
Workshop TAG+5, Paris, 25-27 May 2000

Bidirectional parsing of TAG without heads

Víctor J. Díaz
�
, Miguel A. Alonso

�
and Vicente Carrillo

�

�
Facultad de Informática y Estadística, Universidad de Sevilla

Avda. Reina Mercedes s/n, 41012 Sevilla (Spain)
{vjdiaz,carrillo}@lsi.us.es�

Departamento de Computación, Universidad de La Coruña
Campus de Elviña s/n, 15071 La Coruña (Spain)

alonso@dc.fi.udc.es

Abstract
We present a bottom-up bidirectional parser for Tree Adjoining Grammars that is an extension
of the parser defined by De Vreught and Honig for Context Free Grammars. Although this
parser does not improve the complexity of the parsers defined in the literature, it presents several
characteristics that can be of interest for practical parsing of natural languages.

1. Introduction
Several algorithms have been proposed for parsing tree adjoining grammars (TAGs), most of
them derived from context-free tabular parsers, ranging from simple bottom-up algorithms,
like CYK, to sophisticated extensions of Earley’s algorithm (Alonso et al., 1999). However,
some of the bidirectional parsers proposed are not applicable in all the cases. Lavelli and Satta
parser (1991) is restricted to elementary trees with only one anchor. Van Noord parser (1994)
introduces several improvements to Lavelli and Satta parser: the substitution operation, the
foot-driven recognition of auxiliary trees and the notion of headed elementary trees in order to
take advantage of lexicalization.
According to Van Noord, a headed TAG is a TAG in which each elementary tree is a headed tree.
For each internal node in a headed tree, there must be a daughter which is the head of the subtree
rooted in that node. The reflexive and transitive closure of the head relation is called the head-
corner relation. In order to establish the head-corner relation we must fulfill the following two
constraints: (i) the anchor of an initial tree must be a head-corner of the root node of the initial
tree and (ii) the foot node of an auxiliary tree must be head-corner of the root of the auxiliary
tree. Since there exists the notion of anchor in the context of lexicalized TAG, it seems that the
notion of head, as defined by Van Noord, is redundant. Moreover, in the case of anchor siblings
the definition of head requires to select only one anchor as the head.
In this paper we present a bidirectional bottom-up parser for TAG, called ����� , derived from
the context-free parser defined by de Vreught and Honig (de Vreught & Honig, 1989; Sikkel,
1997), which presents several interesting characteristics: (i) the bidirectional strategy allows
us to implement the recognition of the adjoining operation in a simple way, (ii) the bottom-
up behavior allows us to take advantage of lexicalization, reducing the number of trees under
consideration during the parsing process, (iii) in the case of ungrammatical input sentences, the
parser is able to recover most of partial parsings according to lexical entries, and (iv) the parser
can be applied to every kind of anchored elementary trees without introducing the notion of
head

Víctor J. Díaz, Miguel A. Alonso & Vicente Carrillo

1.1. Notation

Let ���������
	����	���	���	���� be a TAG where ��� and �� are the terminal and non-terminal alpha-
bets, ������� the axiom symbol, and � and � the set of initial and auxiliary trees respectively.
As usual, ����� consist of the set of elementary trees.
Parsing algorithms for context-free grammars usually denote partial recognition of productions
by dotted productions. We can extend this approach to the case of TAG by considering each
elementary tree � as formed by a set of context-free productions ��� �!� : a node "$# in � and its% children " #&(')')' "�#* are represented by a production "+#�, " #&(')')' "�#* . The elements of the
productions are the nodes of the tree, except for the case of elements belonging to �-�.�0/2143 in the
right-hand side of productions. Those elements may not have children and are not candidates
to be adjunction nodes, so we identify such nodes labeled by a terminal or 1 with the label1.
We use 56�87:9<;)�=">#:� to denote that 5?�8� may be adjoined at node "@# . If adjunction is not
mandatory at "># , then A
B=CD��7:9E;F�=">#:� . With respect to substitution, we use GH�8IKJML
��NO#:� to
denote that GP�$� can be substituted at node N # .
To simplify the description of parsing algorithms we consider additional productions: Q�,SR$T ,
QU, RWV and XYV>, Z for each G[�\� and each 5]�8� , where R T is the root node of G and
R^V and XYV are the root node and foot node of 5 , respectively. After disabling Q and Z as
adjunction nodes the generative capability of the grammars remains intact.

2. The parser _a`?b
The definition of the parser is based on deductive systems similar to Parsing Schemata (Sikkel,
1997). Given the input string cd�de & ')')' egf with h�ikj and a TAG grammar, the formulas
(called items in this context) in the deductive system will be of the form:

l " # , monDp�nYqD	srt	vug	�wx	sy<z
where " # , mMp)q{�6|^� �-� is a production decorated with two dots indicating the part of the
subtree dominated by " # that has been recognized. When m and q are both empty, the whole
subtree has been recognized. The two indices r and u denote the substring of c spanned by p .
If ���}� , w and y are two indices with respect to c indicating the substring spanned by the foot
node of � . In other case w^�?y~��� , representing they are undefined.
With respect to deduction steps, we have that

���K��� � �����s��K��� � ����t��� � �����K��K��� � ���g�v�s��K��� � �����t����t��� � ��� ����K��� � ���t�K�s��K���

The initializer steps deduce those items associated to productions whose right hand side includes
a terminal that matches with an input symbol. The position of the terminal in the input string
determines the values of the indices. Empty-productions are considered to match any position
in the input string. The indices associated to the foot node in the consequent of both deduction
steps are undefined since no foot has been recognized yet:

� ���K��K��� � l " # , monDe(n�qD	vu~�]�g	vug	���)��z e��Oe<�
� ��t��� � l " # , n�nM	�ug	vug)�o)�Dz

Once the subtree dominated by a node NO# has been recognized completely, a include step in� ���s��t���
continues the bottom-up recognition of the supertree dominated by N�# when no adjoining

1Without lost of generality, we assume that if a node is labeled by then it has no siblings.

Bidirectional parsing of TAG without heads

is mandatory on that node. Indexes are not modified when a step of this type is applied:

� ���K��K��� �
l N[#~, ngp nM	srK	�ug	�wx	sy<zl " # , m~n0N # nYqD	srK	vug	=wx	sy<z A
B C.�$7:9<;)��N # �

Given a node "�# such that ">#^, mMp & p � q , the concatenate steps in
� �g�v�s��K���

try to combine two
partial analysis spanning consecutive parts of the input string, in order to recognize p & and p � .
The indices r and u in the consequent cover the whole recognized substring. The values of the
indices w and y , corresponding to the foot node, are propagated bottom-up:

� �g�v�s��K��� �
l "�#~, m~nDp & n�p � qD	srt	vu � 	=wx	sy<z�	l "�#~, mMp & n�p � n�qD	vu � 	vug	�w � 	sy � zl " # , monDp & p � n�qD	KrK	vug	�w�� w � 	sy���y � z

where w���y is equal to w if y is undefined and is equal to y if w is undefined, being undefined in
other case.
The foot steps

� ���t����t���
introduce in a bottom-up way a new instance of an auxiliary tree 5 in an

adjunction node N # where 5�� ��� u���N # � . The recognition of the auxiliary tree begins with
the introduction of the foot node. The string spanned by the node N�# between position � and�

determines the values of the indices in the consequent. The indices w and y in the antecedent
are ignored in the consequent because a new adjoining has been introduced. The values of these
indices will be considered by adjoining steps in order to conclude the adjoining of 5 in N # :

� ���t����t��� �
l N # , ngp nM	�� 	 � 	�wx	KyEzl X V , n�ZonM	�� 	 � 	���	 � z 5 �$7:9E;)�=N # �

When the recognition of the auxiliary tree 5 reaches the root node, the adjoining steps
� � ����K���

conclude the adjoining on N?# , continuing the bottom-up recognition of the supertree of � with
respect to N # . This step is only applied when the string spanned by the foot node of 5 is
equal to the string spanned by the adjunction node N�# . Indices w and y in the consequent are
obtained from the antecedent associated to the adjunction node. Now, the string spanned by the
adjunction node N # corresponds with the string spanned by the root of the auxiliary tree 5 :

� � ����K��� �
l Q�, n:R V nM	vug	
	$	�� 	 � z=	l N # , ngp nM	�� 	 � 	�wx	KyEzl " # , monDN # n�qD	�ug	�	$	�wx	sy<z 5 �$7 9E;)��N # �

A substitution is performed when an initial tree G has been completely recognized. The initial
tree establishes the string spanned by the node NH# where G can be substituted.

� �t�s�s��t��� �
l Q�, n:R T nM	KrK	vug)�o)��zl " # , monDN # n�qD	KrK	vug)�o)��z GP��ItJ�L �=N # �

The input string must belong to the language defined by the grammar, given Gk�{� rooted
with the axiom symbol, whenever an item

l Q�, n:R T nM	�j 	sh�)�o)��z is deduced. The algorithm
so described is just a recognizer. However, it is not difficult to construct an actual chart parser
based on the specification presented above. From the set of derived items (the chart), a parser
of the input can be constructed retracing the recognition steps in reverse order or annotating the
items computed by the recognition algorithm with information about how they were obtained.
The time complexity of the algorithm with respect to the length h of the input is � � h��� . This
complexity is due to deduction steps in

� � ����K���
since they present the maximum number of rele-

vant input variables (u , 	 , � ,
�
, w , y). The space-complexity of the parser is � � h�� � since every

item is composed of four input positions ranging on the length of the input string.

Víctor J. Díaz, Miguel A. Alonso & Vicente Carrillo

The number of items deduced by the parser, as stated before, can be reduced if we apply a filter
on the concatenate steps. We can note that these steps produce redundant derivations when the
trees are not binary branching. If we do so, the parser obtained will not actually be bidirectional.
We will not consider this version because of clarity in the exposition.

3. A new parser _a`Ob��
In the context of parsing lexicalized grammars for natural languages, the parser � ��� can be
slightly modified in order to speed up the recognition process. In this way, we will consider
the characteristics of the English grammar defined in (XTAG, 1999). The study will be mainly
centered on

� ���s� ��K���
,
� ��t���

and
� �t�s�s��t���

deduction steps. We will call �����
�
the new parser obtained

after modifications.
First of all, we must note that

� ���K� ��K���
steps can be applied on anchors as well. In the case of

multi-anchors, the step will deduce one item for every anchor in the elementary tree with the
suitable positions respect to the input. Furthermore, this step implies an important reduction
in the search space since only those elementary trees with anchors matching the input will be
consider in the recognition. In this way,

� ��� ����K���
and

� �t�s�s��t���
deduction steps will not introduce any

elementary tree except for those trees considered by
�^���s� ��t���

deduction steps.
When substitution nodes are siblings of no-substitution nodes the application of

�+�t�K�s��K���
steps can

introduce items that are not necessary in order to recognize the input string. The reason is that� �t�s�s��t���
deduction steps always try to include an initial tree when this tree is completed. To avoid

these redundant substitution operations we can introduce a filter as follows: this step will only
applied when N # is a substitution node whose daughters do not dominate a terminal or the foot
node of � . In other cases, the substitution operation will be performed by the new deduction
steps

� �t�s�K����K���
and

� �t�s�K����K���
.

� � �s�s����K����� �
l Q�, n:R T nM	vug	 �)�o)�Dz=	l "�#~, mon�p�nDN[#<qD	srK	�ug	�wx	sy<zl " # , monDp N # n�qD	srt	�� 	�w-	syEz

� �t�K�s����K����� �
l Q , n:R T4nM	KrK	vug)�o)��z�	l " # , m�N # nDp�n�qD	vug	 � 	vug	�wx	KyEzl " # , m�nDN # p�nYqD	srt	�� 	�wx	KyEz

With respect to 1 productions, the number of items deduced by
� ��K���

steps can be an important
drawback in the application of the parser when the grammar has a lot of elementary trees with
1 productions. As an example, in the English grammar (XTAG, 1999), it is usual that left
hand sides of empty productions present a null adjoining constraint. The practical behavior
of the parser can be improved if we filter the steps dealing with empty productions. Given a
production N # , 1 such that /EA.B C�3>� 7:9E;)��N # � , where /EA.B C�3�� 7 9E;)��N # � represents a null-
adjoining constraint on N?# and N[# has at least a daughter that dominates a terminal or the foot
node of � , the following deduction steps

� �	��K����� �
l ">#~, mon�p�n0N]#2qD	srK	vug	=wx	sy<zl " # , mon�p:N # nYqD	srK	vug	=wx	sy<z

� �
��K����� �
l " # , mMN # n�p�nYqD	srK	vug	=wx	sy<zl " # , monDN # p�nYqD	srK	vug	=wx	sy<z

drastically reduce the number of items generated. When the above constraints are not satisfied,
a

����K���
step must be applied.

Bidirectional parsing of TAG without heads

� h w���� � ��� � ���
�
��� � ��� �

Transitives and Ditransitives
� j ' �
	 j ' j�� j ' �2j j '�� j '��
� j ' ��� j ' j�� j ' �
	 j '��� j '����

Arguments and Adjuncts
 j '��� j ' �g� j ' ��� j '���� j ' ���
� j '�� j ' j�� j ' �
	 j '���� j '����
� j ' �
	 j ' jM� j ' j�� j ' ��� j '��

Ergatives and Intransitives
	 j '�� j ' �g� j ' ��� j '��� j '����
� j ' �
	 j ' j�� j ' �g� j ' ��� j ' ���
� j ' �
	 j ' j�� j ' �g� j '�� j '��
� j ' �
	 j ' j�� j ' �g� j ' ��� j ' ���

Sentential Complements
�)j j ' �
	 j ' j�� j ' �g� j ' ��� j '����
�:� j ' ��� j ' j�� j ' � � j ' 	�	 j '����

Relative Clauses
� � j ' 	gj j ' �
	 j '��� j ' ��� j '����
� j ' ��� j ' �
	 j '��� j ' 	�	 j ' ���

� h w���� ����� � ���
�
��� � ��� �

Auxiliary Verbs
� � j ' 	:j j ' ��� j '���� j ' 	�	 j ' ���

Extraction
�
� j ' ��	 j ' j�� j ' �
	 j '�� j '��
��	 j ' ��� j ' j�� j ' �g� j '�� j '��
� � j ' ��	 j ' j�� j ' �g� j '��� j '��

Unbounded Dependencies
� � j ' ��� j ' j�� j ' �g� j ' ��� j ' ���
� � j '��� j ' �g� j ' ��� j ' � � j ' 	M�� j j ' � � j ' �g� j ' �
	 j ' ��� j '����
� � j '�� � j ' �
	 j '���� � ' � � � ' � 	

Adjectives��� j ' �:� j ' j�� j ' j�� j ' ��� j ' ���
� j ' ��	 j ' j�� j ' �g� j ' ��� j ' ���
� � j ' ��� j ' j�� j ' �g� j ' ��� j ' ���
� � j '�� j ' j�� j ' �
	 j '�� j '��

Table 1: Parsing time in seconds

4. Experimental results

The results we are going to discuss have been obtained using a naive implementation in Prolog
of the deductive parsing machine presented in (Shieber et al., 1995) running on a Pentium II.
We have implemented and tested the following parsers: � is an Earley-based parser without
prefix valid property (Alonso et al., 1999), ��� � is an Earley-based parser with prefix valid
property (Nederhof, 1999), ��� is the bidirectional parser defined by Van Noord, and � ���
and �����

�
are the parsers defined in this paper.

The study is based on the English grammar presented in (XTAG, 1999). >From this document
we have selected a subset of the grammar consisting of 27 elementary trees that cover a variety
of English constructions: relative clauses, auxiliary verbs, unbounded dependencies, extrac-
tion, etc. In order to compare only the behavior of the parsers, we have not consider the feature
structures of elementary trees. In this way, we have simulated the features using local con-
straints. Also, we have selected from the document 25 correct and incorrect sentences grouped
with respect to the aspect treated. Every sentence has been parsed without previous filtering of
elementary trees. Table 1 shows the time in seconds used for every algorithm and sentence.

From table 1, we can observe that ��� , ����� and �����
�
obtain better time results than predic-

tive parsers � and ��� � . However, in terms of the more expensive step, the adjoining operation,
predictive parsers perform equal or less adjoining operations than bottom-up parsers. There-
fore, we can argue that this result is a consequence of the implicit filtering of elementary trees
of bottom-up strategies.

On the other hand, we can also note that although � ��� presents worse time than ��� , we can
see � ���

�
improves the results of ��� . Since the adjoining operations performed by all the

bottom-up parsers are practically the same, we can conclude that this improvement is basically
due to the reduction of items removed by the filter in the rules related to 1 productions.

Víctor J. Díaz, Miguel A. Alonso & Vicente Carrillo

5. Conclusion
A bottom-up bidirectional parser for TAG has been defined based on the parser defined by De
Vreught and Honig for CFG. The parser does not improve the worst-case bounds of already
known parsing methods for TAG but the experiments show similar or better time results than
classical parsers. Other benefits can be argued to consider this algorithm of interest in the
context of bidirectional parsers. In particular, with respect to Lavelli-Satta parser the � ���
schema can be applied to multi-anchor auxiliary trees. With respect to Van Noord parser, this
new approach does not introduce the concept of head and it is applicable to every kind of
anchored elementary tree.
As further work, it would be interesting to investigate the effects of compacting elementary
trees, as performed by Lopez (2000), in the real performance of the parser.

6. Acknowledgments
This research was partially supported by the FEDER of EU (Grant 1FD97-0047-C04-02) and
Xunta de Galicia (Grant PGIDT99XI10502B).

References
ALONSO M. A., CABRERO D., DE LA CLERGERIE E. & VILARES M. (1999). Tabular algorithms for
TAG parsing. In Proc. of EACL’99, Ninth Conference of the European Chapter of the Association for
Computational Linguistics, p. 150–157, Bergen, Norway: ACL.

DE VREUGHT J. P. M. & HONIG H. J. (1989). A Tabular Bottom-up Recognizer. Technical Report
89-78, Department of Applied Mathematics and Informatics, Delft University of Technology, Delft, The
Netherlands.

LAVELLI A. & SATTA G. (1991). Bidirectional parsing of lexicalized tree adjoining grammars. In Pro-
ceedings of the 5th Conference of the European Chapter of the Association for Computational Linguistics
(EACL’91), Berlin, Germany: ACL.

LOPEZ P. (2000). Extended partial parsing for lexicalized tree grammars. In Proc. of the Sixth Interna-
tional Workshop on Parsing Technologies (IWPT 2000), p. 159–170, Trento, Italy.

NEDERHOF M.-J. (1999). The computational complexity of the correct-prefix property for TAGs. Com-
putational Linguistics, 25 (3), p. 345–360.

SHIEBER S. M., SCHABES Y. & PEREIRA F. (1995). Principles and implementation of deductive
parsing. Journal of Logic Programming, 24 (1–2), p. 3–36.

SIKKEL K. (1997). Parsing Schemata — A Framework for Specification and Analysis of Parsing Al-
gorithms. Texts in Theoretical Computer Science — An EATCS Series. Berlin/Heidelberg/New York:
Springer-Verlag.

VAN NOORD G. (1994). Head-corner parsing for TAG. Computational Intelligence, 10 (4), p. 525–534.

THE XTAG RESEARCH GROUP (1999). A lexicalized tree adjoining grammar for English. http:
//www.cis.upenn.edu/~xtag. Technical Report IRCS 95-03, IRCS, Institute for Research in
Cognitive Science, University of Pennsylvania

