������������

�������
�������
�������
�������

�����
�����
�����
�����

���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

���
���
���
���

���
���
���
���

�����
�����
�����
�����

�����
�����
�����
�����

���������������
���������������
���������������
���������������
���������������

�������������
�������������
�������������
�������������
�������������

n1RULE : γ1Φ α β δ ρ
n2RULE : γ2Φ α β δ ρ

γ1 γ2

Φ

α β δ ρ α β δ ρ

Classic forest representation without sharing.

Shared nodes using a top-down parser, with AND-OR graphs.

Shared nodes using a bottom-up parser, with AND-OR graphs.

AND-OR representation with sharing,
for a top-down parsing.

n1

γ2 n2

γ1

nil

nil

nil

α β δ ρ

α β δ ρ

Φ

AND-OR representation with sharing,
for a bottom-up parsing.

γ2

γ1

n2

n1

δ ρ

α β

α β

δ ρ

nil

nil

Φ nil

Fig. 9. Sharing of a tail of sons in a node

In order to obtain �
� � � � complexity in the general case, we can use a implicit
binarization of rules. We do this by splitting each reduction involving � elements in
the reduction of � i k rules with at most � elements on their right-hand side. Thus, the
reduction of a rule �)%� � � �)�� �m�#� � �)�� �
 is equivalently performed as the reduction of
the following �) i k rules:

�)�� � � �)�� � �)�� � � �)�� �
�)�� �

...
...

�)�� �
 � � � �)%� �
 �)�� �
 �)�� �
 ���
This treatment of reductions involves a change in the form of the items. We add a new el-
ement, representing a symbol in a rule or a

�)�� � meaning that elements �)�� � h �
�

 �)�� �

have been reduced1.

With respect to deduction steps, we must now differentiate between whether we
make the shift of the first symbol in the right hand side of a rule (InitShift) or the shift
of other symbols (Shift).

The Reduce step has also been refined into three steps. The selection of the rule to
be reduced (Sel), the reduction of the implicit binary rules (Red), and the recognizing of
the left-hand symbol of the rule to be reduced (Head). The resulting scheme is shown
in Fig. 8. This scheme corresponds to a dynamic interpretation of LALR(1) parsing
algorithms using an inference system based on

� �

items [2].

1 ����� � is equivalent to the dotted rule S��
� � ^ J6& where J � S��
� � ����� S���� � and & �
S ��� � G � ����� S �
� �
 .

The extension for partial parsing is analogous to previous schema, following an
identical approach for table construction, and adding new axioms and goals. So, the set
of axioms is given by:

Axioms � � � ��� � 	 	 	�	 	�	 � ��� 	Mf���	�� � 	�� � �X�
and the set of goals by:

Goals ����� ���E! 	 	
	�	E� 	<�R� 	Mf
��	�� � � � 	�� � �T�

1

10

100

1000

10000

100000

1e+06

2 4 6 8 10 12 14 16 18 20

N
um

be
r

of
 it

em
s

Input length

Bottom-up
Top Down

Earley
Dynamic LALR(1)

Fig. 10. Num. of items in complete parsing

4 Experimental results

To illustrate the practical aspects of our proposal, we provide now some preliminary ex-
perimental results. We have parsed several input strings with lengths varying from 1 to
20, considering our running example, the language � . The number of items is different
even for input strings of the same length. So, for each length we have parsed several
input strings, computing the average number of items generated, both for complete and
partial parsing. The grammar we are using seems to be well-suited for top-down pars-
ing, as shown in Fig. 10. Bottom-up parsing only performs well for short length inputs.
On the other hand, dynamic programming approaches, both Earley parsing and dynamic
interpretation of LALR(1), perform as well as top-down parsing.

1

10

100

1000

10000

100000

2 4 6 8 10 12 14 16 18 20

N
um

be
r

of
 it

em
s

Input length

Bottom-up
Top Down

Earley
Dynamic LALR(1)

Fig. 11. Num. of items in partial parsing

Regarding partial parsing, Fig. 11, top-down parsing suffers a drop in performance,
while bottom-up still performs well for short length inputs. Dynamic programming ap-
proaches continue to show a good behavior.

In Fig. 12 we illustrate the relation between complete and partial parsing, synthe-
sizing the last two figures. We have replaced the number of generated items by the
increment from the number of items in complete parsing to the number of items in par-
tial parsing. As is shown, top-down partial parsing is not as advantageous as it was for
complete parsing. It suffers from exponential grown. On the other hand, the parsing
schema with some kind of bottom-up strategy scale well.

5 Conclusions

We have described a practical approach to partial parsing in the domain of CFGs. In
comparison with previous works, our proposal is based on a deductive parsing scheme,
which provides a uniform framework to compare performances between different pars-
ing strategies for both complete and partial cases.

From a theoretical point of view, we have graduated the introduction of each pars-
ing scheme in order to make clear the existing relationships with previous strategies.
This leads to a better understanding of the mechanisms regulating the definition of the
deduction rules and even of the structures manipulated by these. The evolution from
complete parses to partial ones is also justified in each case.

100

200

300

400

500

600

700

800

900

1000

2 4 6 8 10 12 14 16 18 20

R
at

io
 (

%
)

Input length

Top Down
Bottom Up

Earley
Dynamic LALR(1)

Fig. 12. Ratio partial/complete parsing

6 Acknowledgments

This work has been partially supported by the European Union, Government of Spain
and Autonomous Government of Galicia under projects 1FD97-0047-C04-02,TIC2000-
0370-C02-01 and PGIDT99XI10502B, respectively.

The source code of the deduction scheme interpreter comes from the original one
of [7], and has been adapted by V.J. Dı́az Madrigal.

References

1. M.A. Alonso, D. Cabrero, E. de la Clergerie, and M. Vilares. Tabular algorithms for TAG
parsing. In Proc. of EACL’99, Ninth Conference of the European Chapter of the Association
for Computational Linguistics, pages 150–157, Bergen, Norway, June 1999. ACL.

2. E. de la Clergerie. Automates à Piles et Programmation Dynamique. PhD thesis, University
of Paris VII, France, 1993.

3. J. Earley. An efficient context-free parsing algorithm. Communications of the ACM,
13(2):94–102, 1970.

4. I. Jacobs. The CENTAUR 1.2 Manual. INRIA, Sophia-Antipolis, France, 1992.
5. Christian Jacquemin. Receycling terms into a partial parser. In Proc. of the 4

���
Conf. on

Applied Natural Language Processing. Stuttgart, DE, 13–15 Oct 1994, pages 113–118, 1994.
6. V. Rocio and J. G. Lopes. Partial parsing, deduction and tabling. In Proceedings of Tabula-

tion in Parsing and Deduction (TAPD’98), pages 52–61, Paris (FRANCE), April 1998.
7. S.M. Shieber, Y. Schabes, and F.C.N. Pereira. Principles and implementation of deductive

parsing. Journal of Logic Programming, 24(1-2):3–36, 1995.

8. K. Sikkel. Parsing Schemata. PhD thesis, University of Twente, The Netherlands, 1993.
9. Michael Sperber and Peter Thiemann. The essence of LR parsing. In Proceedings of the ACM

SIGPLAN Symposium on Partial Evaluation and Semantics-Based Program Manipulation,
pages 146–155, La Jolla, California, 21-23 June 1995.

10. M. Vilares and M.A. Alonso. An LALR extension for DCGs in dynamic programming.
In Carlos Martı́n Vide, editor, Mathematical and Computational Analysis of Natural Lan-
guage, volume 45 of Studies in Functional and Structural Linguistics, pages 267–278. John
Benjamins Publishing Company, Amsterdam & Philadelphia, 1998.

11. M. Vilares and B.A. Dion. Efficient incremental parsing for context-free languages. In
Proc. of the

� ���
IEEE International Conference on Computer Languages, pages 241–252,

Toulouse, France, 1994.

