
Seeking robustness in a multilingual world:
from pipelines to embeddings

Yerai Doval

Doctoral Thesis

2019

Seeking robustness in a multilingual world:
from pipelines to embeddings

Yerai Doval

Doctoral Thesis / 2019

Advisors: Manuel Vilares & Jesús Vilares

Ph.D. degree in Computer Science

This work is licensed under a Creative Commons Attribution 3.0 License.

A mi hermano. Lo hemos conseguido.

Agradecimientos

Quisiera agredecer de todo corazón a mis directores y tutor, Jesús, Manuel y Carlos, por
haber depositado semejante confianza en mı́. Su inestimable apoyo tanto a nivel personal
como académico me ha permitido llegar al punto de estar escribiendo estas ĺıneas.

Gracias a todos mis compañeros de laboratorio, y sobre todo a David, por ser además un
modelo de investigador a seguir. También al grupo del café, por amenizar las mañanas con
risas y conversaciones tan variadas.

Gracias a mi director de estancia, Steven, por haberme aceptado en la prestigiosa
comunidad de la Universidad de Cardiff, donde he podido conocer a tan buenos compañeros
como Luis y José. Ha sido gracias a vosotros que mi carrera como investigador se impulsó
con nuevas ideas y ganas de hacer cosas. Cardiff tendrá siempre un lugar privilegiado en mi
memoria.

Gracias a mis amigos de siempre por ser mi familia fuera de casa y obligarme a desconec-
tar de vez en cuando (con diferentes grados de éxito). Mención también a todos aquellos
que, por un motivo u otro, vinieron y se fueron en los últimos años dejando una huella
imborrable en mı́.

Pero lo más importante de todo, a mi familia. Gracias a mis padres por tantas cosas, pero
sobre todo por su amor incondicional. Gracias a mi hermano pequeño por ser en muchos
aspectos mi hermano mayor. Gracias a mis padrinos y mi abuela por haber hecho mi vida en
casa lo maravillosa que es. A mis t́ıos, primos y demás familia cercana por haberme recibido
siempre con los brazos abiertos.

Gracias

v

Abstract

In this dissertation, we study two approaches to overcome the challenges posed by processing
user-generated non-standard multilingual text content as it is found on the Web nowadays.

Firstly, we present a traditional discrete pipeline approach where we preprocess the
input text so that it can be more easily handled later by other systems. This implies dealing
first with the multilinguality concern by identifying the language of the input and, next,
managing the language-specific non-standard writing phenomena involved by means of text
normalization and word (re-)segmentation techniques.

Secondly, we analyze the inherent limitations of this type of discrete models, taking
us to an approach centred on the use of continuous word embedding models. In this
case, the explicit preprocessing of the input is replaced by the encoding of the linguistic
characteristics and other nuances of non-standard texts in the embedding space. We aim to
obtain continuous models that not only overcome the limitations of discrete models but also
align with the current state of the art in Natural Language Processing (NLP), dominated by
systems based on neural networks.

The results obtained after extensive experimentation showcase the capabilities of word
embeddings to effectively support the multilingual and non-standard phenomena of user-
generated texts. Furthermore, all this is accomplished within a conceptually simple and
modular framework which does not sacrifice system integration. Such embedding models
can be readily used as a fundamental building block for state-of-the-art neural networks
which are, in turn, used in virtually any NLP task.

vii

Resumen

En esta tesis estudiamos dos enfoques para abordar los desaf́ıos planteados de cara al
procesamiento de contenidos textuales no estándar y multilingües generados por los usuarios
del tipo que se pueden encontrar en la Web a d́ıa de hoy.

En primer lugar, presentamos un enfoque tradicional basado en pipelines discretos en
el que el texto de entrada es preprocesado para facilitar su ulterior tratamiento por otros
sistemas. Esto implica abordar el problema del multilingüismo, primero, identificando el
idioma de la entrada para, seguidamente, tratar los fenómenos de escritura no estándar
espećıficos de dicho idioma presentes en la entrada. Para ello se aplicarán técnicas de
normalización del texto y (re-)segmentación de palabras.

En segundo lugar, analizamos las limitaciones inherentes a este tipo de modelos discretos,
lo cual nos conduce a un enfoque centrado en el empleo de modelos continuos basados
en word embeddings (i.e., representaciones vectoriales). En este caso, el preprocesamiento
expĺıcito de la entrada es sustituido por la codificación de las caracteŕısticas lingǘısticas y
demás matices propios de los textos no estándar en el propio espacio de embedding (un
espacio vectorial). Nuestro objetivo es obtener modelos continuos que no sólo superen las
limitaciones de los modelos discretos, sino que también se alineen con el estado del arte
actual del Procesamiento de Lenguaje Natural (PLN), dominado por sistemas basados en
redes neuronales.

Los resultados obtenidos después de una extensa experimentación muestran la capaci-
dad de las word embeddings para dar un soporte efectivo por śı mismas a los fenómenos
multilingües y no estándar propios de los textos generados por usuarios. Además, todo
esto se logra dentro de un marco conceptual simple y modular que no necesita sacrificar la
integración de sistemas. Dichos modelos de word embeddings pueden emplearse fácilmente
como un elemento fundamental en redes neuronales de última generación que, a su vez,
son utilizadas en prácticamente cualquier tarea de PLN.

ix

Resumo

Nesta tese estudamos dous enfoques para abordar os desaf́ıos que presenta o procesamento
de contidos textuais non estándar e multilingües xerado polos usuarios do tipo que se atopar
na Web a d́ıa de hoxe.

En primeiro lugar, presentamos un enfoque tradicional baseado en pipelines discretos
nos que preprocesamos o texto de entrada para facilitar a seu posterior tratamento por
outros sistemas. Isto implica abordar o problema do multilingüismo, primeiro, identificando
a lingua de entrada para, seguidamente, tratar o resto dos fenómenos de escritura non
estándar espećıficos da lingua involucrados mediante técnicas de normalización do texto e
(re-)segmentación de palabras.

En segundo lugar, analizamos as limitacións inherentes a este tipo de modelos discretos,
o cal nos leva a un enfoque centrado no emprego de modelos continuos baseados en word
embeddings (i.e., representacións vectoriais). Neste caso, o preprocesamento expĺıcito
da entrada substitúese pola codificación das caracteŕısticas lingǘısticas e demais matices
propios dos textos non estándar no espazo de embedding mesmo (un espazo vectorial). O
noso obxectivo é obter modelos continuos que non so superen as limitacións dos modelos
discretos, senón que tamén se aliñen co estado da arte actual do Procesamento da Linguaxe
Natural (PLN), dominado por sistemas baseados en redes neurais.

Os resultados obtidos tras unha ampla experimentación amosan a capacidade das word
embeddings para dar un soporte efectivo por si mesmas aos fenómenos multilingües e non
estándar propios de textos xerados por usuarios. Ademais, todo isto acádase dentro dun
marco conceptual simple e modular que non precisa sacrificar a integración de sistemas.
Estes modelos de word embeddings poden empregarse facilmente como un elemento
fundamental en redes neurais de última xeración que, á súa vez, utiĺızanse en prácticamente
calquera tarefa de PLN.

xi

Contents

I Introduction 1

1 Introduction 3
1.1 Motivation . 3

1.1.1 User-generated texts and texting 4
1.1.2 Long-term implications . 6

1.2 NLP for user-generated texts: domain adaptation 7
1.3 From discrete to continuous systems in NLP 8

1.3.1 A discrete preprocessing approach 9
1.3.2 A continuous word embeddings approach 10

1.4 Outline and contributions . 11

2 Preliminary definitions 15
2.1 Terminology . 15
2.2 Language model . 16
2.3 Word embeddings . 17

II Discrete pipeline approach 21

3 LID in Twitter 23
3.1 Domain particularities . 23
3.2 LID resources . 25
3.3 Evaluation . 26

3.3.1 Language-level analysis . 28
3.4 Towards multilingual integration . 28
3.5 Related work . 30
3.6 Conclusions . 31

xiii

xiv CONTENTS

4 Microtext normalization 33
4.1 Architecture . 34
4.2 Evaluation . 36
4.3 Implementation . 37

4.3.1 Configuration before W-NUT 2015 39
4.3.2 Adaptation for W-NUT 2015 . 40

4.4 Texting encoding . 40
4.5 Related work . 43
4.6 Conclusions . 44

5 Word segmentation 47
5.1 Problem domain . 48
5.2 System description . 49

5.2.1 Language model . 49
5.2.2 Beam search algorithm . 52

5.3 Experiments . 53
5.3.1 System implementation . 54
5.3.2 Corpora . 54
5.3.3 Results . 55

5.4 Word embeddings . 61
5.5 Related work . 61
5.6 Conclusions . 64

III Interlude 67

6 Towards continuous models 69
6.1 Limitations . 70
6.2 Alternatives . 72

6.2.1 K-best pipelines and Bayesian networks 72
6.2.2 Non-linear pipelines . 74
6.2.3 Graph-based solutions . 75

6.3 Word embeddings . 76
6.3.1 Embeddings as modular and integrated encoded knowledge . . . 77
6.3.2 Tackling our current challenges 78
6.3.3 The downside of this approach 78

CONTENTS xv

IV Replacing preprocessing with embeddings 81

7 Cross-lingual word embeddings 83
7.1 Meeting in the middle . 84

7.1.1 Bilingual models . 86
7.1.2 Multilingual models . 87

7.2 Experimental setting . 88
7.2.1 Corpora and monolingual embeddings 88
7.2.2 Training dictionaries . 89
7.2.3 Compared systems . 89

7.3 Intrinsic evaluation . 90
7.3.1 Cross-lingual performance . 90
7.3.2 Monolingual performance . 92

7.4 Extrinsic evaluation . 93
7.4.1 Cross-lingual hypernym discovery 94
7.4.2 Cross-lingual natural language inference 95

7.5 Analysis . 97
7.5.1 Studying word translations . 97
7.5.2 Multilingual performance . 98

7.6 Embedding models to replace language identification 100
7.7 Related work . 102
7.8 Conclusions . 104

8 Embeddings for noisy text 107
8.1 Noise-resistant embeddings . 108

8.1.1 Modified skipgram model . 110
8.2 Evaluation . 112

8.2.1 Word embedding training . 112
8.2.2 Intrinsic tasks: word similarity and outlier detection 112
8.2.3 Extrinsic tasks: the SentEval benchmark and Twitter SA 113
8.2.4 Dataset de-normalization . 114
8.2.5 Results . 115

8.3 Word segmentation . 118
8.4 Related work . 120
8.5 Conclusions . 121

xvi CONTENTS

V Conclusion 123

9 Conclusions and future work 125
9.1 Future work . 128

A Phonetic algorithms 159
A.1 Phonetic algorithms . 160

A.1.1 Soundex . 161
A.1.2 IBM Alpha Search Inquiring System 161
A.1.3 New York State Identification and Intelligence System 164
A.1.4 Match Rating Approach . 164
A.1.5 Metaphone . 164
A.1.6 Double Metaphone . 165
A.1.7 Daitch-Mokotoff Soundex . 165
A.1.8 Caverphone . 165
A.1.9 Beider-Morse . 165
A.1.10 Fuzzy Soundex . 166
A.1.11 Lein . 166
A.1.12 Onca . 166
A.1.13 Phonex . 166
A.1.14 Phonix . 166
A.1.15 Roger Root . 167
A.1.16 Census Modified Statistics Canada 167
A.1.17 Eudex . 167

A.2 Implementation . 168
A.3 Evaluation . 168

A.3.1 Evaluation corpora . 168
A.3.2 Experimental methodology . 169
A.3.3 Results and discussion . 171

A.4 Related work . 176
A.5 Conclusions . 177

B Cross-lingual analysis 179
B.1 Variables . 180

B.1.1 Monolingual corpora . 180
B.1.2 Bilingual supervision . 180
B.1.3 Languages . 181
B.1.4 Other variables . 182

CONTENTS xvii

B.2 Evaluation . 182
B.2.1 Bilingual dictionary induction . 184
B.2.2 Cross-lingual semantic word similarity 184
B.2.3 Cross-lingual natural language inference 184

B.3 Analysis . 185
B.4 Related work . 190
B.5 Conclusions . 191
B.6 Supplementary material: detailed results 191

C Resumen largo en español 195
C.1 Motivación . 196
C.2 PLN para textos generados por el usuario: adaptación al dominio 196
C.3 Enfoque discreto . 197

C.3.1 Identificación del idioma . 198
C.3.2 Normalización de microtexto . 198
C.3.3 Segmentación de palabras . 199

C.4 Limitaciones y transición . 200
C.4.1 Propagación de errores . 200
C.4.2 Fragmentación del contexto . 202
C.4.3 Hacia una aproximación continua 203

C.5 Embeddings multilingüe . 205
C.6 Embeddings robustas para microtextos 206
C.7 Conclusiones y trabajo futuro . 206

List of Figures

1.1 Preprocessing pipeline for user-generated text. 9

2.1 Skipgram model (Mikolov et al., 2013). 18
2.2 Simplified example of a two-dimensional embedding space. 19
2.3 Simplified example of a two-dimensional bilingual embedding space. . . 20

4.1 Original pipeline and pipeline adapted for W-NUT 2015 integrated into
the architecture of the system. 41

5.1 Simplified illustration of the algorithm execution, with n = 2 and m = 1. 50
5.2 Illustration of the architecture of our neural networks for word segmenta-

tion. 51
5.3 Validation error curves for some neural models on the English and Twitter

training corpus. 57
5.4 Validation error curves for models which are too wide. 58

6.1 Sequential execution of a 3-best pipeline, where we use a beam search
algorithm with n = 2. 73

6.2 The three possible non-linear pipelines formed by three steps and at least
one feedback loop. 74

6.3 An example graph formed by four nodes (tasks) where we can prune one
of its edges (dashed line). 75

7.1 Step by step integration of two monolingual embedding spaces. 86

8.1 Visualization of the adapted skipgram model where bridge-words have a
lower impact than the original word in the context. 110

8.2 Performance of each considered model when going from standard texts
to noisier ones on the extrinsic tasks. 117

xix

xx LIST OF FIGURES

B.1 P@1 performance of the unsupervised version of VecMap on dictionary
induction across corpus types and language pairs. 187

B.2 Comparison between the dictionary induction performance (P@1) of
VecMap and MUSE. 188

List of Tables

3.1 System tuning results. 26

3.2 Official results and positions in the rankings (pos). 27

3.3 Language-level results. 29

4.1 Results on the training and test datasets. 36

5.1 Example instances of the problem we are trying to solve as input/output
pairs. 49

5.2 Precision results on the English (EN) and Twitter (Tw) development
datasets by neural model architecture. 56

5.3 Precision results on development datasets by language and n-gram model
order. 59

5.4 Average counts of words, characters, and bytes per instance in the deve-
lopment datasets. 59

5.5 Precision results on the test datasets by language and approach. 60

7.1 P@k performance of different cross-lingual embedding models in the
bilingual dictionary induction task. 90

7.2 Cross-lingual word similarity results in terms of Pearson (r) and Spearman
(ρ) correlation. 92

7.3 Monolingual word similarity results in terms of Pearson (r) and Spearman
(ρ) correlation. 93

7.4 Cross-lingual hypernym discovery results. 95

7.5 Accuracy on the XNLI task using different cross-lingual embeddings as
features. 96

7.6 Word translation examples from English and Spanish, comparing VecMap
with the bilingual and multilingual variants of Meemi. 97

xxi

xxii LIST OF TABLES

7.7 Dictionary induction results obtained with multilingual Meemi over (Vec-
Maportho). 99

7.8 Results obtained by the Corpus Concatenation (CC) and Artificial Code-
Switching (ACS) models in the usual test corpora for Dictionary Induction
(DI), Word Similarity (WS), and Cross-lingual Natural Language Inference
(XNLI). 101

8.1 Spearman correlation results of word similarity on SCWS, wordsim353
(WS353), SimLex999 (SL999), and SemEval17 (Sem17) datasets. 115

8.2 Accuracy results of outlier detection on 8-8-8 and wiki-sem-500 (wiki)
datasets. 116

8.3 Results of the extrinsic evaluation on the SentEval benchmark. The noise
levels are low (pd = 0.3), mid (pd = 0.6), and high (pd = 1). 118

8.4 Accuracy results of the extrinsic evaluation on SemEval (SE) Twitter SA
datasets. 119

8.5 Spearman correlation averages on the new de-normalized STS* datasets,
with pj = 0.5 and ps = 0.1. 120

A.1 Example encodings for each of the phonetic algorithms analyzed (1):
“nuff”-“enough” and “cntrtkxn”-“contradiction” 162

A.2 Example encodings for each of the phonetic algorithms analyzed (2):
“da”-“the” and “onez”-“ones”. 163

A.3 Evaluation corpora statistics. 169

A.4 Results for the utdallas dictionary, ranked by F1. 171

A.5 Results for the unimelb dictionary, ranked by F1. 172

A.6 Results for the utdallas dictionary, this time ranked by recall. 173

A.7 Results for the unimelb dictionary, this time ranked by recall. 174

B.1 Statistics of the corpora used to train monolingual word embeddings: size
(total number of tokens) and words (number of unique tokens). 181

B.2 Bilingual dictionary induction results using English as source language.
Performance measured by P@k. 183

B.3 Spearman correlation performance of various cross-lingual word embed-
ding models in the cross-lingual word similarity task. 185

B.4 Accuracy in the cross-lingual natural language inference task (XNLI) using
different cross-lingual word embedding models. 186

LIST OF TABLES xxiii

B.5 Absolute improvement (in percentage points) by applying the postpro-
cessing (Meemi) over the two base models VecMap and MUSE on the
cross-lingual word similarity task using Web corpora. 189

B.6 Bilingual dictionary induction results in the test sets of Conneau et al.
(2018a). 192

B.7 Cross-lingual word similarity results in the SemEval-17 dataset (Camacho
Collados et al., 2017). 193

Acronyms

NLP Natural Language Processing

PoS Part of Speech

ML Machine Learning

IV In-Vocabulary

OOV Out-Of-Vocabulary

TBPTT Truncated Back-Propagation Through Time

LID Language IDentification

P Precision

R Recall

P@k Precision at k

MRR Mean Reciprocal Rank

MAP Mean Average Precision

CCA Canonical Correlation Analysis

Meemi Meeting in the middle

NLI Natural Language Inference

XNLI Cross-lingual Natural Language Inference

SA Sentiment Analysis

IPA International Phonetic Alphabet

xxv

Part I

Introduction

1

Chapter 1

Introduction

In the present dissertation, we study modular, flexible, and integrated approaches for
handling user-generated non-standard multilingual text as it is found nowadays on the Web
in general and social media platforms in particular. We start with a traditional discrete
pipeline approach, where we implement an explicit preprocessing of the input text by
means of language identification, word segmentation,1 and text normalization. Then, we
analyze the inherent limitations of this and other similar discrete models to finally arrive
at an approach based on continuous word representations, commonly referred to as word
embeddings. In this case, the explicit preprocessing of the input is replaced by the encoding
of the linguistic characteristics and other nuances of user-generated texts. The resulting
continuous models not only overcome the limitations of discrete models, but also integrate
to a greater extent in state-of-the-art Natural Language Processing (NLP) systems based on
neural networks.

In this introductory chapter, we first establish the motivation behind our work, which
revolves around the challenges posed by user-generated text on the Web. Then, we make a
brief introduction of the three preprocessing tasks and corresponding approaches used to
tackle them. Finally, we outline the storyline for the rest of this dissertation and highlight
the main contributions.

1.1 Motivation

Since the last decade, social media users have produced the large amounts of text and other
types of content which have led us to the Big Data era (Boyd and Crawford, 2012).

1Although we will use the term “segmentation” throughout this work, in reality we perform a re-segmentation
of the already (possibly badly) segmented input.

3

4 CHAPTER 1. INTRODUCTION

In reality, the Internet has been a user-centered platform from its beginnings, with
applications such as E-mail in the 70s, BBS in the 80s, the Web and IRC chat in the
90s, social media networks in the 00s, and smartphone messaging apps in the 10s (e.g.,
WhatsApp, Telegram, etc.). What these technologies have in common is that they made it
easier for more and more users across the globe to communicate and share information.
These platforms continue to our day, either in their original or evolved forms; e.g., BBS gave
way to forums and Facebook groups; and IRC is still in use but lost most of its users to MSN,
WhatsApp, and many other chat applications. But most importantly, their use is showing no
signs of stagnation as users share increasing amounts of pictures, videos, audio, and many
forms of written text. In this work, we focus on the latter and, more specifically, on those
texts coming from the Web and social media platforms, which can be exploited for many
different purposes: e.g., using sentiment analysis to automatically process the opinions of
users (Vilares et al., 2017b), social media marketing (Tuten and Solomon, 2017), or even
predicting population health indicators (Signorini et al., 2011). Hereinafter, we refer to this
kind of texts as user-generated texts.

Nowadays, Internet users produce and share all types of written content in a variety
of services and platforms: Web articles, e-mails, chat messages, social media posts, etc.
Particularly in the latter cases, these communications have in common two specific traits that
differentiate them from most handwritten text and bring them closer to spoken language:
spontaneity and informality. This results in a writing style heavily influenced by speaking
habits such as, for example, elongated sounds to provide emphasis (e.g., “nooo”), frequent
use of tag questions (e.g., ending phrases with “right?”), or the general use of sloppy or
inappropriate language (e.g., “u was there” for “you were there”); i.e., Internet users tend
to write as they speak.

Moreover, even when English is the predominant language of the Internet, it demon-
strates a clear and increasing multilinguality by accommodating content in virtually any
human language. To illustrate this, we should mention that the most popular social media
platforms such as Facebook or Twitter are used by a large number of users across the globe
who publish text content in their particular language, or languages, of choice.

1.1.1 User-generated texts and texting

As mentioned previously, the written language employed by Web and social media users
is marked by three general traits shared with spoken language: spontaneity, informality,
and multilingualism. This can be observed in chat applications (e.g., WhatsApp, Telegram),
forums (e.g., Reddit, 4chan), and social networks (e.g., Facebook, Twitter), where this
electronic text messaging is usually referred to as texting. In this section, we talk about

1.1. MOTIVATION 5

the static time-invariant traits of texting language which cause it to differ notably from
standard written language (Baldwin et al., 2013) and derive in the so-called texting
phenomena (Thurlow and Brown, 2003):

Spontaneity. The conversations in which users engage tend to occur without much previ-
ous preparation, in the same spontaneous way as spoken conversations occur when people
casually meet in the street. In particular, the communication process usually happens in a
restrained time span with each speaker/writer making short interventions, sometimes even
interrupting each other. This promotes the use of shorthands and other custom abbreviations
for long or common words and expressions whenever possible, in order to align the spatial
characteristics of the text with the corresponding temporal constraints. In the same line,
services like the SMS and some social media platforms, such as Twitter, further encourage
brevity by imposing a limit to the number of characters in each message or post. As a result,
it is often preferred to use “OTOH” instead of “on the other hand”, “fav” in place of “favorite”,
or “sum1” for “someone”. Also, given the immediacy of this type of conversations, users
tend to neglect the correct spelling of words, which is probably the reason why automatic
spell checkers are ubiquitous in smartphones nowadays. Having said that, this form of
communications may still have a formal or informal appearance, although the latter is more
frequent. The resulting short-length texts are usually called microtexts.

Informality. Using a colloquial register in a spontaneous communication has significant
implications in the writing style of Web and social media users; primarly, ignoring or
deviating from the standard writing rules (official or de-facto), and acquiring more traits of
informal spoken language. For example, the misuse of homophones (“your” and “you’re”),
character repetition (“yeeeaah”, “noooo”), or the use of onomatopoeia (“boom”, “quack”,
“hahaha”, “argh”) and emoji () are frequent in this type of writing. But these phenomena
are not limited to the write as you talk principle, and users also play with the different
linguistic dimensions of words to come up with genuinely creative writing styles. For
instance, it is common to generate new spellings for existing words which still retain their
approximate original pronunciations; e.g., “dat” instead of “that” or “gawd” in place of
“god”. On the other hand, similarly-shaped characters may be used interchangeably with
the original ones, such as in leet speak, where most of the original characters are replaced
with numbers and other symbols; e.g., “n00b” instead of “noob” or “1337” in place of
“leet” (“elite”). In any case, these phenomena produce new words which are similar to the
originals in some sense, be it in their pronunciation or the shape of its constituent characters,
also known as lexical variants.

6 CHAPTER 1. INTRODUCTION

Multilinguality. Since its very inception, the lingua franca of the Web has always been
English, which is also the native language of hundreds of millions of people. However,
the combined number of native speakers for the rest of the languages greatly exceeds that
figure,2 implying that most Web users must be, at least, bilingual. Not only that: these
users may also have multiple native languages, as is the case for Galicians, Basques, and
Catalans in Spain speaking their regional languages together with Spanish. In any case, this
proximity of multiple languages in the Web, national, or personal scopes not only implies
the ability or necessity to communicate in multiple languages but, most of the times, that
languages interact with each other at different levels. Most frequently, this manifests in
users intentionally or accidentally switching between languages, and for several reasons:
covering for the lack of a native alternative to a foreign term or expression (e.g., there is no
Spanish term for “selfie”), using the language in which the speaker feels more comfortable
in a specific context (e.g., due to historical reasons, older Galicians use Spanish rather than
Galician when they want to sound formal), reinforcing the cultural identity of the speaker
(e.g., when Mexican-Americans use “loco” instead of “crazy”), or to compensate for the
imperfect knowledge of a particular language by non-native speakers (e.g., “let’s go to my
casa”, where the speaker does not know the English word “house”). With the exception of
the former case, which corresponds to word loan, this mechanism of language swapping is
often called code-switching (Yu et al., 2013).

1.1.2 Long-term implications

Beyond the stationary view of languages adopted until now, it is also interesting to consider
the temporal dimension where they evolve to fit the changing communication needs and
habits of their speakers. In the previous section, we have already described several mecha-
nisms that modify and augment the non-standard lexicon of a language through alternative
spellings, shorthands, and borrowed terms from other languages. This is, in fact, a contin-
uous process which highlights the remarkable dynamism of texting language (Eisenstein,
2013), where social, cultural, and technological changes and advances are immediately
reflected.

Interestingly, it can be argued that if the corresponding new words and expressions
reached a long-term widespread use, they would become part of the language standard,
fulfilling the requirement that languages are, first and foremost, a communication tool.
Because of this, we can consider texting as the experimental ground supporting language
evolution. As an example of this, consider the word “text”. Initially employed as a noun, it
recently became widely used as a verb as a shorthand for “text messaging”; e.g., in “I will

2internetworldstats.com/stats7.htm

internetworldstats.com/stats7.htm

1.2. NLP FOR USER-GENERATED TEXTS: DOMAIN ADAPTATION 7

text you later”. Consequently, prestigious dictionaries such as Merriam-Webster or Oxford
now include this new meaning of the word. As an example relating to the multilinguality
of the Web, many technical terms from computer science such as “driver” are generally
accepted in Spanish where, nonetheless, there exist proper native translations for them
(“controlador”, in this case).

1.2 NLP for user-generated texts: domain adaptation

After discussing the linguistic aspects of our problem domain, which constitute the base
motivation behind our work, we turn to look into their practical implications on current NLP
systems, and how we can better take them into account when simultaneously tackling other
common tasks such as Part-of-Speech (PoS) tagging, dependency parsing, or sentiment
analysis. Furthermore, we pay special attention to obtaining solutions that are modular,
flexible, and integrated.

One of the main concerns of the present work lies in the fact that NLP systems are
usually tailored to standard texts: PoS taggers, dependency parsers, or text classification
systems, for example, are frequently trained and evaluated on well-written texts, hence
they do not account for the linguistic characteristics of Web and social media texts that we
described previously. This leads to a performance penalty when dealing with this kind of
texts. At this point, there are two general approaches to tackle this issue (Eisenstein, 2013):

System adaptation. Re-implement or re-design a particular model so that it is able to
support social media texts. The strength of this approach is its high integration, avoiding the
need for any form of normalization or standardization of the input, and therefore possible
sources of errors that would propagate across our system. The disadvantage is that it would
be necessary to adapt all systems to social media texts, which may not be trivial, as we are
adding the new concern of supporting a wider range of inputs to an already complex system.
Examples of this type of system are the PoS tagger (Owoputi et al., 2013) and dependency
parser (Kong et al., 2014) from the TweetNLP framework.3

Input adaptation. Maintain the existing implementation of a model that only accepts
standard texts as input and include a preprocessing step in which we adapt the input to
conform to the standards. The advantage in this case is having separate models for separate
concerns, lowering the complexity of each one of them and increasing the modularity of
our solution. This form of sequential arrangement of steps is usually called a pipeline and

3http://www.cs.cmu.edu/~ark/TweetNLP/

http://www.cs.cmu.edu/~ark/TweetNLP/

8 CHAPTER 1. INTRODUCTION

is very common in NLP. On the other hand, its disadvantage is a low degree of integration,
which causes error propagation from one step to the following, which may in turn arrive
again at erroneous answers in a cumulative effect. Granted, there are methods to alleviate
this problem which use non-linear arrangements of the steps in the pipeline or graphs (see
Section 6.2 for an in-depth discussion).

In this work, we have transitioned from a strict take on the second approach to an
intermediate solution between the two of them: instead of adapting the input, we adapt the
internal representation in the system models. The goal is maintaining the modularity from
the second while obtaining the integration benefits of the first one, namely lowering the
chance of error propagation and improving the integration.

1.3 From discrete to continuous systems in NLP

During the course of this dissertation, our own solutions for handling user-generated text
on the Web have evolved from traditional NLP approaches based on preprocessing (i.e.,
input adaptation), to those more in line with state-of-the-art advancements which solve
the limitations presented by the former and eliminate the need for said preprocessing.
Notably, this has been accomplished by abandoning mostly symbolic approaches, where
the focus is on the surface forms of discrete linguistic elements such as words, in favor
of fully continuous models that embed these elements in a high dimensional vector space
and perform all necessary data transformations in this domain. More specifically, this
implies going from a traditional pipeline approach, where the input is modified by a series of
sequential steps, obtaining a partial solution after each one of them; to relying on adequately
trained vector representations of words (word embeddings), which encode useful features
about those words for our particular context; i.e., information about spelling variants,
abbreviations, or multilinguality.

Furthermore, we have strived to obtain solutions which are both modular, flexible, and
integrated. On one hand, the modularity enables the separation of concerns, making a
complex task split into smaller subtasks easier to approach, while at the same time benefiting
the reusability of our solutions. As already mentioned in the previous section, tackling the
specific challenges of user-generated text independently from other NLP tasks, e.g., in a
separated preprocessing stage, increases modularity at the cost of system integration for the
simplest approaches. On the other hand, the flexibility of our models would be desirable
to support the dynamic nature of natural languages; hence, their adaptability to changes.
In this case, we resort to Machine Learning (ML) techniques that require the least amount
possible of human intervention or supervision, which corresponds to the most expensive

1.3. FROM DISCRETE TO CONTINUOUS SYSTEMS IN NLP 9

Figure 1.1: Preprocessing pipeline for user-generated text.

part of any development process. Consequently, we look for highly automated systems
that are able to obtain performance improvements just by adding more training data in an
unsupervised or semi-supervised fashion.

1.3.1 A discrete preprocessing approach

Firstly, we divided the writing phenomena described in Section 1.1.1 into two groups:
monolingual and multilingual. Then, we considered the following preprocessing tasks to
handle separately each of those groups (also depicted in Figure 1.1):

Language identification. This task handles the multilingual phenomena. At its basis, it
consists in determining the language a text is written in. Although it is usually assumed that
the whole text is written in one language, in our work we go from this monolingual case to
finally supporting a cross-lingual4 scenario where words from multiple different languages
can be used interchangeably. On the other hand, we will also consider shorter-than-usual
sentences, as our focus will be on social media texts from platforms that impose a character
length limit, such as Twitter. The language information obtained in this step would allow us
to choose the correct monolingual modules afterwards, in an attempt to obtain the required
support for multilingual user-generated text.

Microtext normalization. This is the central step that takes care of the monolingual
phenomena in our preprocessing pipeline.5 Ideally, we would have as many normalization
modules as languages considered, and choose between them according to the output of the
language identification step. The goal of this task is obtaining a more standard version of
the input text by normalizing each of its words. This would be achieved, for example, by
expanding abbreviations (e.g., “OTOH” is normalized as “on the other hand”), correcting

4Multilingual and cross-lingual are used as synonyms throughout this work.
5Our preprocessing pipeline is assumed to be part of a bigger pipeline which would include a main task for

which the input is adapted.

10 CHAPTER 1. INTRODUCTION

spelling variations (e.g., “dat” is replaced by “that”), or removing emphasis (e.g., “yeaahh”
is normalized to “yeah”).

Word segmentation. This can be considered a subtask of text normalization that, in fact,
should go before it in the pipeline. Since we are considering a word-level normalization task,
it should be useful to start from a correctly segmented input text where words are clearly
delimited. However, this might not be the case in user-generated texts: non-standard word
segmentations can be used to provide emphasis (e.g., “im possible” instead of “impossible”)
or they can just be the result of spelling mistakes (e.g., “noone” for “no one”). While
normalizing word segmentation could be achieved in the main normalization task, we have
decided here to perform this process in its own step of the pipeline before the microtext
normalization step, in order to follow the modularity argument.

The modules that implement each of these preprocessing tasks were arranged in a
pipeline, given the broad use of this structure in NLP. While this allows us to obtain the
desired modularity, it does so in exchange of a low integration between the modules in the
sequential steps, since information only flows in the forward direction. However, and as we
further discuss in Section 6.2, the dependencies between tasks in the pipeline might not be
entirely 1:1 and unidirectional; e.g., the result from the final step could be used to obtain a
better result in the first step, which in turn would help the second one, and so on. To solve
this issue, Valls-Vargas et al. (2015) proposed using non-linear pipelines, and Roth and Yih
(2004) went further by replacing this structure with graphs of interconnected tasks. In both
cases, the integration is improved with respect to the linear pipeline but, as we will also see
below, they do not resolve the particular issues presented by our preprocessing scenario,
where the order between preprocessing and main tasks in the pipeline has to be preserved
if we want the former to be of any use.

1.3.2 A continuous word embeddings approach

Going beyond the pipeline and graph structures, modern NLP systems are increasingly
relying on approaches based on neural networks (Plank et al., 2016; Eshel et al., 2017;
Devlin et al., 2019), a particular type of machine learning models that have been obtaining
state-of-the-art performance in the last decade thanks to the abundance of training data,
computational resources, and new training algorithms. Similarly to a non-lineal pipeline,
these models are formed by a sequence of neuron layers connected in a feedforward
fashion, sometimes also including recurrent links. Each of these layers perform a particular
transformation on the input data, and the result is then fed to the next layer. Unlike

1.4. OUTLINE AND CONTRIBUTIONS 11

pipelines, neuron layers do not have to correspond with a specific task or being directly
interpretable in a particular sense, generally. Given their great power and flexibility, neural
networks tend to be trained as end-to-end systems by only providing the raw inputs and
the corresponding desired outputs (hence, with no or very little preprocessing applied,
eliminating the need for the tasks proposed earlier). If the number and type of layers and
neurons per layer is adequate, these models have been shown to tackle complex tasks with
minimal human intervention, encoding domain knowledge in the real-valued parameters of
the network (Mikolov et al., 2013; Devlin et al., 2019; Ratner et al., 2018).

At this point, it would seem that using these powerful black boxes entails an inevitable
loss of modularity, mostly when compared with a more interpretable structure such as
the handcrafted pipeline. This is because we are now considering the system adaptation
approach explained in the previous section, where the integration of different concerns
(possible subtasks) in the model is now improved at the cost of its modularity. In reality,
however, neural networks are able to avoid the compromise between modularity and
integration that we have seen until now by facilitating transfer learning through mechanisms
such as pretraining and fine-tuning (Erhan et al., 2010; Howard and Ruder, 2018). Basically,
this allows us to train a model on a specific task, extract the information encoded in the
network at the end of the process (i.e., the embeddings), and use it to train a different model
for a different task, which can make use of that information to improve its performance.
Indeed, this process can be repeated over more models and more tasks, accumulating more
knowledge in the resulting networks.

In our context, we replace the preprocessing tasks considered earlier with the pre-
training of embeddings that encode information about texting phenomena (described in
Section 1.1.1). These embeddings would then be used to train other models that target
specific NLP tasks; e.g., PoS tagging, sentiment analysis, or dependency parsing, which
are now enhanced with knowledge about Web text phenomena. Notably, we replace the
sharing of information across tasks through discrete symbols (e.g., words, tags, sentences,
etc.) which constitute the inputs and outputs of each step in a pipeline, with continuous
real-valued mathematical constructs (i.e., embeddings). We will analyze the advantages of
this approach in Sections 3.4, 4.4, and 6.3.

1.4 Outline and contributions

This dissertation is organized in five parts plus one interlude chapter and three appendices.
The main contents can be found between the second and fourth parts, as the proposed
methods transition from discrete approaches to continuous ones, always orbiting around
the considered tasks: language identification, word segmentation, and text normalization.

12 CHAPTER 1. INTRODUCTION

Complementary studies that support some of the main findings are included as appendices.
We should note that, while these also contribute meaningful conclusions, they are not
required to follow the main storyline of this dissertation. The interlude chapter included
in-between those parts provides the theoretical justifications for the discrete-continuous
transition. Finally, the present introductory part and the last one establish the discourse
frame of our work.

In this outline, we enumerate the chapters in which this work is divided, highlighting
their main contributions and the corresponding publications in scientific journals and
conferences. It is worth noting that this work is a contextualized collection of previous
published and unpublished research by the same author.

Part I

• Chapter 1 describes the texting phenomena that characterize Internet speak, which
make up for the motivation behind this work, the preprocessing tasks considered, and
also introduces the approaches being studied in the following chapters.

• Chapter 2 gathers relevant terminology for the domain of our work, and then in-
troduces two important resources widely used not only here but in many other NLP
systems: language models and word embeddings.

Part II

• Chapter 3 presents the language identification task in the context of the TweetLID
workshop (Zubiaga et al., 2014) and analyzes the performance of common language
identification tools on tweets in the Iberian context. This chapter is based on:

– Doval, Y., Vilares, D., and Vilares, J. (2014). Identificación automática del idioma
en Twitter: adaptación de identificadores del estado del arte al contexto ibérico.
In Proc. of the Tweet Language Identification Workshop co-located with the 30th
Conf. of the Spanish Society for Natural Language Processing, TweetLID@SEPLN
2014, pages 39–43.

• Chapter 4 proposes a simple approach for microtext normalization in the context
of the W-NUT 2015 shared task 2 (Baldwin et al., 2015), based on the traditional
two-step framework of candidate generation and selection, with a focus on modularity
and adaptability. This chapter is based on:

1.4. OUTLINE AND CONTRIBUTIONS 13

– Doval, Y., Vilares, J., and Gómez-Rodŕıguez, C. (2015). LYSGROUP: Adapting a
Spanish microtext normalization system to English. In Proc. of the 1st Workshop
on Noisy User-generated Text, W-NUT 2015, pages 99–105.

• Chapter 5 presents a word segmentation approach based on a search algorithm
and a language model, and studies its performance when the latter component is
implemented as a recurrent neural network and an n-gram model. This chapter is
based on:

– Doval, Y. and Gómez-Rodŕıguez, C. (2019). Comparing neural-and n-gram-
based language models for word segmentation. Journal of the Association for
Information Science and Technology, 70(2):187–197.

which was preceded by:

– Doval, Y., Gómez-Rodŕıguez, C., and Vilares, J. (2016). Spanish word segmen-
tation through neural language models. Procesamiento del Lenguaje Natural,
57:75–82.

It is worth noting that bad word segmentation is treated here as a particular texting
phenomenon. Hence, the relative ordering of this chapter and the previous one on
microtext normalization does not follow the step sequence in the pipeline, but the
process of going from general to particular which was also followed during research.

Part III

• Chapter 6 analyzes, from a theoretical point of view, the inherent limitations of dis-
crete pipelines and other similar approaches and how directly using word embeddings
solves or bypasses the resulting issues. This theoretical analysis, which serves as the
basis for the work presented in the following chapters, is novel work first published in
this dissertation.

Part IV

• Chapter 7 introduces a technique to improve the integration of cross-lingual embed-
ding spaces obtained by aligning monolingual spaces. This chapter extends:

– Doval, Y., Camacho-Collados, J., Espinosa-Anke, L., and Schockaert, S. (2018a).
Improving cross-lingual word embeddings by meeting in the middle. In Proc.

14 CHAPTER 1. INTRODUCTION

of the 2018 Conf. on Empirical Methods in Natural Language Processing, EMNLP
2018, pages 294–304.

• Chapter 8 describes an adaptation technique that improves the performance of
existing monolingual word embedding models on noisy texts. It also presents a short
study on the effect of bad word segmentation on the performance of word embeddings.

The contents of this chapter have not been published at the moment of writing this
dissertation. Once again, the relative ordering of this and the previous chapter does
not follow the step sequence when obtaining robust multilingual word embeddings.
Rather, it reflects the ordering of the chapters in Part II to show more clearly which
continuous models replace their previous discrete counterparts, which in turn coincides
with the ordering followed during research.

Part V

• Chapter 9 wraps up the storyline of this dissertation by presenting the most relevant
conclusions and future lines of work.

Appendices

• Appendix A analyzes the performance of a wide range of phonetic algorithms for the
task of normalization candidate generation tackled in Chapter 4. It is based on:

– Doval, Y., Vilares, M., and Vilares, J. (2018b). On the performance of phonetic
algorithms in microtext normalization. Expert Systems with Applications, 113:213–
222.

• Appendix B presents a broad analysis of the factors usually involved in the bilingual
alignment of monolingual embedding spaces as described in Chapter 7. This chapter
is based on:

– Doval, Y., Camacho-Collados, J., Espinosa-Anke, L., and Schockaert, S. (2019).
On the robustness of unsupervised and semi-supervised cross-lingual word em-
bedding learning. arXiv preprint arXiv:1908.07742.

• Appendix C provides a lengthy summary of this work in Spanish.

Chapter 2

Preliminary definitions

In this chapter, we first explain relevant terminology of extended use throughout this
dissertation, and then introduce two crucial components used in several of the systems
presented, as well as in many others across the NLP field: language models and word
embeddings. Any other key element of this work is presented in-context throughout the
main parts of this work; i.e., between Parts II and IV.

We also take the chance to remark that, in the first part of this work, we focus on the
preprocessing part of a bigger NLP pipeline which includes main tasks; e.g., PoS tagging,
dependency parsing, sentiment analysis, etc.

2.1 Terminology

This section introduces relevant terms that will be widely used throughout this work.
Although some of these terms have already appeared in the previous chapter, we enumerate
them here for easy reference:

• User-generated text. Any type of text written by users of a communication platform
such as the Web, social media networks, chat applications, etc.

• Microtext. A form of short-length user-generated text which abounds in certain
communication platforms such as SMS and microblogging social networks such as
Twitter, where the number of characters per message is limited. Also frequent in
chats and other communication platforms where users value the immediacy of the
communications.

• Standard word. Any word registered by some recognized dictionary or other entity
that regulates language usage.

15

16 CHAPTER 2. PRELIMINARY DEFINITIONS

• Lexical variant or non-standard word. Usually, an alternative spelling of a standard
word, where phonological and morphological similarities between the variant and the
original are exploited.

• Standard and non-standard text. By extension of the previous definitions, texts
which are written following de facto or de jure regulations of language usage, or not,
respectively. This covers using only standard words, in the first case, or including
lexical variants, in the second.

• Noisy or non-standard text. The noise comes from the non-standard linguistic
constructions employed (e.g., words, phrases).

• Texting. Short for “electronic text messaging”, which now covers any form of non-
standard writing.

• Texting phenomena (Thurlow and Brown, 2003). Specific writing practices which
deviate from the standard rules used while texting, including lexical variants and
other non-standard constructs.

• In-Vocabulary (IV) and Out-Of-Vocabulary word (OOV). In the first case, a standard
word; in the second, a word not included in any recognized dictionary, which includes
lexical variants and other types of words such as neologisms or new proper nouns not
yet registered.

• Code-switching (Yu et al., 2013). The use of multiple languages in the same context
frame, which most of the time results in words or phrases from different languages
used interchangeably.

2.2 Language model

A language model is a probability distribution over sequences of linguistic tokens, which
are usually characters or words, obtained from text corpora. Specifically, it models the
conditional probability p(xt|xt−1, ..., xt−ρ), this is, the probability of the occurrence of some
input token xt given the previous ρ tokens in the input. With this information, we can also
obtain the estimated likelihood or score of an input token sequence as the mean of the
logarithmic probabilities of its constituent tokens:

score(xt, xt−1, ..., x0) =
1

t

t∑
i=0

log p(xt|xt−1, ..., xt−ρ) (2.1)

2.3. WORD EMBEDDINGS 17

Language models are usually implemented using two underlying structures: n-gram mod-
els (Brown et al., 1992; Stolcke, 2002; Heafield et al., 2013) or artificial neural net-
works (Mikolov and Zweig, 2012; Bengio et al., 2003; Kim et al., 2016).

An n-gram model stores historic data about n-grams, sequences of n tokens seen in a
training corpus. To construct these models, we first have to set the order of the model n
and, usually, a smoothing function which avoids assigning excessively high probabilities
to frequent lower-order n-grams and compensates those with fewer, or even zero, counts.
In this regard, Kneser-Ney smoothing (Heafield et al., 2013; Kneser and Ney, 1995) is
generally considered to be the best option (Chen and Goodman, 1996). For this type of
model, ρ = n− 1 in Equation 2.1.

Artificial neural networks are a type of machine learning model formed by several
layers of processing units which perform basic operations, called neurons, and parametrized
connections between neurons across layers. With respect to neural language models, the
most usual design includes one or several hidden (middle) layers followed by a softmax
layer of size equal to the number of token types considered, which are represented as
one-hot vectors. At training time, the objective is to predict the next token in the input
sequence which, given the 1-hot encoding, corresponds to assigning a probability of 1

to the occurrence of that token in the softmax, while the rest are 0. On the other hand,
these networks are usually recurrent neural networks since their focus is on dealing with
sequential data, such as text. Recurrent networks differ from traditional feedforward
architectures in that they allow feedback loops in their structure, thus being able to use
the output information corresponding to the input t when processing input t + 1, which
fits the language modelling use case. In this case, the parameter ρ from Equation 2.1 is
defined at training time as a hyperparameter of the neural network used for the Truncated
Back-Propagation Through Time (TBPTT) (Principe et al., 1993).

Most recently, neural networks are being trained for language modelling under new
paradigms, the most notable one being the masked language model (Devlin et al., 2019).
Having said that, we will not go into a more detailed explanation of them as they are not
used in this work.

2.3 Word embeddings

Word embeddings are vector representations of words usually defined over aRd embedding
space, where d is the number of vector components or embedding dimensionality. They are
usually obtained by traversing a large text corpus and accounting for the contexts, or groups
of words, where specific words appear in. Then, following the distributional hypothesis of
Firth (1957), similar embeddings (vectors) will be assigned to words occurring in similar

18 CHAPTER 2. PRELIMINARY DEFINITIONS

Figure 2.1: Skipgram model (Mikolov et al., 2013). The word embeddings are extracted
from the projection (hidden) layer as the activation values obtained after a word is given as
input.

contexts. This idea can be implemented in several ways. One option is through a word-word
cooccurrence matrix where each line, or column, corresponds to a sparse representation of
the corresponding word in the training corpus; i.e., each row contains the occurrence counts
of a given word with the rest of the words in the vocabulary represented as columns. We can
then treat the sparsity of the resulting matrix, which is induced by the Zipfian distribution of
words (Zipf, 1949), through any matrix factorization technique. GloVe (Pennington et al.,
2014), one of the most well-known word embedding models, takes this approach.

However, the majority of the work on word embeddings has sought to exploit the
distributional hypothesis through a different approach: training neural networks in a
specific manner so that we can then extract the internal representations they give to their
inputs (e.g., words) at some hidden layer as our word embeddings. In general, starting from
a random initialization of the network (i.e., yielding arbitrary embeddings for each word),
the training procedure iteratively adjusts its parameters as it reads each word wt from the
training corpus and the various contexts it appears in C = {wt+j /− c ≤ j ≤ c, j 6= 0}, with
c being the number of words to the right and left of wt. This adjustment can be performed
through several training models or procedures. We now introduce the most common two:

1. Conditioning the network to learn a transformation that maps the embedding of a
word wt to the embeddings of the words in its context, as depicted in Figure 2.1. This

2.3. WORD EMBEDDINGS 19

Figure 2.2: Simplified example of a two-dimensional embedding space.

is called the skipgram model (Mikolov et al., 2013), and we will use it extensively
in Part IV.1 More formally, the parameters of the network that would determine the
activation values which constitute our word embeddings are obtained by optimizing
the following objective function:

Esg =
T∑
t=1

∑
−c≤j≤c,j 6=0

log p(wt+j |wt) (2.2)

where T is the total number of input words, and we approximate p(wt+j |wt) us-
ing negative sampling (Mikolov et al., 2013), a simplification of noise contrastive
estimation (Gutmann and Hyvärinen, 2012).

2. A similar procedure but now mapping a context embedding, obtained by aggregating
the embeddings of the words from C, to the embedding of wt. This is called the
continuous bag of words model (Mikolov et al., 2013).

The most widely used tools to build these models are word2vec (Mikolov et al., 2013)
and fastText (Bojanowski et al., 2016). Also interestingly, this type of approach based
on neural networks highlights the significance of the internal representations that they
construct of their inputs, being important machine learning models not only because of
their good performance when obtaining the final output at the last layer, but also because
of the possibility to exploit their internal state.

The embeddings obtained by any of these methods have been shown to encode mean-

1Or, more precisely, a modification of the original model.

20 CHAPTER 2. PRELIMINARY DEFINITIONS

Figure 2.3: Simplified example of a two-dimensional bilingual embedding space.

ingful linguistic features of words, both semantic, syntactic, and even morphological. For
instance, the placement of the word “king” in the embedding space relative to “man” is
analogous to the one given for “queen” with respect to “woman”, indicating that the “royalty”
semantic trait has been encoded in the embeddings, as we depict in Figure 2.2. Interestingly,
these structures can be used as feature vectors that replace, or complement, the ones
traditionally obtained by manual feature engineering. They have been successfully used
in a wide range of NLP tasks such as dependency parsing (Bansal et al., 2014), informa-
tion retrieval (Vulić and Moens, 2015), PoS tagging (Kutuzov et al., 2016), or sentiment
analysis (Xiong et al., 2018), to name a few examples. Moreover, when these properties are
extended to multiple languages so that, for example, “king” and “rey” (its Spanish trans-
lation) obtain similar vector representations, we call them multilingual or cross-lingual
word embeddings, in contrast with the monolingual version seen until now. This extended
scenario is depicted in Figure 2.3.

Finally, it is also worth mentioning that there have recently appeared new models such
as ELMo (Peters et al., 2018) and BERT (Devlin et al., 2019) which go beyond the vector
representations obtained by word2vec et al. In fact, the second one is trained on a language
model task as mentioned at the end of the previous section, but using a different type of
network which is also much larger than the ones considered in this work. Therefore, and
once again, we will not go into a more detailed explanation of them as they are not used in
this work.

Part II

Discrete pipeline approach

21

Chapter 3

Language identification in Twitter

We describe in this chapter our participation in TweetLID (Zubiaga et al., 2014, 2016)
as part of our efforts to develop a language identification system for user-generated text
which would allow us to tackle the multiliguality concern (see Section 1.1.1). The specific
application domain proposed in this workshop involves tweets as text input and considers
English and the following languages spoken in the Iberian Peninsula: Spanish, Portuguese,
Galician, Basque, and Catalan. On this occasion, we resort to a simple approach where we
perform a shallow adaptation of existing language identifiers for this particular use case.

We may define language identification (LID) as a particular case of the general classi-
fication problem where, given an input text (i.e., one or more words), the goal is to find
out the language it was written in (Cavnar and Trenkle, 1994). This problem has been
studied since the beginnings of NLP and it has already seen satisfactory results under certain
controlled conditions; namely, when the input is constituted by long monolingual texts.
Despite these achievements, certain application domains such as Twitter continue to pose a
clear challenge for traditional approaches (Baldwin and Lui, 2010; Bergsma et al., 2012)
since the operating conditions are very different in this case.

3.1 Domain particularities

As commented above, our operating context presents diverse particularities. First of all
there is the nature of the entries, tweets of no more than 280 characters, which limits
the amount of information available to perform language identification successfully, since
length is a critical factor for this task (Baldwin and Lui, 2010). In addition to this, they are
user-generated text often affected by the texting phenomena described in Section 1.1.1,
thus introducing a fair amount of noise in an already information-scarce context.

23

24 CHAPTER 3. LID IN TWITTER

Second, and also relating to the characteristics of microtexts and other user-generated
content, is the multilinguality of this domain. This collides with the traditional assumption
made in LID that entries are monolingual, implying that they are written in a single
language (Baldwin and Lui, 2010) either fully or in the most part. However, on Twitter
it is common to find multilingual tweets code-switching between several languages; e.g.,
“Goodbye, hermano!” (English + Spanish), and also short entries which can sometimes
be ambiguous, with the possibility of belonging to any of several languages; e.g., “Boa
noite” (Galician / Portuguese). We also consider the case of tweets written in an unknown
language,1 which should be labeled as such; e.g., “hyvä päivä” (Finnish, but categorized
as “undetermined”). In any case, we would then speak of a multi-label classification
problem (Tsoumakas and Katakis, 2007), where an entry can be simultaneously associated
with several classes (languages, in our case). There is some work done in this area (Lui
et al., 2014), but again with documents of a certain length.

The third factor relates to the availability of resources for our use case, apart from
the development dataset given by the organizers of TweetLID (Zubiaga et al., 2014). On
the one hand, some of the available traditional LID tools do not allow re-training, and
usually do not include all the languages considered in the TweetLID task. On the other
hand, for those that do allow adjusting them to our domain, we would need datasets to
accomplish this, and although there are several publicly available ones (Lui and Baldwin,
2011, 2012; Majlǐs, 2012), few of them consider all the necessary languages, which is
desirable in order to ensure a homogeneous behaviour. Also, it would be ideal to have
datasets constituted by tweets, but these resources are even scarcer and do not cover the
required languages (Bergsma et al., 2012; Lui and Baldwin, 2014).

Finally, the set of languages involved in this particular task, although small, is also
challenging in itself. Let us consider Galician, which coexists with Spanish in the same
geo-political region and also has a common root with Portuguese. This implies that it is
usual for a Galician speaker to introduce Galician words when using Spanish, and vice versa,
both voluntarily or by accident, something which is strengthened by the informal context of
Twitter. Then, other factors such as the degree of language normativization, its dialectal
variants, geographical situation, etc. lead us to find Galician speakers who use a more
Castilianized Galician, and others who lean closer to Portuguese. On the other hand, the
linguistic proximity between languages makes them share vocabulary, morphemes, etc., thus
making classification even more difficult. Effectively, the problem presented at TweetLID is
that of a multi-label classification in which there exists a clear overlapping between classes.

However, given our time and resource restrictions at the moment of the TweetLID work-
shop, together with the low number of multilingual tweets in the TweetLID development

1In the sense that it is not a language modelled by the system.

3.2. LID RESOURCES 25

dataset, we resorted to tackling language identification as a single-label classification prob-
lem by adapting existing language identifiers to our domain. We proposed two alternative
solutions: the first one corresponds to the simplest scenario of using a single classifier and
choosing the highest scored language for any given input, while the second consists of a
voting scheme where, given a series of classifiers, the most frequently returned language is
given as the final result (Lui and Baldwin, 2014).

3.2 LID resources

We have used existing LID resources whenever possible. Starting with the language identifi-
cation tools, we considered the following ones which can be re-trained:

• TextCat. One of the simplest and most well-known LID tools, we use the implemen-
tation by van Noord (1997) of the classification algorithm designed of Cavnar and
Trenkle (1994). In brief, it consists in ranking character n-grams using language
models and an out-of-place metric.2

• langdetect. Implemented by Shuyo (2010), it is based on a Bayes classifier over
character n-grams, adding simple input normalization mechanisms to reduce data
sparsity.

• langid.py. Designed by Lui and Baldwin (2012), it also employs a Bayes classifier,
this time in combination with byte-level n-gram features. According to the authors,
this is a robust solution which, interestingly for us, outperforms its competition on
microtexts.

We have preferred not to use pre-trained models for any of the above classifiers and, instead,
train them ourselves in order to obtain a better control over the experiments, ensuring that
all of the considered tools operate under the same conditions. For this task, we would need
appropriate data resources for our use case which, as explained above, are not abundant in
the public domain. Unfortunately, even the development dataset published by the organizers
of TweetLID is rather small. Finally, we considered two data sources for our training corpora:

• The European Constitutional Treaty, or ECT (Unión Europea, 2004), although
taking only from Part I to Part IV until Article IV-448, since these are the only ones
available in Galician, Catalan, and Basque.3 This is a parallel corpus comprising
430KB of text, and 63,000 words per language.

2Some parts of the original code were rewritten in order to support UTF-8.
3http://repositori.uji.es/xmlui/

http://repositori.uji.es/xmlui/

26 CHAPTER 3. LID IN TWITTER

run P R F1
Corpus selection

TCE 50.6 54.0 47.7
Yali 55.9 61.0 54.8

Normalization selection
Yali 55.9 61.0 54.8
Yalino1 58.0 63.5 57.6
Yalino2 58.9 64.4 58.2
Yalino3 59.1 63.9 58.2
Yalino4 59.0 64.5 58.3

Identifier selection
TextCat 59.0 64.5 58.3
langid.py 41.3 25.2 22.9
langdetect 62.0 67.8 62.2
voter 42.3 26.6 24.9

Table 3.1: System tuning results (in bold the configurations selected in each phase).

• The Yali Dataset Long (Majlǐs, 2012), a comparable corpus (not parallel like the
previous one) totalling 4.5MB of text, and more than 690,000 words per language.

It is worth mentioning here that the organizers of TweetLID distinguish between constrained
and unconstrained tracks, which divide the presented systems into those that were trained
only with the dataset they provided and those trained with any other dataset.

3.3 Evaluation

When deciding on the final configuration of our system, we carried out a series of setup
experiments whose precision (P), recall (R), and F1 score (F1) results are shown in
Table 3.1. These metrics are defined as the average precision, recall and F1 score for all
languages considered, respectively:

P =
1

|L|
∑
l∈L

TPl
TPl + FPl

(3.1)

R =
1

|L|
∑
l∈L

TPl
TPl + FNl

(3.2)

3.3. EVALUATION 27

run P R F1 pos
constr langdetect 73.2 73.4 63.9 9/12

voter 61.0 58.2 49.8 12/12
unconstr langdetect 68.2 68.8 58.1 5/9

voter 58.8 59.0 57.1 7/9

Table 3.2: Official results and positions in the rankings (pos).

F1 =
1

|L|
∑
l∈L

2 · TPl
2 · TPl + FPl + FNl

(3.3)

where L is the set of languages considered and TPl, FPl, and FNl are the numbers of true
positives, false positives, and false negatives for a given language l, respectively (Zubiaga
et al., 2014). In other words, precision is the number of times the correct language was
identified over the total number of identifications of such language, and recall changes the
denominator to the total number of entries (tweets in this case) in such language. On the
other hand, we also used the development corpus provided by the organization (Zubiaga
et al., 2014), but filtering special elements such as links, hashtags, emojis, etc., that would
introduce noise (Tromp and Pechenizkiy, 2011). For this, we made use of a tool called
Twokenize (Owoputi et al., 2013).

Firstly, we performed experiments to select the best dataset on which to train our LID
models. Both the ECT and Yali datasets were tested with TextCat, obtaining the results that
appear at the top of the Table 3.1, showing the superiority of Yali. Next, we applied a light
normalization on the training corpora in order to reduce its noise levels: we passed the text
to lowercase and eliminated digits (Yalino1), and then we also removed diacritics (Yalino2).
The results obtained using the new training data show clear improvements. On the other
hand, the texting phenomena were of particular interest to us given their language-specific
nature. This is why we only eliminated character repetitions, trying to reduce the sequences
of the same character to one (Yalino3) or two characters (Yalino4), the latter yielding better
results as we show in the mid part of Table 3.1 (Normalization Selection). Finally, we
selected the specific systems to be used in the competition: on the one hand the individual
model that obtained the best results and, on the other, our approach based on voting. In both
cases, the classifiers considered were TextCat, langid.py, and langdetect (see Section 3.2).
The solution based on voting (voter) used all three of them. The obtained results are shown
in the lower part of Table 3.1), with langdetect rising as the winner. This was surprising
given the fact that Lui and Baldwin (2012) showed how langid.py is superior to langdetect
on short texts.

The official results sent to the competition corresponded to langdetect and to our

28 CHAPTER 3. LID IN TWITTER

solution based on voting, in both cases trained on the preprocessed training corpora. In the
case of the constrained track, we trained the classifiers with the tweets of the development
corpus provided by the organizers, while in the unconstrained track we used the Yali dataset.
The results obtained are shown in Table 3.2, where langdetect improves the results of the
voting scheme once again, although the difference is now much lower. The best results
were obtained in the constrained setting, showing that using in-domain data (i.e., tweets)
for training is more important than having a greater amount of out-of-domain data (i.e.,
standard text). In any case, the results obtained are not as good as those obtained in LID
tasks on regular text (Lui and Baldwin, 2012).

3.3.1 Language-level analysis

We have also performed a language-level study and analyzed separately the case of mono-
lingual and multilingual tweets, whose results are shown in Table 3.3. In the latter case,
we did not take into account the ambiguous (AMB) or the undefined (UND) tweets. The
monolingual results confirm the drop in performance for the solution based on voting
(voter), which also has a more irregular behavior. In the case of langdetect, it shows a good
behavior in the case of Spanish (ES) and ambiguous tweets (AMB). The precision is lower for
Catalan (CA), Basque (EU), and English (EN), an unexpected result in the latter cases, since
both languages are very different from the rest, which are Romance languages and, hence,
should be easier to distinguish. The worst performance was obtained for Galician (GL), in
most part due to the confusion with Spanish and Portuguese (PT), a problem we discussed
previously; and for the undefined (UND) entries, whose recall was zero. Regarding the
comparative analysis of monolingual versus multilingual tweets, the results obtained in
terms of multilingual accuracy are even slightly better than in the monolingual case. At the
same time, the recall obtained was practically half that of monolingual tweets, since almost
all the multilingual ones contained two languages. Interestingly, these results indicate that
the single language returned by our models was, in fact, one of the two languages in the
tweet.

3.4 From discrimination to multilingual integration

The presented approach covers the absolute minimum requirement in our pipeline: it
identifies the language a text is written in so that we can choose the adequate modules for
the next steps. However, it does not directly tackle code-switching and, compared to the rest
of the systems presented at TweetLID, it obtains relatively low performance scores. In this
regard, it is worth remembering the challenging nature of the task at hand (Zubiaga et al.,

3.4. TOWARDS MULTILINGUAL INTEGRATION 29

considered tweets available (18397) monolingual (16841) multilingual (350)
run lang P R F1 P R F1 P R F1

co
n

st
ra

in
ed

la
ng

de
te

ct

PT 82.8 90.4 86.4 86.4 90.7 88.5 77.3 68.0 72.3
ES 97.7 81.5 88.9 98.9 82.3 89.9 98.7 50.5 66.8
CA 56.4 89.2 69.1 65.4 92.5 76.6 67.4 34.1 45.3
GL 23.1 84.1 36.2 24.8 85.3 38.4 13.6 33.3 19.4
EN 69.6 82.2 75.4 81.9 92.3 86.8 96.5 31.1 47.0
EU 56.1 84.8 67.5 69.4 95.8 80.5 97.9 46.1 62.7
UND 100 0.8 1.7 – – – – – –
AMB 100 75.4 86.0 – – – – – –
GLOBAL 73.2 73.6 63.9 71.1 89.8 76.8 75.2 43.8 52.2

vo
te

r

PT 50.7 70.7 59.1 52.8 71.1 60.6 23.9 44.0 31.0
ES 93.7 66.8 78.0 95.0 67.6 79.0 94.8 35.6 51.8
CA 48.7 73.2 58.5 52.6 75.7 62.1 67.6 29.4 41.0
GL 9.1 46.7 15.3 10.6 47.3 17.3 5.6 22.2 8.9
EN 52.7 65.5 58.4 58.8 72.5 65.0 88.5 30.5 45.4
EU 32.8 71.3 44.9 36.5 79.1 50.0 83.3 44.1 57.7
UND 100 0.3 0.6 – – – – – –
AMB 100 71.9 83.7 – – – – – –
GLOBAL 61.0 58.3 49.8 51.1 68.9 55.6 60.6 34.3 39.3

u
n

co
n

st
ra

in
ed

la
ng

de
te

ct

PT 67.9 84.2 75.2 70.8 84.7 77.1 48.0 48.0 48.0
ES 97.4 74.6 84.5 98.7 75.7 85.7 98.2 36.2 53.0
CA 56.7 86.5 68.5 64.1 89.7 74.8 77.8 32.9 46.3
GL 17.5 75.1 28.4 18.5 74.9 29.7 18.4 77.8 29.8
EN 58.8 83.2 68.9 69.3 91.0 78.6 91.8 44.1 59.5
EU 47.2 83.0 60.2 57.0 92.7 70.6 96.2 49.0 64.9
UND 100 0.7 1.5 – – – – – –
AMB 100 63.5 77.6 – – – – – –
GLOBAL 68.2 68.9 58.1 63.1 84.8 69.4 71.7 48.0 50.3

vo
te

r

PT 68.0 77.3 72.4 70.0 77.8 73.7 47.4 36.0 40.9
ES 93.2 86.8 89.9 94.7 87.2 90.8 96.9 70.9 81.9
CA 74.7 71.3 72.9 80.6 74.6 77.5 92.9 15.3 26.3
GL 32.1 37.9 34.7 32.7 38.1 35.2 30.0 33.3 31.6
EN 37.6 81.3 51.5 50.5 93.1 65.5 82.2 20.9 33.3
EU 64.5 62.0 63.2 72.6 70.4 71.5 91.7 32.4 47.8
UND 0.0 0.0 0.0 – – – – – –
AMB 100 56.5 72.2 – – – – – –
GLOBAL 58.8 59.1 57.1 66.9 73.5 69.0 73.5 34.8 43.6

Table 3.3: Language-level results.

2014), as recognized by the organizers themselves and supported by the low baseline scores
obtained through Twitter metadata and vanilla TextCat. Moreover, only two of the systems
presented considered the problem of code-switching but none of them were successful on
this purpose. As explained before, the difficulties continue with discerning between similar
languages frequently used together in a context where one of them is underrepresented
compared to the rest, such as the case of Galician and Spanish. That said, and instead of
looking for specific solutions to these problems, we posit if language identification is the
best solution for our use case.

Essentially, a language identification step allows us to extract and consolidate the concern
of multilinguality in a specific module of the pipeline, benefiting the modularity of the final

30 CHAPTER 3. LID IN TWITTER

system by letting other modules to focus on one specific language at a time. But let us now
assume that there exist some common intermediate language to which we can translate our
multilingual inputs. In this scenario, we would replace the goal of discriminating between
languages to integrating them in a common substrate (i.e., the intermediate language), so
that the rest of the modules of the pipeline would be only concerned with processing input
in such common language.

A possible implementation of this idea are the multilingual embedding models (Artetxe
et al., 2018a; Conneau et al., 2018a; Ammar et al., 2016; Mikolov et al., 2013a) on which we
base our work on this topic in Chapter 7. In short, they use real-valued vectors as intermedi-
ate representations encoding the linguistic properties of words from multiple languages;
e.g., due to similar semantics, the numerical representations for “house” and its Spanish
translation, “casa”, should be close to one another, so that processing texts containing any of
those leads to similar results. In this case, code-switching ceases to be a problem and, in fact,
plays in our favor serving as an important hint to relate word translations, since “house” and
“casa” would be seen in similar contexts. This is why some methods to obtain multilingual
word embeddings introduce artificial code-switching at training time (Luong et al., 2015;
Wick et al., 2016) in order to strengthen the similarity between word translations and, thus,
integrate both languages more tightly in the embedding space.

3.5 Related work

As already mentioned, the traditional setting for language identification involves long
monolingual texts where the corresponding categorization problem can be tackled with
simple techniques. The most famous one is the frequentist approach where we count the
occurrence of character n-grams to build language profiles, and then compare the profiles of
new documents with the previous ones to identify the language (Cavnar and Trenkle, 1994).
Other common approaches involve training classifiers such as Näıve Bayes using character
or byte n-grams (Baldwin and Lui, 2010; Lui and Baldwin, 2012; Shuyo, 2010) and various
other combinations of features; e.g., Hammarström (2007); Ceylan and Kim (2009) employ
dictionary and affix information, Giguet (1996) considered the characteristic tokenization
patterns of each language, and Lins and Gonçalves (2004) used syntacting patterns rather
than lexical ones. Alternatively, some authors employ more complex classifiers, such as
Support Vector Machines (Baldwin and Lui, 2010; Lodhi et al., 2002), while others use
Markov Models (Dunning, 1994) or Monte Carlo Sampling (Poutsma, 2001).

Language identification might be considered a solved problem in the previous scenario
by some authors (McNamee, 2005). However, the progress on microtexts, and specifically
tweets, is slower due to their unique set of characteristics, which calls for customized

3.6. CONCLUSIONS 31

methods for this domain. Laboreiro et al. (2013); Carter et al. (2013); Hong et al. (2011)
show that adding new types of features in a classifier such as the language in which linked
webpages are written, named entities mentioned, mentions, hashtags, replies, retweets,
and other stylistic choices relating with texting phenomena (e.g., using “kkk” to represent
laughter is unique to Brazilian Portuguese speakers), clearly improves the performance over
a basic character n-gram classifier.

Regarding the systems presented at the TweetLID itself, they were mostly adaptations
of traditional approaches (Zubiaga et al., 2014). To begin with, all of the systems used
character n-gram features, with the exceptions of Hurtado et al. (2014) which included
word information, and then Gamallo et al. (2014) went further by adding suffix informa-
tion. For the classification part, Näıve Bayes (Gamallo et al., 2014) and Support Vector
Machines (Hurtado et al., 2014; Porta, 2014) yielded the best results. Notably, these latter
two also considered the multilingual dimension of the task, although the best results were
obtained by the monolingual models of Gamallo et al. (2014), which shows that multilin-
guality was not determinant on this occasion. In any case, most of the presented approaches
output confidence scores for each considered language, and thus Hurtado et al. (2014) and
Porta (2014) trained a threshold parameter to not only include the single best matching
language, but also those that surpassed the threshold.

3.6 Conclusions

In this chapter, we have presented our approach for the language identification task in the
context of the TweetLID shared task (Zubiaga et al., 2014). Our proposed solution goes
through adapting and re-training existing LID tools using various corpora of our choice, so
that they all share the same starting point in this regard. With respect to the results, we can
see how existing tools that report good performance in other more traditional domains or
even short texts are not as accurate in the current context. Specifically, langid.py, which
was initially evaluated on microtexts obtaining better results than its competitors (including
langdetect), is not able to obtain remarkable results in our use case. We can conclude that
the problem of language identification is not a solved problem in NLP, given the difficulties
of existing tools to tackle the particularities of our experimental settings.

Finally, we question whether using language identification to support multilingual
input in our preprocessing pipeline is the optimal solution. Instead, we consider using an
intermediate language to which translate our multilingual inputs; in our case, by using
multilingual word embeddings.

32 CHAPTER 3. LID IN TWITTER

Chapter 4

Microtext normalization

As explained in Section 1.2, when dealing with user-generated content such as tweets and
other similar sources for NLP or text mining purposes, texting phenomena make automatic
processing of this type of content difficult, as most of the available resources tend to be
designed to deal with plain standard text (Gimpel et al., 2011; Ritter et al., 2011; Foster
et al., 2011).

In this chapter, we take the input adaptation or normalization path to overcome the
challenges posed by lexical variants in microtexts and other user-generated content (Eisen-
stein, 2013). This is, given an input text affected by texting phenomena, we perform a
correction at the lexical level which tries to make it adhere in a higher degree with the
corresponding writing standards. Applying this as a preprocessing step in an NLP pipeline,
we discharge later models such as PoS taggers or dependency parser of the responsability to
handle texting-related concerns, favoring the modularity of our solutions.

Specifically, we describe the microtext normalization1 system we have used to participate
in the W-NUT 2015 shared task 2 (Baldwin et al., 2015). Similarly to TweetLID (see previous
chapter), in this shared task there are also two tracks: constrained and unconstrained, which
affects the choices of resources to be used. On this occasion, we follow a mostly symbolic
approach and focus on its modularity and adaptability, which is why we also describe in
great extent most of its design and implementation details at the end of the chapter.

1This preprocessing task usually refers to microtexts in its name since they constitute its main focus, but is
not limited to normalizing short texts.

33

34 CHAPTER 4. MICROTEXT NORMALIZATION

4.1 Architecture

Our normalization system was developed taking as basic premises its modularity and
adaptability, two general design concerns of our work (see Section 1.2) which allow us to
tackle complex problems and support multiple dynamic domains more easily.

As a starting point, we took a previous prototype for Spanish tweet normalization (Vilares
et al., 2013) which, although functional, did not comply with our requirements. The
proposed approach, however, shares its symbolic nature with the previous one, implying
that the behaviour of the system is mostly defined by hand and the application of machine
learning techniques is limited. Because of this, special attention has been paid to design and
implementation details that optimize maintainability, a desirable property of systems where
human intervention is required for a foreseeable future, which we leave for Section 4.3. In
the following paragraphs, we focus on the fundamental ideas behind our approach that will
interest a more NLP-centered reader.

Normalization can be considered as a superset of spell-checking (Aw et al., 2006), where
lexical variants not only originate from simple spelling mistakes such as “tkae”-“take”, but
include acronym expansion (e.g., “smh”-“shaking my head”), creative spelling (e.g., “l00t”-
“loot” or “dawg”-“dog”), or special tokens not to be processed such as hashtags, smileys, or
URLs. On top of this, normalization also assumes an automated correction process where it
is not enough to obtain candidate words to replace those badly spelled, but also to select
the correct ones given the particular context in each case. Following this reasoning, our
central idea for a normalization system is extending the capabilities of an already existing
spell-checker to cover the characteristic phenomena of user-generated text. Hence, we
would need to use a filter for special tokens, a spell-checker, auxiliary candidate generators
based on phonetic algorithms or normalization dictionaries, and finally a candidate selector.
More specifically, these components may be split and located into three sequential stages in
a normalization pipeline, based on the two-stage approach of Han and Baldwin (2011):2

Input preprocessing. This is the only addition to the traditional two-stage approach. Here,
we filter special elements that do not need normalization and would interfere in the process,
such as hashtags, smileys, or URLs. This is achieved through the use of regular expressions
and the PoS tags obtained by the Twitter-focused NLP toolkit ark-tweet-nlp (Owoputi et al.,
2013).

2Note that this leads to using a general pipeline for the preprocessing tasks considered in this work (see
Section 1.3.1) and also a subpipeline for the normalization part.

4.1. ARCHITECTURE 35

Candidate generation. For each word in the input not filtered in the previous step, we
generate a set of normalization candidates (which includes the original word) by using spell-
checkers, phonetic algorithms, and normalization dictionaries. The former two components
can be merged together, as is the notable case of aspell (Atkinson, 2011) and the Double
Metaphone (Philips, 2000), which we use here. Since only off-the-shelf tools are permitted
in the constrained track, we used aspell with its default dictionary but filtering its retrieved
candidate corrections taking as reference the canonical lexicon; i.e., only those candidates
that could be found on this lexicon were taken into account. For the unconstrained run, we
integrated the canonical lexicon provided into aspell.

Interestingly, many authors have noted the weight of a good phonetic processing of
non-standard texts (Kobus et al., 2008b; Beaufort et al., 2010; Xue et al., 2011; Han et al.,
2013a; Schulz et al., 2016). For this reason we also conducted a study of the most famous
phonetic algorithms publicly available for their use in normalization candidate generation,
which can be consulted in Appendix A.3

On the other hand, the normalization dictionaries are usually formed by pairs of (non-
standard variant - standard word), and can be obtained automatically (Sridhar, 2016;
Hassan and Menezes, 2013; Bertaglia and Nunes, 2016; Gouws et al., 2011) or manually,
as in our case, where we concatenate the two normalization dictionaries and training data
provided. Our idea is to cover frequent texting phenomena not already considered by the
other candidate generators; mainly, acronyms (e.g., “lol”-“laughing out loud”) and slang
(e.g., “curve”-“turn someone down”).

Candidate selection. Lastly, we select one normalization candidate for each input word by
using context information; i.e., we choose the candidates that are most likely to appear next
to their surrounding words, which are candidates themselves. To do this, we use a word-
based n-gram language model trained on unlabeled text, which stores the probability of the
occurrence of some input word wt given the previous ρ words in the input, as introduced in
Section 2.2 (replacing words with tokens). With this information, we use a search algorithm,
in this case a Viterbi decoder (Viterbi, 1967), which navigates the candidate lattice and
chooses the optimal path; i.e., sequence of candidates for each input word. Specifically,
we train a Kneser-Ney bigram (ρ = 1, since ρ = n− 1) language model (Kneser and Ney,
1995) with the BerkeleyLM tools (Pauls and Klein, 2011) and the normalized tweets from
the shared task training dataset.

In our current implementation, this is the only place where we score the candidates
obtained in the previous step, and we will see how this is not an effective solution. However,

3As already mentioned in Section 1.4, while the contents of this Appendix are important in the context of
microtext normalization, they are not required to follow the main storyline of which this is a part.

36 CHAPTER 4. MICROTEXT NORMALIZATION

P R F1
training

constr 89.6 87.5 88.5
unconstr 89.1 87.4 88.3

test
constr 46.5 62.8 53.4
unconstr 45.9 63.0 53.1

Table 4.1: Results on the training and test datasets.

we have considered this approach which can rely mostly on unsupervised methods in order
to make our system easily adaptable to new domains and also to the ever-evolving nature of
texting language (Eisenstein, 2013), lowering the requirement for costly human annotators.
The only supervised component currently in use would be the normalization dictionary,
which can be nonetheless obtained through fully automated means.

Unfortunately, regular words in a non-standard text are not always clearly delimited,
which can be a consequence of a spelling mistake (e.g., “an dno”-“and no”, “wasnot”-“was
not”) or an intentional variation (e.g., “im possible”-“impossible” to convey emphasis).
Since our system operates at the word level, this phenomenon disaligns input and output,
causing many input words to correspond to an output word (n-1 mapping) or an input
word correspond to many output words (1-n mapping). With our current approach, we only
provide explicit support for some form of 1-n mapping when the non-standard word is an
acronym (e.g., “brb”-“be right back”). In order to tackle this problem following our modular
philosophy, we could use a word segmentation step before word normalization that corrects
word delimiter placement. This part of our preprocessing pipeline will be described in the
next chapter.

4.2 Evaluation

The upper part of Table 4.1 shows the results obtained for the training corpus. It should
be noted that these correspond to an overfitted system, since we inadvertently used a
language model built using the whole training dataset (for candidate selection) in our
10-fold cross-validation framework. Nevertheless, this also gave us an interesting clue to
the main performance bottleneck of our system, as we will discuss below.

The performance metrics are again precision (P), recall (R), and F1 score (F1) but
adapted to the present context. In this case, precision is the number of correctly normalized
words over the total of normalizations performed, recall changes the denominator to the

4.3. IMPLEMENTATION 37

total number of words to be normalized, and F1 is defined by aggregating the former two:

F1 = 2 · P ·R
P +R

(4.1)

The lower part of Table 4.1 shows the results obtained for the test corpus. At the sight
of these figures, which differ considerably from the previous ones, we decided to analyze
them in more detail. For this purpose, we obtained a recall metric on the scope of the
generated candidates in order to see how many times the correct candidate was among the
ones considered by the system. The resulting ratio amounted to 0.87, a more consistent
figure with respect to those shown in the case of the training results. Therefore, we can
conclude that the performance bottleneck of our system is the candidate selection process,
which is heavily influenced by the language model in use.

In this respect, additional experiments were conducted by extending our unconstrained
configuration with the unigrams and bigrams from the Web 1T 5-gram v1 English lan-
guage model made available by Google (Brants and Franz, 2006). However, the resulting
performance was unsatisfactory, and we ended up discarding this option. According to
our analysis, the cause for this seems to be the great differences, at both the lexical and
syntactical levels, between the texts used to build this model, which could be considered
as regular texts, and those corresponding to tweets, which agrees with the observations
of (Chrupała, 2014). As illustrative examples of this type of expressions we can take “I like
them girls” and “Why you no do that?”, which are lexically correct but not syntactically
valid, so language models built using regular texts will not recognize them. In the case of
our previous preliminary experiments on Spanish, this difference was not so clear.

We have also observed a clear tendency to overnormalize the input, this is, to normalize
standard input words which are being correctly used. Specifically, this amounts to the 45%
of the total number of errors in the test dataset (constrained track), where a 65% of the
total number of words should be left unchanged. Again, having the language model as the
only scoring mechanism seems insufficient for this case, and we could have introduced a
weighting factor to favor the original input words in the candidate selection process. This
would mean increasing the low precision of our system at the expense of some amount of
recall.

4.3 The normalization pipeline: implementation details

We decided to give our system an object oriented approach as opposed to the imperative
approach of the original prototype. At its core, our normalization system is structured as a
pipeline of processors, modules that together implement the stages described in Section 4.1.

38 CHAPTER 4. MICROTEXT NORMALIZATION

During its development, we have followed good engineering practices and made extensive
use of design patterns. Among them, we highlight the use of the decorator pattern which,
in our context, represents a simple pipeline, allowing us to dynamically stack an arbitrary
number of processors. Its combination with the composition pattern lets us group them into
stages, which enable the definition of particular processor sequences while still sharing the
same basic processor interface, thus preserving the flexibility of the decorator. Thereby, the
resulting structure allows for the dynamic construction of different pipeline configurations
of varying complexity and different levels of abstraction, not being restricted to the original
settings.

The application of the template pattern allowed us to factorize great part of the common
processes of the components, such as the sequential iteration through all the input tweets,
which most of the processors perform. This resulted in a great homogenization of the
code, thus simplifying maintenance and allowing us to focus our efforts on the specific
implementation of the processing methods in each case.

Moreover, some processors make use of external tools capable of being changed even
at runtime—something of special interest in multilingual environments. It should also be
possible to integrate them into other external components, so that their logic can be reused
by others. All this involves decoupling the processors from the specific implementations
of the external components employed, which we have achieved through the use of the
inversion of control pattern.

Furthermore, communication between the components of the pipeline is done through
structured text files, allowing us to gain flexibility as we can integrate and exchange with
ease new processing modules regardless of their particular implementation (Vilares et al.,
2013). In this case we have used XML along with an implementation of the abstract factory
pattern for its construction and parsing. This also facilitates possible future migrations to
other data representation languages, such as JSON.

Finally, we have created a dynamic configuration subsystem based on XML files that
allows us to define and instantiate the particular structure of the pipeline on which we
want to process the tweets. The advantages of such a subsystem are clear, both for system
maintainability and testing:

1. It improves the multilingual support of the system by enabling the definition of
configurations that use processors and resources designed for a particular language.

2. It allows for experimentation in a simple, agile, and documented manner, since the
configuration file itself also serves as documentation.

3. It avoids the necessity of modifying the system source code.

4.3. IMPLEMENTATION 39

4.3.1 Configuration before W-NUT 2015

The processor configuration for Spanish tweet normalization derives from that one used by
the initial prototype for its participation in the TweetNorm 2013 task (Alegria et al., 2013).
We now enumerate the processors used to implement the stages described in Section 4.1.

• FreelingProcessor, which reads the input data in the TweetNorm 2013 format and
uses Freeling (Padró and Stanilovsky, 2012) to perform the tokenization, lemmatiza-
tion, and PoS tagging (although these tags are not currently in use) of the text of the
tweet.

• MentionProcessor, HashtagProcessor, URLProcessor, and SmileyProcessor, wh-
ich act as filters for OOVs we do not want to consider for normalization.

• LaughESProcessor, which normalizes laugh string representations, as in “ja”-“jajaja”.

• PhoneticProcessor, which uses a phonetic table to map characters to their phonetic
equivalent strings, such as “x”-“por”.4

• SMSDictionaryProcessor, which looks for normalization candidates in an SMS dic-
tionary, for example “tb”-“también” (“too”/“also”).

• AspellProcessor, which obtains normalization candidates using the spell checker
aspell (Atkinson, 2011), as in “polémica”-“polemik” (“controversy”). It should be
noted that this tool has been customised with a new phonetic table for Spanish, based
on the Metaphone algorithm (Philips, 1990; Mosquera, 2011) and a new Spanish
dictionary extracted from Wikimedia resources.5

• AffixESProcessor, which identifies and normalizes affix-derived Spanish forms of
base words, also supporting phonetical writing, as in the case of “chikiyo”-“chiquillo”
(“little boy”), obtained from “chico” with the diminutive suffix “-illo” (“little”/“small”).

• NGramProcessor, which calculates the scores of those most likely normalization
candidates according to the Viterbi algorithm (Manning and Schütze, 1999, Ch. 9)
taking as reference the Web 1T 5-gram v1 (Brants and Franz, 2006) Spanish language
model.

• CandidateProcessor, which selects the top-scoring candidate for each word.

• ResultProcessor, which dumps the tweet data obtained by the system to a file using
the required format.

4The character “x” resembles the multiplication (times) sign ×, which in Spanish is read as “por”.
5http://wikimediafoundation.org

40 CHAPTER 4. MICROTEXT NORMALIZATION

4.3.2 Adaptation for W-NUT 2015

In general, the adaptation process revolved around implementing new processors and
integrating new resources to account for the requirements of this new use case, such as
the use of English instead of Spanish or the new I/O data format, while leaving the base
structure of the system untouched. This was precisely the main goal during the initial
refactoring process. The resulting configuration includes the following new processors:

• WNUTTweetProcessor, which parses the structured input (now in JSON format instead
of plain text) and obtains the system representation of the tweets.

• ArkTweetProcessor, which uses the ark-tweet-nlp PoS tagger to obtain the mor-
phosyntactic information of the input tweet tokens.

• WNUTFilterProcessor, which filters out all those terms that should not be normalized
according to the task rules (mentions, hashtags, URLs, etc.) using regular expressions
and the information obtained in the previous step.

• LowerCaseProcessor, which takes all the candidate forms of a token and lowercases
them. AspellCProcessor, a constrained version of the original AspellProcessor
described above.

• WNUTNgramProcessor, which is similar to the previous NGramProcessor but with
some added modifications to fit the particularities of our new custom language model.

• WNUTResultProcessor, which dumps all tweet data generated by the system in the
required output format (JSON).

We show in Figure 4.1 a graphical representation of the architecture of the system both
before (left side) and after (right side) the adaptation.

4.4 From normalization to texting phenomena encoding

In the context of the W-NUT 2015, our normalization pipeline did not obtain as good
results as expected. The best performers were mostly systems that exploited the training
data to a higher extent through various supervised models (Jin, 2015; Supranovich and
Patsepnia, 2015; Min and Mott, 2015). In our case, we relied on the language model at
the last stage of the pipeline to select normalization candidates in an attempt to place less
emphasis on the human supervision signal and thus make the system more easily adaptable
to changes (Bertaglia and Nunes, 2016; Eisenstein, 2013; Han et al., 2013a). However, we

4.4. TEXTING ENCODING 41

Figure 4.1: Original pipeline (left) and pipeline adapted for W-NUT 2015 (right) integrated
into the architecture of the system.

have already shown that a language model trained on either large amounts of originally
standard text or a small amount of normalized tweets is not able to choose the adequate
candidates even when they were generated in previous steps. A possible solution would
be to train a higher order n-gram model on large amounts of tweets containing only IV
words, following (Han et al., 2013a; Yang and Eisenstein, 2013). Alternatively, we could
also introduce scoring information in the candidate-generation steps by using an error
model (Shannon, 1948). Thus, the probability of a particular word normalization is not
only determined by its context but also given the frequency of that particular normalization
in a training corpus. In principle, this makes our approach more dependent on an explicit
supervision signal, which we would prefer to avoid.

42 CHAPTER 4. MICROTEXT NORMALIZATION

Most interestingly, however, is observing that a series of state-of-the-art normalization
systems are now relying on word embedding models to obtain and also select normalization
candidates in the traditional two-stage architecture (Bertaglia and Nunes, 2016; van der
Goot and van Noord, 2017; Ansari et al., 2017; Sridhar, 2016). When these models are
trained on large amounts of standard and non-standard text, they tend to cluster together
lexical variants, which can be then exploited in the normalization process; e.g., “yes”, “yeah”,
and “yeeahh” will probably have similar vector representations, so that given the latter we
can use the former as normalization candidates, selecting the second one afterwards based
on other criteria such as edit distance6 or any other lexical similarity metric.

Taking this into account, it appears as if the rest of the modules of a normalization
system fulfill two roles with respect to the embedding model:

1. Tackling low frequency non-standard variants in the training corpus which appear far
away from each other in the embedding space (e.g., “dawwgg” may not be frequently
used compared to “dawg” for the standard word “dog”, hence their vectors will not be
similar).7

2. Transforming, or decoding, the continuous representations of words into their associ-
ated discrete linguistic symbols (i.e., words), needed as output for this task.

At this point, we can once again consider, analogously to the previous chapter for language
identification, if normalization is the only option that we have when dealing with the noise
in user-generated texts. As we will now see, this is not the case.

Let us assume that word embeddings can ultimately encode this noise in an effective
way, as it appears to be the case given their usefulness not only in the normalization systems
mentioned earlier, but also when using them instead of explicit preprocessing (van der
Goot et al., 2017). Essentially, we would replace the normalization dictionary induction
of those approaches with the direct use of the corresponding word embeddings. Then, the
transformation of embeddings into words at the last step can be dismissed altogether if we
consider that the following systems receiving our output will convert it back to a continuous
representation, as in all the neural-based models that comprise the current state of the art
in NLP and many other fields. On this basis, we can bypass the second concern mentioned
in the previous paragraph. Now, regarding the low frequency variants which may not be
easily captured by traditional distributional models, we can cover them by augmenting the
training procedure of word embeddings to more explicitly encode the information relating

6Minimum number of character additions, removals, substitutions, or transpositions to transform one string
into another (Levenshtein, 1966).

7Note, however, that they are morphologically similar, and this is exploited by some embedding models, as
we will see in Chapter 8.

4.5. RELATED WORK 43

to spelling variants, as we will discuss in Chapter 8. The result is a word embedding model
which can be used instead of, or complementing, a microtext normalization system.

It is worth noting that this solution retains a high degree of modularity and adaptability:
word embeddings can be trained separately from the final system where they are used, and
obtaining them only requires unlabeled data, which can be easily gathered at any point
in time for virtually any domain. In turn, this highlights the possibility of having a much
simpler system compared to the solution presented in this chapter.

Finally, both our current normalization system and most word embedding models operate
at the word level, requiring in principle that words in the input text are correctly delimited.
In reality, and as we will see in Section 8.3, word embeddings that exploit subword
information seem to support word joining partially, relaxing the accuracy requirements for
a word segmentation step such as the one described in the following chapter.

4.5 Related work

There are three traditional formulations for microtext normalization, also referred to
as metaphors by Kobus et al. (2008a): spell-checking, machine translation, and speech
recognition. In the first case, the microtext normalization problem is tackled through
a noisy channel model (Shannon, 1948) where, given a noisy text N , its correspondent
normalization S, an error model P (N |S), and a (unigram) language model P (S), we want
to find argmax P (N |S)P (S). The error model may be built on information such as edit
operations (Brill and Moore, 2000) or various graphemic and phonemic features (Choudhury
et al., 2008; Toutanova and Moore, 2002). Similarly to spell-checking, this approach
operates at the word level, does not take word context into consideration, and assumes that
words in a standard vocabulary should not be corrected; in other words, it does not consider
real-word errors such as in “Eye like NLP”, where the standard word “Eye” is incorrectly
used due to having the same pronunciation as “I”, the correct word for this context.

In order to perform context-dependant corrections, approaches akin to statistical ma-
chine translation explore the use of phrase-level translations between a source (non-stan-
dard) and a target (standard) language (Aw et al., 2006), which nonetheless are adjusted
for the similarities between the non-standard and the standard language. On the other hand,
given the notable influence that spoken language has on microtexts, we may process the
input words assuming that their spelling is closer to their pronunciation rather than to their
standard spelling. Speech recognition techniques are useful in this scenario (Kobus et al.,
2008a). In any case, the three formulations for microtext normalization are not mutually
exclusive and can be combined to exploit the advantages of each one of them, as is usual
for most systems (Schulz et al., 2016; Kobus et al., 2008a; Beaufort et al., 2010).

44 CHAPTER 4. MICROTEXT NORMALIZATION

More recently, the celebration of the W-NUT 2015 workshop (Baldwin et al., 2015)
has brought much attention to microtext normalization. The 2015 edition, where we
participated with the work presented in this chapter, featured mostly supervised machine
learning models that achieved high scores (Jin, 2015; Supranovich and Patsepnia, 2015;
Min and Mott, 2015), although a simpler approach mainly based on normalization lexicons
was presented by (Beckley, 2015) which also obtained competitive results. Some of the
participant machine learning models were already based on neural networks (Leeman-Munk
et al., 2015; Min and Mott, 2015; Wagner and Foster, 2015) at a time when they were still
not popular in NLP. While obtaining good results, they could not prove to be significantly
better than traditional statistical models, such as Random Forests (Jin, 2015) or Conditional
Random Fields (Akhtar et al., 2015; Supranovich and Patsepnia, 2015).

It is also interesting to distinguish between data-driven supervised approaches, such
as those presented at W-NUT 2015, and unsupervised ones, which remove the need for
human annotations or pre-built dictionaries and are more easily adaptable to new domains
and the evolution of the texting language (Eisenstein, 2013). Generally, these approaches
exploit lexical similarity metrics to identify and score normalization candidates, word
distribution to automate the construction of normalization lexicons, and language models
to aid in candidate selection (Sridhar, 2016; Hassan and Menezes, 2013; Gouws et al.,
2011; Han et al., 2013a). Given the proliferation of this type of approaches, where our
own normalization system would ultimately correspond, together with the impact of neural
networks, we decided to focus on the word distribution part when modelled as word
embeddings (Bertaglia and Nunes, 2016; van der Goot and van Noord, 2017; Ansari et al.,
2017; Sridhar, 2016). As we will explain in Section 4.4, this led us through a different
research path, where word embeddings are not only the means, but also the goal itself.

Finally, there have been some efforts in microtext normalization for languages other than
English; e.g., Spanish (Alegria et al., 2013, 2015), French (Kobus et al., 2008a; Beaufort
et al., 2010), Dutch (Schulz et al., 2016; van der Goot and van Noord, 2017), Brazilian
Portuguese (Bertaglia and Nunes, 2016; Duran et al., 2015), Arabic (Duwairi et al., 2014),
Chinese (Wang and Ng, 2013), or Japanese (Ikeda et al., 2016). This is important to note as
the appropriate normalization procedure is highly dependant on specific language features,
such as phonetics (Satapathy et al., 2017). Furthermore, some approaches also focus on the
modular design of the system (Schulz et al., 2016; van der Goot and van Noord, 2017).

4.6 Conclusions

We have presented in this chapter the tweet normalization system used to participate in the
W-NUT 2015 shared task 2. Our approach is based on the traditional two-step framework

4.6. CONCLUSIONS 45

of candidate generation, for which we use a spell checker and a normalization dictionary,
and candidate selection, implemented through a word-level language model and a search
algorithm. We also strove for a modular and adaptable solution, obtained through the use
of the appropriate design patterns.

The analysis of the results obtained at this point showed a wide margin for improvements.
However, instead of working in the same direction as most existing normalization systems,
we propose directly using word embeddings which encode texting phenomena. By doing so,
we may overcome the encountered obstacles in a way that better aligns with the current
state of the art in NLP, consisting mostly of neural-based end-to-end approaches.

46 CHAPTER 4. MICROTEXT NORMALIZATION

Chapter 5

Word segmentation

The normalization system presented in the previous chapter operates at the word level.
However, word boundaries are not always properly used in non-standard texts, and they
are even fully omitted in special tokens such as hashtags which, although not a target for
normalization, can still be interesting to analyze. Following the divide and conquer principle
of splitting complex problems into smaller and simpler ones, we consider here word
segmentation as a separate task in our preprocessing pipeline, preceding the normalization
step.

Our proposed approach consists of a beam search algorithm assisted by a byte or
character-level language model, which is implemented using a neural network or an n-gram
model, respectively. The beam search algorithm goes through the input one token at a time
(in this case, a byte or character) generating, for each step, a set of partial segmentation
candidates by checking the likelihood of the current candidates and the probability of the
next token corresponding to a word boundary in the language model. Then, at the end of
each step, the n best candidates are chosen as input for the next one.

In our experiments, we have compared the described approach with the Microsoft Word
Breaker (Wang et al., 2011) and the WordSegment Python module (Jenks, 2017). The
languages considered for our tests were English, Spanish, German, Turkish, and Finnish,
and we also included a test set comprised of English tweets. The latter three languages
are known for their complex morphology, with Turkish and Finnish being agglutinative
languages and thus conforming a greater challenge for a segmentation system (Manning
et al., 2008, Chapter 2).

Overall, our approach was able to outperform both the Word Breaker and WordSegment
for all of the languages considered, with the sole exception of a tie with WordSegment
in one of the Spanish datasets. But most notably for us, our systems obtained notable
improvements in such an interesting case as the Twitter dataset. Looking at the performance

47

48 CHAPTER 5. WORD SEGMENTATION

obtained by the different types of language models used, we surprisingly see strong numbers
for the simpler and faster n-gram model, which was in several cases on par with the more
sophisticated neural model.

5.1 Problem domain

We define here word as a sequence of characters delimited by special boundary characters.
This is an important concept in NLP as there are several tasks and systems which rely
on word level information to achieve their goals. For instance, tokenization, a common
preprocessing stage in many pipelines that splits an input sentence into its constituent tokens,
requires that boundary characters are correctly used to be able to identify the corresponding
tokens. In this context,1 a token is usually a word or a group of words which constitutes the
basic element to process in a particular task, such as in entity recognition (Tjong Kim Sang
and De Meulder, 2003), PoS tagging (Ratnaparkhi, 1996), sentiment analysis (Vilares et al.,
2017b), or in most word embedding models (Mikolov et al., 2013; Pennington et al., 2014;
Bojanowski et al., 2016)

While an English speaker can easily discern the words in “thepricewasfair”, a machine
can only see a sequence of characters—or more precisely, bytes—, corresponding to one
long word. By explicitly executing a word segmentation step, the machine inserts word
boundary characters between sequences of characters that would end up constituting words
in some particular language. The resulting text, in our example “the price was fair”, can
now be further processed at the word level, as these elements are now clearly isolated from
each other. It is worth noting that this scheme also works for incorrectly segmented texts
such as “th e pricew asf air” by first removing all the word boundaries. We show some
example instances of the problem we are trying to solve in Table 5.1.

Our main objective is to develop a word segmentation system which can be used before
the microtext normalization step in our preprocessing pipeline system described in the
previous chapter. In this context, the biggest challenge comes from the type of texts we
are dealing with, which are still affected by texting phenomena. These introduce a great
amount of data sparsity in the problem at hand, as “hiiii” is not exactly the same as “hii”
or “hi” but must be treated equally by the segmenter as one word. Because of this, we
abandon the word level processing of these texts and opt instead for a character or byte
level approach in order to tackle the resulting data sparsity problem.

1Not in our case, where a token is either a byte or a character.

5.2. SYSTEM DESCRIPTION 49

Input Output
mostvaluablepuppets most valuable puppets
webdesign web design
RantsAndRaves Rants And Raves
thankU thank U
work allday work all day
o m g u serious ?? omg u serious??
Safe way is very rocknroll tonight Safeway is very rock n roll tonight

Table 5.1: Example instances of the problem we are trying to solve as input/output pairs.

5.2 System description

Before going into details, it is important to note that we will view the input text as a
sequence of bytes when using the neural model and as a sequence of characters when using
the n-gram model. We will refer to either a byte or a character as a token.

Our approach is conformed by two components: the beam search algorithm and the
language model. The search algorithm acquires the input text and firstly removes all word
boundary tokens. Then it analyzes the resulting text one token at a time, deciding whether a
word boundary token would be appropriate in that position. If it is, two partial segmentation
candidates may be generated, with and without the boundary. At some point, the number
of candidates exceeds some predefined upper limit n, the beam width, and the n best
candidates are chosen to continue the process. When the whole input is processed by this
algorithm, m candidates from the currently n best are chosen as the final result. Figure 5.1
shows a simplification of the described procedure.

All decisions taken by the algorithm are based on the information retrieved from the
language model, which estimates the likelihood of sequences of tokens. More precisely,
given an input token and a history of ρ previous tokens, the language model approximates
the probability distribution over all the possible token values for the next token in the
sequence.

5.2.1 Language model

We use both recurrent neural networks and n-gram models to implement this component,
which have been already introduced in Section 2.2. In this section, we delve into the details
of the former type of model, as its inherently higher complexity calls for a more thorough
analysis.

Given their focus on dealing with sequential data, such as text, recurrent neural networks

50 CHAPTER 5. WORD SEGMENTATION

Figure 5.1: Simplified illustration of the algorithm execution, with n = 2 and m = 1.

are particularly fitting for language modelling. This is reflected in their wide use in several
NLP tasks, such as machine translation (Johnson et al., 2017), dependency parsing (Vi-
lares and Gómez-Rodŕıguez, 2017), question answering (Iyyer et al., 2014), or language
modelling (Sundermeyer et al., 2012). Recurrent neural networks differ from traditional
feed-foward networks in that they allow to use the output information corresponding to the
input t when processing input t+ 1. The existence of different types of recurrent networks
comes from the different designs of their recurrent units. In our case, we have used LSTM
units (Hochreiter and Schmidhuber, 1997) for the construction of our neural networks as
they have proven very effective for language modelling (Sundermeyer et al., 2012). These
LSTM units contain a memory cell, which stores information from past computations, and
three gates which control the information stored in the memory as well as the output of the

5.2. SYSTEM DESCRIPTION 51

whole unit.

Figure 5.2: Illustration of the architecture of our neural networks. The Lookup layer
transforms a number (byte) into a tensor suitable for the first LSTM layer. The LSTM layers
apply a non-linear transformation to their inputs. The SoftMax layer computes the output
probabilities using the output from the last LSTM layer.

Using a byte-level approach we can reuse the same network design for multiple lan-
guages, as the character set is not a parameter in the design process. This can also be an
advantage for languages with large character sets, as fixing a smaller output size for the
softmax operation in the last layer of the network avoids the bottleneck issues caused by this
operation on large vocabularies. Furthermore, to reduce even more the complexity of the
problem, we do not consider those byte values corresponding to non-printable characters
except for the null byte 0, which can be used as padding in the input sequence. Assuming
an Unicode encoding such as the popular UTF-8, these are the values in the range [1, 31].
The resulting neural networks receive as input one byte at a time from a given sequence and
output the (logarithmic) probabilities for each of the possible next bytes in the sequence.
The general architecture of these networks is depicted in Figure 5.2.

As explained before, we avoid the data sparsity problem by using language models
that work at the byte and character level instead of the word level, and also by using
neural networks. These latter models transform the sparse discrete input data, usually
one-hot vectors, into continuous representations which encode meaningful information
about the relations between the inputs and outputs of the network (Kim et al., 2016) (the
same phenomenon used to obtain word embeddings, as introduced in Section 2.3). Under
this assumption, three words such as “hiiii”, “hii”, and “hi” would end up having similar

52 CHAPTER 5. WORD SEGMENTATION

continuous representations, as they are morphologically similar and would appear in similar
contexts.

However, as powerful constructions as recurrent neural networks are, they tend to overfit
the training data (Zaremba et al., 2014). To overcome this issue, several measures may be
used, of which we have chosen Batch Normalization (Ioffe and Szegedy, 2015) and keeping
the network as small as possible while retaining a good precision in the task at hand.

5.2.2 Beam search algorithm

Now we describe the beam search algorithm using a functional approach. For all the
following functions, we define the threshold parameter t, beam width b, number of final
results m, word boundary element wb, and scoring function score as global constants in
order to avoid long function signatures and improve readability. Additionaly, the + and ⊕
symbols are used as the operators for string and list concatenation, respectively, si denotes
the character at position i from the string s, si,j denotes the substring of s going from index
i to j, and li,j the sublist of l going from index i to j.

The first function we define is segment∗(part, txt), which recursively processes one
token at a time from the input sequence. It takes two arguments: a list of partial results
for the already-processed text and the remaining text to segment with no word boundaries
and length l. The path this function takes depends on the emptiness of its first and second
arguments, as shown below:

segment∗(part, txt) :=

part txt = ∅
segment∗((txt1), txt2,l) part = ∅
segment∗(beam(part, txt1), txt2,l) otherwise

(5.1)

If the second one is ∅, we have the base case and the recursion stops returning the current
partial results list. If the first argument is ∅, the function bootstraps a partial results list and
calls itself appropriately to begin the recursive process. This is the way that the function
should be called the first time. The remaining case is the main recursive case, where
beam(part, c) takes as second argument the current token in the sequence and obtains a
new list of n best partial results including that token in the segmentation:

beam(part, c) := topn(xpd(part, c), b) (5.2)

With respect to the xpd(part, c) (expand) function used by the former and defined as:

5.3. EXPERIMENTS 53

xpd(part, c) :=

{
∅ part = ∅
(part1 + c)⊕ (bnd(part1, c))⊕ xpd(part2,|part|, c) otherwise

(5.3)

it enables us to obtain new candidates by recursively traversing the partial results list and
generating at least one more candidate for each of the existing ones by appending the next
token c to them. It may also generate a second candidate if the call to the function bnd(x, c)

(boundary) does not return ∅. This boundary function is defined as:

bnd(x, c) :=

{
x+ wb+ c score(x+ wb+ c) > t

∅ otherwise
(5.4)

and enables us to check, using the scoring function score, if a candidate x with a word
boundary in the last position followed by c is likely or not. This is, whether its associated
score (likelihood as returned by the scoring function) is greater than the threshold parameter
t. If it is, it will return this new candidate.

With respect to topn, the other function used by beam, it is the function that selects the
n best partial results:

topn(part, n) := sort((x, y) 7→ score(x) > score(y), part)1,n (5.5)

The final step would be to create a wrapper function that acts as an entry point to the
system through the correct call to segment and then select the top m partial results to serve
as final results according to the following definition:

segment(txt, t, b, wb, score,m) = topn(segment∗(∅, r(txt)),m) (5.6)

where r is a function that removes the word boundary characters from its input text:

r(str) := filter((x) 7→ x 6= wb, str) (5.7)

5.3 Experiments

In this section we describe the implementation details and followed procedure for validating
our approach.

54 CHAPTER 5. WORD SEGMENTATION

5.3.1 System implementation

We have implemented two versions of the system just described, one in Lua and the other in
Python, due to the availability of the tools that we use to implement the language models.2

Torch,3 a scientific framework with support for neural networks is available for Lua, and
kenlm,4 a toolkit for n-gram language modelling, has bindings for easy usage in Python.

Torch only includes by default the tools to build feed forward neural networks, so in
order to use it for recurrent neural networks we have imported the package rnn (Léonard
et al., 2015). We also used the Adam optimization algorithm (Kingma and Ba, 2014) from
the optim5 Lua package.

Regarding the kenlm toolkit, it is straightforward to use. The generation of the n-gram
models was performed from the command line, while their integration with the search
algorithm took place inside a Python script.

For the training and evaluation of the neural models, we tried to take full advantage of
the parallelization features of Torch. Thus, all computations are performed in batches by a
GPU, in our case a GTX Titan X (2015).

Another implementation detail not previously specified is the extra numeric parameter
win. It defines the number of previous tokens from the current position in the input to use
for the score computation. This is, instead of computing score(xt, xt−1, ..., x0), we compute
score(xt, xt−1, ..., xt−win) (see Equation 2.1 in Section 2.2). As this scoring operation is
costly for the neural language model, this parameter allows us to seek a compromise
between execution time and accurate scoring. It is worth noting that the value assigned to
win does not have to be necessarily the same as the one used for ρ (see Section 5.2.1).

5.3.2 Corpora

The data used for training the models, both for our system and WordSegment, was obtained
from several sources. For English, German, Turkish, and Finnish, we used the monolingual
training datasets corresponding to the 2016 news from the WMT17 shared task.6 The
English corpus was also augmented with tweets from the training dataset at http://cs.
stanford.edu/people/alecmgo/trainingandtestdata.zip.

For each one of our datasets, we shuffled the lines7 and selected the first ten million
lines (at most) for training and the last three hundred (six hundred in the case of English)

2All implemented code is available at http://www.grupocole.org/software/VCS/segmnt/.
3http://torch.ch/
4https://kheafield.com/code/kenlm/
5https://github.com/torch/optim
6http://www.statmt.org/wmt17/
7A line is defined as a sequence of characters delimited by newline characters.

http://cs.stanford.edu/people/alecmgo/trainingandtestdata.zip
http://cs.stanford.edu/people/alecmgo/trainingandtestdata.zip
http://www.grupocole.org/software/VCS/segmnt/
http://torch.ch/
https://kheafield.com/code/kenlm/
https://github.com/torch/optim
http://www.statmt.org/wmt17/

5.3. EXPERIMENTS 55

for validation. We then removed special tokens such as microblog mentions, hashtags, and
URLs, as they constitute counter-examples of the tokens we want to obtain in our results.
For the Finnish and Turkish datasets, we also removed the SGML tags and some resulting
blank lines.

In the case of Spanish, we employed a training corpus based on the Wikipedia dump
from 2015/02/28 preprocessed using the wikiextractor8 and with all the Wikipedia markup
expressions removed. From the result, we selected the first four million lines.

As test data, we used the monolingual testing datasets corresponding to the 2013 news
from the WMT17 shared task for English and German, and the ones corresponding to 2016
for Turkish and Finnish as there is no test data from 2013 available for these languages.
The preprocessing performed was the same as described above for the training corpus. The
difference here is that we kept the English tweets test corpus, obtained from the same
source as the training corpus, separated from the news test corpus.

It is also important to note that, unfortunately, we did not have enough resources
available at the time to normalize some aspects of the tweets used for testing. These cause
that a correct segmentation be labeled as incorrect, such as with the output “no way” for the
reference “noway”. This has a greater impact on our approach and WordSegment than on
the Word Breaker, as it considers a wider range of input characters, which may be incorrectly
positioned in the reference. As an example, the “-” character may be particularly difficult
to test properly as it tends to appear arbitrarily surrounded by whitespaces in informal
contexts. To alleviate this and provide a fair comparison, we add a particular test case for
these systems where we only consider the correct positioning of word boundaries around
alphanumeric tokens. We also give the precision score for the corresponding strict test case
where we consider the positioning of all word boundaries.

For Spanish we used two test datasets. One of them is based on the same Wikipedia
article dump used for training where we randomly select 1000 short lines from the last
25% of the lines in the corpus. The second one is obtained in almost the same way as the
former, but in this case lines are kept noticeably longer, as the random selection considers
lines regardless of their length. Given the exact match scoring scheme that we will use, this
should pose a greater challenge for all the systems in the benchmark.9

5.3.3 Results

In our tests, we focus on precision as the performance metric. Precision is defined here as
the number of correctly segmented input instances over the total number of inputs given

8https://github.com/attardi/wikiextractor
9All dataset preprocessing scripts are available at http://www.grupocole.org/software/VCS/segmnt/.

https://github.com/attardi/wikiextractor
http://www.grupocole.org/software/VCS/segmnt/

56 CHAPTER 5. WORD SEGMENTATION

EN Tw
512× 2 82.02510 75.61299

512× 3 82.33127 78.31472

757× 3 82.03766 79.01800

1021× 3 82.34482 81.32571

1500× 3 86.68235 82.64000

Table 5.2: Precision results on the English (EN) and Twitter (Tw) development datasets by
neural model architecture specified as n×m, where m is the number of hidden layers and
n the number of neurons per layer. Elapsed times in seconds are also shown in subscript.

to the system. A correct segmentation means that every word boundary in the output is
correctly placed, otherwise it is deemed incorrect, i.e., our precision metric is an exact
match score over whole lines. For example, given the input “Shel ikes music”, the only
correct answer is “She likes music”, and any other possible answers such as “She like s
music” would be incorrect.

We began our experiments by training some neural models and checking their perfor-
mance in the development set throughout this process. We tried smaller networks first
and progressively increased their parameter count until we reached bigger models with
reasonable size and performance, both in precision and time metrics. Due to the high
costs of training neural networks, which usually took days to complete, we were far from
exhaustive in our exploration of the hyperparameter space. For this same reason, these
initial experiments were only conducted with the English (EN) and Twitter (Tw) corpora.
The best models for English and Twitter would then be used for the remaining languages:
German (DE), Turkish (TR), Finnish (FI), and Spanish (ES).

In Figure 5.3 we show validation error curves for a few relevant models and in Table 5.2
the precision numbers obtained by those in the segmentation task. The results obtained for
the tweets strict case are around 20 points below those shown in the table (see Section 5.3.2).
As we expected, lower validation error numbers can be obtained with bigger networks,
which generally translates into higher precision figures.

For standard text, relatively good precision can be obtained even by the smallest network.
If we want to see the real benefits of more complex networks, we have to look at the precision
numbers for a more difficult setup such as the tweets dataset. These networks, containing
a higher number of parameters, are better suited for handling the greater sparseness in
microtext data.

However, as shown in Figure 5.4, it seems that our networks cannot grow indefinitely in
width (number of neurons per layer) with respect to depth (number of layers), since this

5.3. EXPERIMENTS 57

Figure 5.3: Validation error curves for some neural models on the English and Twitter
training corpus. The architecture is specified as n×m, where m is the number of hidden
layers and n the number of neurons per layer.

may cause serious instability issues during the training process.

Consequently, in order to insert more neurons per layer, it would be also necessary to insert
more layers into the network at some point. Moreover, given the long training process
required by these bigger models and the precision numbers obtained, we decided to stop at
networks of 3 layers and 1500 neurons per layer.

Next, we built our n-gram models, a process which took minutes even for the largest of
these models. The only mandatory parameter we had to adjust here was the order of the
model, n, for which we considered the values 4, 6, 8, 10, and 12. The precision numbers
for each of these models on the development datasets can be seen in Table 5.3. In this case,
the results obtained in the strict test are around 30 points below those shown in the table.

As with the number of parameters of neural models, our n-gram models also benefit from
higher values of n. After the large performance gain when moving from order 4 to order 6,
the growth slows down until it stops or reverses for most languages when going from order
10 to order 12. On the other hand, these models are usually notably affected by the sparsity

58 CHAPTER 5. WORD SEGMENTATION

Figure 5.4: Validation error curves for models which are too wide. The architecture is
specified as n×m, where m is the number of hidden layers and n the number of neurons
per layer.

of the training data, and using higher n values yields exponentially larger models. To avoid
this, we can prune those n-grams with frequency counts lower than a specified threshold
value at the expense of possibly lowering the performance of the model. In our tests, we
used a pruning value of 5 for the 8-, 10-, and 12-grams without any noticeable performance
drop.

For the reasons explained above, we decided to stop constructing bigger models at
n = 12. This is similar to the reasoning applied in the case of neural models, adding the
relatively small performance gain when going from n = 10 to n = 12.

In order to account for the difference in execution time for different languages, Ta-
ble 5.4 shows the average counts of words, characters, and bytes per line (instance) in the
development datasets.

Before obtaining the precision figures presented, we also tuned the search algorithm
parameters for each type of language model using the development datasets. For the
neural model, these were t = 8, b = 10, win = 64 , while the n-gram model required

5.3. EXPERIMENTS 59

n EN DE TR FI Tw ES
4 37.657 34.047 51.349 33.630 48.618 37.0279

6 86.668 77.355 94.054 82.033 77.325 72.6344

8 89.070 84.659 92.656 88.335 77.625 78.0386

10 90.687 89.372 93.061 91.641 79.332 79.3425

12 89.3105 89.392 93.065 92.649 79.041 79.3451

Table 5.3: Precision results on development datasets by language and n-gram model order.
Elapsed times in seconds are also shown in subscript.

EN DE TR FI Tw ES
words 20.0 15.2 13.6 10.0 13.1 42.1
chars 120.2 106.5 103.4 90.3 74.1 261.0
bytes 120.2 108.0 112.9 93.5 74.1 266.3
chars/word 6.0 7.0 7.6 9.0 5.7 6.2
bytes/char 1.0 1.0 1.1 1.0 1.0 1.0

Table 5.4: Average counts of words, characters, and bytes per instance in the development
datasets.

t = 10, b = 500, win =∞ to guarantee good performance across datasets. These numbers
imply that the neural model is able to make better decisions at each step of the segmentation
algorithm and thus requires carrying fewer partial candidates in order to finally decide on a
good one. The opposite seems to be true for the n-gram model, which needs a wide range of
possibilities available at each step and thus a higher b value, in proportion with the length
of the text input.

Then, we compared our system, WordSegment, and the Microsoft Word Breaker (as
of April 2017) against each other using the test datasets. In order to interact with the
latter system, we used a slightly modified version of the demo code available at its website,
transcribing or removing non-ASCII characters and adapting the formatting of the output to
make it compatible with the rest of our evaluation scripts. The best precision numbers on
the development datasets were obtained with n = 3 and the Bing body corpus. It is worth
noting that, as this system works only with alphanumeric characters, the test gold standard
was filtered accordingly. This implies that the failure surface for the Word Breaker is much
smaller compared to that of our systems and WordSegment, as the former does not consider
posibly troublesome characters such as “ ” ” or “-”.

Results are shown in Table 5.5, where we can see that both the n-gram and neural
models were able to obtain higher precision numbers than both WordSegment and Word

60 CHAPTER 5. WORD SEGMENTATION

Model EN DE TR FI Tw ESS ESL

10-gram 91.4 82.2 77.6 77.5 75.7 92.4 80.3
12-gram 91.3 82.4 77.5 78.4 76.5 92.7 77.1
1021×3-neural 90.4 88.5 82.3 75.3 78.1 89.4 75.9
1500×3-neural 92.2 88.5 81.1 77.3 78.1 86.7 76.5
WordSegment 86.6 72.0 55.1 57.7 54.2 92.7 61.6
Word Breaker 88.7 38.5 15.4 8.9 62.6 88.0 66.5

Table 5.5: Precision results on the test datasets by language and approach.

Breaker on the test datasets. The sole exception is the tie between our 12-gram model and
WordSegment in the smaller Spanish dataset (ESS), which is resolved in our favor in the
longer Spanish dataset (ESL). For further detail, we have published more verbose outputs
at http://www.grupocole.org/software/VCS/segmnt/.

WordSegment suffers from data sparsity problems as we can infer from the heavy
performance drop in the Turkish, Finnish, and Twitter test corpora. For the Word Breaker,
the performance gap was smaller in the case of standard English and Spanish. We believe
that this is due to the language model of the Word Breaker having seen many more tokens
from these languages than from German, Turkish, or Finnish, where it performed noticeably
worse than its competitors.

More interestingly, we also come up well above in the English tweets dataset, a particu-
larly challenging domain. This time, the reason might be the acute data sparsity present
in this kind of texts, whose word vocabulary includes the wide range of texting-induced
variations of standard words, which are handled well by the character-based approach.

Regarding the neural models, we can see that our currently biggest network does not
perform much better than the second biggest across the test bench. In some cases, such as
with Turkish and most notably Spanish, it is actually worse.

We can also observe that the performance of the n-gram models was close to the neural
models, most notably for the Finnish language, and even surpassed them by a noticeable
margin in the case of Spanish. Given the great attention and good results obtained by neural
models in the literature, we expected the opposite to be true. To add more merits to the
n-gram models, we should also mention their (quite) faster operation, both in training and
evaluation time, compared to the neural models.

The main reasons why we did not try bigger or more sophisticated neural models are
the good results we already achieve and the long training processes and slow operation
times we obtain with our current biggest models, even on such a powerful GPU as the Titan
X (2015).

http://www.grupocole.org/software/VCS/segmnt/

5.4. WORD EMBEDDINGS 61

We have also observed that it may be possible to apply this approach in a cross-lingual
environment, even though our training and testing corpora are monolingual. The short
English phrase conformed by common words “You are not welcome” in the Finnish test
corpus is correctly segmented, as well as English named entities in the German and Turkish
corpora such as “The Particle Adventure” or “The Voice”. It is then reasonable to assume
that, given a suitable cross-lingual training corpus, it should be possible to address a truly
cross-lingual scenario where sentences mix words from different languages.

5.4 Segmentation and continuous word embedding models

First of all, and in contrast to what we have seen in previous chapters, in the case of word
segmentation we are able to obtain state-of-the-art results. This is crucial if we take into
account that words are the central linguistic units on which not only our discrete pipeline
operates, but also the word embedding models that we have been proposing until now to
overcome the limitations of former approaches. When not considering other character-based
models apart from the segmenter itself, this step is the minimum preprocessing that can be
useful in both our discrete and continuous approaches. On the other hand, Wu et al. (2016)
have shown that some form of text segmentation can be generally beneficial, instead of
relying entirely on character-based approaches. Their own strategy, based on word pieces,
also depends on words being correctly delimited.

Indeed, our word segmentation system may introduce segmentation errors in its output,
and one could argue that these would distort the behaviour of the following pipeline steps
or lead us to collect the wrong word embeddings, which has the potential to cancel out the
benefits obtained in the latter case. As we will see in Section 8.3, embedding models that
take subword information into account seem to support word joining to a certain extent.
In this setting, using a word segmenter with a slight tendency to join words, for example
through a threshold parameter as in (Doval et al., 2016) or even the raw input directly if
we consider the low frequency of splits, since joins are more usual in special elements such
as hashtags or URLs, can be considered good practical solutions.

5.5 Related work

Word segmentation is an important preprocessing step in several natural language processing
systems, such as machine translation (Koehn and Knight, 2003), information retrieval (Al-
fonseca et al., 2008), or speech recognition (Adda-Decker et al., 2000). On the other hand,
most Asian languages, while retaining the concept of word, do not use word boundary

62 CHAPTER 5. WORD SEGMENTATION

characters in their writing systems to separate these elements. As a result, the application
of word segmentation for these languages has drawn a lot of attention from the research
community, with abundant work in recent years (Zheng et al., 2013; Pei et al., 2014; Chen
et al., 2015; Xu and Sun, 2016).

Beyond the Asian context, we can also find European languages with highly complex
morphology such as German, Turkish, or Finnish, which can also benefit from a conceptually
different word segmentation procedure (Alfonseca et al., 2008; Koehn and Knight, 2003).
In these cases, and mainly for agglutinative or compounding languages (Krott et al., 2007),
new words are usually created just by joining together previously known words. A system
with a vocabulary lacking these new words may still be able to process them if some sort
of word segmentation system is in place. However, it is worth noting that this is a slightly
different kind of word segmentation, as it is concerned with extracting the base words which
conform a compound word. In contrast, our approach focuses on separating all words,
compound or not, from each other.

Moving on to the Web domain, there are special types of tokens which can also be
targeted by a segmentation system. The first ones to appear, and an essential concept for
the Web itself, are URLs (Chi et al., 1999; Wang et al., 2011). These elements do not
admit literal whitespaces in their formation, but most of the time do contain multiple words
in them. Words may be separated by a special encoding of the whitespace character like
percent-encoding or a different encoding that uses URL-safe characters. Most other times,
words are just joined together with no boundary characters, and thus the requirement for a
segmentation process arises.

Then, with the advent of the Web 2.0, the use of special tokens called hashtags in social
media became very common (Srinivasan et al., 2012; Maynard and Greenwood, 2014). Like
URLs, hashtags may also be conformed by multiple words. Unlike those, these elements do
not use any word boundary character(s) between words, thus the use of a segmentation
system seems more advantageous in this case.

The segmentation procedure that most of the previous work follows can be summarized
in two steps. First, they scan the input to obtain a list of possible segmentation candidates.
This step can be iterative, obtaining lists of candidates for substrings of the input until it is
wholly consumed. Sets of predefined rules (Koehn and Knight, 2003) or other resources such
as dictionaries and word or morpheme lexicons (Kacmarcik et al., 2000) may be used for the
candidates generation. Then, for the second step they select the best or n best segmentation
candidates as their final solution. In this case, they resort to some scoring function, such as
the likelihood given by the syntactic analysis of the candidate segmentations (Wu and Jiang,
1998) or the most probable sequence of words given a language model (Wang et al., 2011).

Some other techniques, usually employed in the Chinese language, consider the word

5.5. RELATED WORK 63

segmentation task as a tagging task (Xue, 2003). Under this approach, the objective of
the segmentation system is to assign a tag to each character in the input text, rendering
the word segmentation task as a sequence labeling task. The tags mark the position of a
particular character in a candidate segmented word, and usually come from the following
set: beginning of word, middle of word, end of word, or unique-character word.

More recently, neural network based approaches have joined traditional statistical ones
based on Maximum Entropy (Low et al., 2005) and Conditional Random Fields (Peng et al.,
2004). These models may be used inside the traditional sequence tagging framework (Zheng
et al., 2013; Pei et al., 2014; Chen et al., 2015) but, more interestingly, they also enable
new approaches for word segmentation. Cai and Zhao (2016) obtain segmented word
embeddings from the corresponding candidate character sequences and then feed them to
a neural network for scoring. Zhang et al. (2016) consider a transition-based framework
where they process the input at the character level and use neural networks to decide on
the next action given the current state of the system: append the character to a previous
segmented word or insert a word boundary. Both of these approaches use recurrent neural
networks for the segmentation candidates generation and beam search algorithms to find
the best segmentation obtained.

Outside the Chinese context, one of the most popular state-of-the-art systems for word
segmentation in multiple languages is the Microsoft Word Breaker from the Project Ox-
ford (Wang et al., 2011). Its original paper defines the word segmentation problem as a
Bayesian Minimum Risk Framework. Using a uniform risk function and the Maximum a
posteriori decision rule, they define the a priori distribution, or segmentation prior, as a
Markov n-gram. For the a posteriori distribution, or transformation model, they consider a
binomial distribution and a word length adjusted model. Finally, they solve the optimization
problem posed by the decision rule using a word synchronous beam search algorithm.

The language model they use for the a priori distribution is presented in (Wang et al.,
2010). This is a word-based smoothed backoff n-gram model constructed using the CALM
algoritm (Wang and Li, 2009) with the Web crawling data of the Bing search engine.10

Some particular features of this model are that all the words are first lowercased and their
non-ASCII alphanumeric characters transformed or removed to fit in this set, and also that
it is being continuously updated with new data from the Web. However, the aggresive
preprocessing performed by this system may result in limitations in two particular domains:
microtexts and non-English languages. For the first case, data sparsity may pose a problem
for a word-based n-gram language model. This type of model would have to see every
possible variation of a standard word in order to process it appropriately. As an example, an
appearance of the unknown word “hii” would mean using the <UNK> token instead of the

10https://www.bing.com/

https://www.bing.com/

64 CHAPTER 5. WORD SEGMENTATION

information stored for the equivalent standard known word “hi”, which constitutes some
loss of information. Then, if the also unknown word “theeere” occurs, it would mean that
the system has failed to use any relevant information to process the input. Hence, the input
“hiitheeere” could be incorrectly segmented into “hii thee ere”, a more likely path for the
model given the known token “thee”

On the other hand, working only with lowercased ASCII alphanumeric characters leaves
non-Latin alphabets out of the question—although Latin transcriptions could be used—and
limits the overall capacity of the system due to the loss of information from the removed or
replaced characters. For instance, consider “momsday” in the context of text normalization.
The n-gram model would give higher likelihood to “mom s day” as it would have seen the
token “mom” very frequently, both when appearing on its own and when swapping the “ ’ ”
by a word boundary character in “mom’s”, obtaining “mom s day”. However, we prefer
in this case “moms day” as the most likely answer, not only because it can be the correct
answer but also because we can later correct the first word to include the apostrophe if
needed and/or appropriate using a text normalization system.

The WordSegment Python module (Jenks, 2017) is an implementation of the ideas
covered in (Norvig, 2009) that we have also used as baseline in this work. It is based on
1-gram and 2-gram language models working at the word level which are paired with a
Viterbi algorithm for decoding. The system first obtains segmentation candidates which
are scored using the n-gram models, and then the best sequence of segmented words is
selected using the Viterbi algorithm. A clear advantage of this system for our work is
that we can easily train its n-gram models from scratch in order to adapt it for our text
domains/languages. This provides us with a better comparative framework than the Word
Breaker.

5.6 Conclusions

In this chapter, we have presented an approach to tackle the word segmentation problem
consisting of two components: a beam search algorithm, which generates and chooses
over possible segmentation candidates incrementally while scanning the input one token
at a time; and a language model working at the byte or character level, which enables the
algorithm to rank those candidates. We have considered recurrent neural networks and
n-gram models to implement the language model.

Our aim was to build a word segmentation system which can be used in the context of
microtexts, a domain where data sparsity can be a problem to traditional approaches based
on word n-grams, such as the popular Microsoft Word Breaker or the WordSegment Python
module. We solve this issue by using byte- and character-level language models, and also by

5.6. CONCLUSIONS 65

taking advantage of the ability of neural networks to transform their discrete sparse inputs
into continuous representations which encode similarities between inputs.

In our experiments, we explored possible configurations for our systems by adjusting the
search algorithm parameters and the language model hyperparameters. The languages we
considered for training and testing were English, German, Turkish, Finnish, Spanish, and
also English tweets. Then we compared the performance of the different configurations of
our system, WordSegment, and the Microsoft Word Breaker. The best neural models obtain
the best precision figures overall on the test datasets.

Most surprisingly, the performance of the simpler n-gram models was close to their
neural counterparts while being noticeably faster. Compared to WordSegment and Word
Breaker, our approach obtained better results overall.

66 CHAPTER 5. WORD SEGMENTATION

Part III

Interlude

67

Chapter 6

From discrete to continuous models

In previous chapters, we have described methods to tackle the preprocessing tasks con-
sidered in this work: language identification, word segmentation, and text normalization;
through a discrete traditional pipeline approach. When analyzing their current limitations
and proposing alternatives to overcome them, we have observed an interesting trend not
unique to our use case: transitioning from discrete approaches to continuous models, such
as word embeddings, along with dropping the assumption that explicit preprocessing tasks
are even needed to achieve our final goals, opens up promising avenues for research, which
in the end are more aligned with the current state-of-the-art techniques in NLP.

Taking each preprocessing task in isolation, we have observed that, in principle, the
different concerns that each of them tackle can be encoded in a continuous embedding
space. Solving these concerns in a discrete approach implies performing one or multiple
transformations on the input which take care of those concerns explicitly. On the contrary,
in the embedding space, these concerns together with other useful information are implicitly
encoded into mathematical structures such as vectors, so that other systems may exploit this
multidimensional view of discrete linguistic symbols to attain their objectives. Specifically,
the multilinguality concern is tackled in the discrete setup by tagging chunks of texts with
the language they are written in, whereas the continuous embedding approach assigns
similar vectors to words in different languages with similar linguistic features (e.g., semantic,
syntactic, etc.), so that models afterwards can treat them in a similar way. In the case of
non-standard language, the discrete approach normalizes words so that they conform to
standard linguistic rules, whereas the continuous embedding approach, once again, encodes
the similarity between non-standard and standard variants of a word in their corresponding
similar representations.

Outside the scope of each individual preprocessing task, our simple pipeline approach
also carries some limitations of its own which relate to the low integration achieved between

69

70 CHAPTER 6. TOWARDS CONTINUOUS MODELS

tasks. This is caused by the strict sequential nature of this structure, which prevents using
the information obtained by latter steps early on to improve the results. However, and as
we will see below, discrete alternatives to the pipeline are not suitable for our preprocessing
scenario, while continuous representations of words are once again rendered as a promising
solution.

In this chapter, we first analyze the limitations of the pipeline approach; next, we argue
that discrete alternatives such as non-linear pipelines and graphs may solve those limitations
for some NLP tasks, but not in our case; finally, we arrive at a solution employing word
embeddings which avoids said limitations altogether. But before going into details, it is
important to note three points with respect to our argumentation:

1. It applies mainly to settings including several preprocessing tasks with an unclear
sequential ordering. In other cases, pipelines might still be a good solution or even
the only feasible one.

2. Word embeddings and pipelines are not mutually exclusive, and it should be possible
to use them together in the same solution. In fact, taking into account the broad
definition of pipeline as a mere sequence of steps, we will show in Chapter 7 how we
can obtain and improve multilingual embeddings through a 3-step pipeline. In this
case, however, we use the term framework to clearly distinguish between the discrete
and continuous approaches, leaving pipeline to refer to its classical symbolic use-case.1

3. It is not our goal to prove that the word embedding approach obtains better perfor-
mance than the discrete pipeline system, but rather that it removes an inescapable
performance upper bound of the discrete approach while taking better advantage of
the latest state-of-the-art neural network models.

6.1 Limitations of the pipeline approach

Pipelines, a common structure for composing NLP models, sacrifice system integration in
order to obtain high modularity. This latter property benefits reusability and separation
of concerns, thus making complex problems more tractable by splitting them into smaller
sub-problems that can be tackled in isolation to obtain better sub-results. On the other
hand, integration is needed to guarantee an optimal performance of the final system as a
whole. The low integration present in the pipeline approach used until now manifests itself
in the following challenges:

1Hence, we avoid considering a multilayer neural network as a pipeline.

6.1. LIMITATIONS 71

Error propagation. This is an immediate consequence of any feedforward cascade or
sequential structure which relies on first-best solutions in each of its constituent steps. Given
a multistep pipeline, the error at the last step is not merely the sum of the errors at previous
ones, but a multiple of that sum. In the intermediate steps, there are two sources for output
errors which interact with each other: an incorrect input, which is likely to derive in an
incorrect answer; and the inaccuracies of the model used in the step, since we make the
realistic assumption that no model obtains 100% accuracy in any NLP task.

For example, given the Galician non-standard sentence “o meu móbil é bnito” (“my
mobile phone is nice”) and its misclassification as Spanish text by a language identifier, a
possible incorrect outcome of the subsequent normalization module or spell checker would
be “o mejor móvil e Benito” (“or better phone and Benito”), a nonsensical sentence formed
by words in the standard Spanish vocabulary. In this case, the incorrect identification of
the language causes the misnormalization of the first four words, while the error in the last
one is a direct mistake of the normalization module itself, as the correct answer would be
“bonito”.

As we will see later, this problem has been already studied in the literature and several
techniques and different architectures (non-linear, graph) exist to overcome error propaga-
tion. However, our particular use case is not exactly the one depicted for these alternatives,
and hence they do not solve this problem without conflicting with the modularity constraint.
As our preferred solution, we will rely instead on word embeddings to improve the integra-
tion of our systems while maintaining a high degree of modularity, as we will describe in
Section 6.3.

Context fragmentation. A more specific problem to our setting, it consists in having
heterogeneous input data for a specific task, where each homogeneous part has to be
processed by a different, specialized model. This is effectively our case when considering
code-switching; that is, when different parts of the input are written in different languages.
In that case, the input has to be split in its constituent monolingual parts which the
corresponding monolingual model will process in isolation. Clearly, when processing a part
of the text written in a certain language, the corresponding model will not have access
to the neighboring parts written in other languages, lowering the amount of contextual
information available to it. As an example, consider the sentence “let’s go to my ksa”. Here,
we have no context available to normalize the word “ksa” (for the Spanish “casa”, “house”),
as the surrounding words are written in a different language and hence are processed by a
different model. Two possible solutions to avoid this problem would be:

1. Using only multilingual models in our pipeline and remove the language identification
step, something that goes frontally against modularity.

72 CHAPTER 6. TOWARDS CONTINUOUS MODELS

2. Homogenizing the input by translating all the parts into one common language, thus
allowing us to focus on a single language in the remaining steps, but also introducing
into our pipeline the complexities of machine translation, and an additional task.
However, a derived solution would be to replace words with their corresponding
vector representations (embeddings), which would serve as an intermediate language
that homogeneizes context.

6.2 Discrete alternatives to the linear pipeline

The error propagation problem described in the previous section is inherent to the simplest
pipeline designs. Specifically, this is caused by its first-best, feedforward nature: the input
to a given step is always the unique best solution obtained by the previous step, and
information between steps only flows in the forward direction over one single path. Instead,
we would prefer a structure where all the information obtained in any step can be used by
others to improve their results, thus alleviating the problem of error propagation.

To better illustrate this, let us consider integrating a relation extraction and a named
entity recognition model into such an structure. Also, note that these models have been
trained for their respective tasks independently of each other. The goal of the integrating
structure would be to use the information from one of them to influence the results obtained
by the other, or at least be able to select a coherent solution taking into account the outputs
from both models. For instance, if the first model identifies the live in relation (or it is
one of its candidate results), it should be more likely that the second one identifies the
corresponding entities involved in the relation as person and location, respectively, instead
of the inverse (location and person).2 Likewise, if the second model identifies the person
and location entities (or they are part of their candidate results), it should be more likely
that the first one prefers the local prediction live in rather than birthplace of.

6.2.1 K-best pipelines and Bayesian networks

One common alternative is to consider a k-best pipeline (Wellner et al., 2004; Sutton and
McCallum, 2005), where each step outputs a ranking of its k best predictions. The next
step takes these and outputs its own set of k candidate answers for each one of them. The
resulting candidate lattice is then traversed using a search algorithm which extracts the
k-best results which, in turn, are fed to the next step, and the process is repeated. An
example of this is shown in Figure 6.1.

2We use the terms “first” and “second” solely to distinguish between the two tasks, without implying any
specific ordering.

6.2. ALTERNATIVES 73

Figure 6.1: Sequential execution of a 3-best pipeline, where we use a beam search algorithm
with n = 2 (as described in Section 5.2.2). In the first step, the top three answers (3-best)
given by the first module are considered for the beam search, which trivially chooses the top
two (n = 2, in blue). In the second step, the next module outputs its top three answers, but
now the beam search looks for the top two best combinations of the previous two answers
and the present three. Subsequential steps follow this same logic.

This scheme allows us to tackle the error propagation problem to some extent, as we are
no longer limited to a 1-best cascading process where all the decisions are local to each step.
In this case, we can use some extra information to choose from k possible results which
combine outputs from several steps of the pipeline, looking to optimize some global criteria.
However, if the parameter k is not large enough, we might miss on output combinations that
would lead to better overall solutions down the line. On the contrary, if k is too large, the
process can become intractable due to the high number of candidate solutions. Furthermore,
once a step is executed and its k-best results are obtained, they cannot be changed by
following steps; i.e., information from latter steps cannot be used to refine the output of
preceding steps.

Finkel et al. (2006) discuss the limitation of k-best pipelines when selecting a good
value for k and propose in turn to model them as Bayesian networks. Under this approach,
each step or task in the network is represented as a variable with an associated probability
distribution over its output domain (e.g., labels). The goal is to approximate a full swipe

74 CHAPTER 6. TOWARDS CONTINUOUS MODELS

Figure 6.2: The three possible non-linear pipelines formed by three steps and at least one
feedback loop.

over the space of solutions by drawing multiple samples of each distribution at each step
conditioned on the samples from the previous one. The final solution is chosen by a classifier
among the samples drawn at the last step. While this approach might solve the limitations
imposed by the k parameter, further alleviating error propagation, it is still a feedforward
construct, since samples are conditioned on previous ones, and information cannot flow
backwards.

6.2.2 Non-linear pipelines

Non-linear pipelines, depicted in Figure 6.2, allow information to flow backwards and
affect the outcomes of previous steps through the use of feedback loops and an iterative
refinement process of the results. Hollingshead and Roark (2007) show a parsing pipeline
where the performance of a coarse parser is improved by introducing constraints obtained
by a shallow parser beforehand and a fine parser afterwards, which in turn improves the
overall performance of the pipeline. Valls-Vargas et al. (2015) implements a pipeline for
character role identification where the module at its last step feeds-back information to a
previous coreference resolution model. In this case, they show performance gains in the
coreference resolution step, but not in character role identification, the main task. This,
together with the discouraging results reported by Samuelsson et al. (2008), highlight
the difficulty of constructing this type of pipelines where all of its constituent models are
benefited by their integration.

In general, the design of non-linear pipelines is dependant on the tasks included,

6.2. ALTERNATIVES 75

Figure 6.3: An example graph formed by four nodes (tasks) where we can prune one of its
edges.

connecting specific steps through feedback loops where the information from the latter can
be effectively used, or integrated, into the former, usually as complementary input. One
consequence is that there still remains a strict linearity inside these loops, which might
contribute to error propagation. Another consequence is that it is not trivial to add or
replace modules in the pipeline (e.g., at which step should they be located) or establish
feedback loops, as: (1) it is likely that the step receiving the new information has to be
modified to integrate it effectively, leading to a loss of modularity in favor of a higher degree
of integration, since its internal operation is no longer independent from the following
steps of the pipeline where it is coincidentally included; and (2) it might be feasible to use
information from one step to affect another one, but not the reverse (Finkel et al., 2006).

6.2.3 Graph-based solutions

Going beyond the pipeline design, some authors have instead explored using graphs to
completely remove the sequential ordering constraints of the tasks, and consequently
eliminate the error propagation problem of feedforward structures. The result is akin
to a mixture between a non-linear pipeline and a k-best approach where all of the steps
are connected with each other using bidirectional links and the best local solutions are
chosen based on global constraints. Roth and Yih (2004) proposed precisely this approach,
modelled as a linear optimization problem where the final results for each task depend on
global constraints introduced at decision time. They call this process global inference, and it
solves not only the limitations seen for non-linear pipelines when using information from
other tasks to influence the outcome of a given one, but also the error propagation seen for
both k-best and non-linear pipelines, as there is no fixed ordering.

Building upon this model, Marciniak and Strube (2005) study a general scenario where
more than two tasks are considered. They include a method to prune the graph edges
between unrelated tasks in order to simplify the optimization problem, which is done by
discarding the links between models whose local predictions are weakly correlated. We
illustrate this in Figure 6.3.

76 CHAPTER 6. TOWARDS CONTINUOUS MODELS

Unfortunately, while this approach seems to correctly balance modularity and integration,
solving error propagation effectively, it is based on a false premise when considering a
preprocessing setup: that there is no sequential ordering between tasks. As their name
suggests, preprocessing tasks imply that they are located before the main tasks, and thus
that a strict dependence emerges between the two types of tasks. In this scenario, we would
still want some information from the main tasks to flow back to the preprocessing part in
order to reduce error propagation. Consequently, the advantages seen for this approach do
not fully transfer to our use case.

6.3 The continuous approach: word embeddings

All of the proposed alternatives to the 1-best linear pipeline share the same goal and general
methodology: alleviating error propagation through higher integration of the constituent
models. However, we have seen that they still carry some set of limitations in our specific
problem domain derived from the non-trivial task of balancing modularity and integration.
On top of this, we must also highlight that they do not explicitly consider the issue of
context fragmentation described in Section 6.1, and that there is another specific practical
consideration playing an important role against them. Current state-of-the-art NLP systems
are mostly based on machine learning techniques which operate on real-valued feature
vectors that describe the discrete input elements over a multidimensional continuous domain.
As a consequence, assuming that we use these machine learning models to implement the
steps in our pipeline, each one of them performs a discrete-to-continuous (encoding)
and then a continuous-to-discrete (decoding) transformation: a discrete input element is
expanded into its continuous feature vector to be processed inside the model and, then,
it is collapsed back to a discrete element to be used as input for the next stage or as the
final result of the pipeline, unless we are considering a regression task. Note here that the
effective processing of the input is not performed on its discrete form, but its continuous
representation, and that a discrete output can only be useful at the end of the pipeline since
the user requires an interpretable result. If we now consider that preprocessing tasks are,
by definition, located before the main tasks in which the user is interested, it should be
questioned if it is even worth obtaining intermediate discrete outputs in each step of the
pipeline.

In fact, by not forcing the collapsing of a multidimensional continuous representation
into a discrete one-dimensional element after each step of a pipeline, we avoid the multiple
lossy encoding-decoding transformations which contribute to the problem of error prop-
agation of the previous discrete approaches. From this point of view, k-best models and
Bayesian networks try to minimize this information loss by collapsing to k elements instead

6.3. WORD EMBEDDINGS 77

of just one, and using probability distributions on the possible outcomes, respectively. In
contrast, when we use the continuous representations obtained internally by each model
directly, no information is lost.

6.3.1 Embeddings as modular and integrated encoded knowledge

In our case, we use words as our basic linguistic elements on which to construct continuous
representations, or embeddings. As already explained in Section 2.3, word embeddings
encode word features (e.g., morphological, syntactic, semantic, etc.) in real-valued vectors.
Notably, they can be used to initialize the input layer of neural network models, the current
state of the art in NLP, in which case they are considered as pre-trained parameters which can
be fine-tuned, or left unchanged, during the training of those neural models. In any of these
cases, pre-trained word embeddings have been shown to help them achieve performance
improvements and even reduce the need for labeled training data (Devlin et al., 2019;
Peters et al., 2017; Collobert et al., 2011).

This showcases the modular aspect of word embeddings and other parts of neural
networks, in general, since they can be used as a means for transferring the knowledge
obtained in multiple tasks into other domains, allowing for an incremental acquisition
process if correctly fine-tuned (Howard and Ruder, 2018). In fact, Chapter 7 will show
how to obtain multilingual embeddings from monolingual models, which is a clear example
of this incremental process, and where these models do not only gain a new feature (i.e.,
multilinguality) but also see their monolingual performance improved.

This property can also be considered as the counterpart of feedback loops in non-linear
pipelines, which increase the degree of integration across tasks. The crucial difference here
is that the integration of multitask information is generally accomplished through the usual
automated training procedure based on the backpropagation algorithm, which replaces the
manual implementation of custom feedback loops. While this can be performed either
incrementally (Hashimoto et al., 2017; Phang et al., 2018) or in a single step (Luong et al.,
2016; Subramanian et al., 2018), some authors note that one should take into account the
characteristics of the training data in use along with the specific tasks involved in order
to obtain the best results (Benton et al., 2017; Mart́ınez Alonso and Plank, 2017; Bingel
and Søgaard, 2017). Fortunately, Ratner et al. (2018) propose a solution that avoids those
pitfalls and restrictions from previous approaches, allowing it to scale effortlessly to a
greater number of tasks by using training data of unknown quality. This renders it as a clear
demonstration of the ability of neural networks, and word embeddings as part of those
networks, to automatically and effectively integrate information from an arbitrary number
of tasks.

78 CHAPTER 6. TOWARDS CONTINUOUS MODELS

Hence, taking all of this into account, word embeddings seem to strike an adequate
balance between modularity and integration while maintaining the amount of human work
to accomplish this to a minimum. These properties of the continuous approach make it
stand out when compared to discrete models, and serve as the justification for our paradigm
shift.

6.3.2 Tackling our current challenges

In Section 6.1, we have briefly introduced word embeddings as a means to solve the
limitations presented by linear pipelines. Specifically, error propagation can be tackled by
an improved system integration, as described above, and context fragmentation can be
solved by considering translating, or transforming, the input words into multilingual word
embeddings (Artetxe et al., 2018a; Conneau et al., 2018a; Ammar et al., 2016; Mikolov et al.,
2013a) which constitute a common intermediate language. In this case, word translations
are close to each other in the embedding space (e.g., “casa”-“house”, “gato”-“cat”, etc.),
making it possible to use models trained on these multilingual continuous representations
directly without requiring an explicit machine translation step to homogenize language
context.

Regarding the steps included in our preprocessing pipeline (see Section 1.3.1), word
embeddings may be used to encode the concerns raised by the multilinguality and texting
phenomena of user-generated texts and replace their traditional explicit processing (see
Sections 3.4 and 4.4). For instance, multilingual word embeddings may be used instead of
the language identification step, given the property previously mentioned. Furthermore,
the normalization step, which deals with noisy variants of words, may also be discarded
if we consider that lexical variants of words in a particular language should have simi-
lar vector representations when trained on large amounts of standard and non-standard
texts (Bertaglia and Nunes, 2016; van der Goot and van Noord, 2017; Ansari et al., 2017;
Sridhar, 2016). All of this means, in principle, that we could obtain embeddings for, e.g.,
“frnd”, “friend”, “amigo”, and “amgo”, which are close to each other in the embedding space,
indicating that they should be treated similarly by other NLP models while still being able
to distinguish between them.

6.3.3 The downside of this approach

However, there is one immediately apparent drawback of using word embeddings together
with neural network models: the loss of interpretability, an issue affecting the vast majority
of machine learning models. In a discrete pipeline, the outcome from each step is usually
formed by human-readable discrete symbols, enabling an easier analysis and debugging

6.3. WORD EMBEDDINGS 79

of the system, even when each step is implemented by an opaque model. On the contrary,
in a fully continuous approach, the resulting machine learning models operate entirely on
their own numerical domains from start to finish, where they encode the information they
receive on their own terms to obtain the desired results. Having said that, there has been a
good amount of work towards deciphering the internal state of complex neural networks by
visualizing neuron activations under controlled conditions (Yosinski et al., 2015; Karpathy
et al., 2015; Li et al., 2016). Here we can also include the study of linear structures
emerging in a word embedding space which make these models so interesting (Mikolov
et al., 2013b). Furthermore, the inspection is likely to be facilitated by the incremental
construction of complex neural networks through pre-training and fine-tuning, following
the same reasoning as before about splitting complex problems to make them easier to
solve.

In the following chapters, we will describe our word embedding alternatives to overcome
the challenges posed by user-generated texts, which replace the limiting discrete approaches
seen until now.

80 CHAPTER 6. TOWARDS CONTINUOUS MODELS

Part IV

Replacing preprocessing with
embeddings

81

Chapter 7

Cross-lingual word embeddings

Word embeddings are one of the most widely-used resources in NLP, capable of modelling
relevant morphological, syntactical, and semantic features of words without any form of
human supervision. In the beginning, all efforts went towards obtaining good monolingual
embeddings, which encoded information about words in a particular language, hence
obtaining isolated models for each language. More recently, however, a popular research
direction has been broadening the coverage of embedding models from one to multiple
languages integrated into the same embedding space, extending the properties found in
monolingual models to a multilingual domain. The resulting cross-lingual embeddings
do not only play a central role in multilingual NLP tasks and knowledge transfer from
resource-rich languages (typically English); most interestingly for us, their properties make
them suitable for tackling the context fragmentation problem present in code-switched texts,
as already discussed in Section 6.1.

In general, there exist two approaches to obtain multilingual models: training a multi-
lingual model from scratch (Luong et al., 2015; Wick et al., 2016) or training first various
monolingual models and then integrating them into a common multilingual space (Mikolov
et al., 2013a; Artetxe et al., 2016). Given the significant amount of recent work focusing
on the latter approach and its greater degree of modularity, in this chapter we describe a
method to improve the integration obtained by these cross-lingual alignments.

In order to align monolingual word embedding spaces, some state-of-the-art models rely
on orthogonal transformations that map monolingual embeddings from a source language
into the embedding space of a target language while enforcing monolingual invariance; i.e.,
the internal structure of the monolingual spaces is preserved during the transformation.
The alignment is guided by a collection of word translations serving as anchor points
gathered in a bilingual dictionary, which may be obtained manually or through automated
means (Conneau et al., 2018a; Artetxe et al., 2018b). Overall, this can be considered an

83

84 CHAPTER 7. CROSS-LINGUAL WORD EMBEDDINGS

adequate solution if we assume that the embedding spaces for different languages are
approximately isometric (Barone, 2016), although it has been argued that this is not always
the case (Søgaard et al., 2018; Kementchedjhieva et al., 2018). Yet, and perhaps surprisingly,
orthogonal mappings outperform more flexible linear and non-linear methods in many
multilingual and monolingual evaluation tasks (Artetxe et al., 2016), showing that the
internal monolingual structure of an embedding space is, in fact, a highly relevant property.
As a consequence, finding an unconstrained linear or non-linear mapping which optimizes
both monolingual and multilingual performance without degrading the former does not
seem to be a trivial task. In principle, this would prevent us from exploiting cross-lingual
information to improve monolingual performance any further, which should be achievable
according to a previous work by Faruqui and Dyer (2014).

In this chapter, we propose using an unconstrained linear transformation to refine cross-
lingual alignments which, in principle, allows us to combine the advantages of orthogonal
transformations with the potential benefit of allowing monolingual spaces to mutually affect
their internal structures. In reality, our method can be applied over any form of cross-lingual
alignment, although the most notable gains and complete range of benefits are obtained
when operating over orthogonal transformations, as we will see below. Our experimental
analysis reveals that, in general, this combination of an initial transformation followed by
a fine-tuning step outperforms the base approaches in both multilingual and monolingual
evaluation tasks. The performance increase in the case of monolingual tasks indicates that
the proposed transformation leads to improvements in the monolingual spaces, which, as
already mentioned, is not possible when using orthogonal mappings alone.

Furthermore, our method generalizes easily to an arbitrary number of languages, thus
learning truly multilingual vector spaces which extend the benefits of the bilingual case
considered in most previous work. Nonetheless, we have also carried out a broad analysis
of the factors usually involved in bilingual alignments using the methods described here,
which we leave for Appendix B.

7.1 Fine-tuning by meeting in the middle

The method we are proposing is included in a 3-step framework composed of (1) a word
embedding model such as word2vec (Mikolov et al., 2013), GloVe (Pennington et al., 2014),
or fastText (Bojanowski et al., 2016) that obtains the monolingual embedding spaces for
each language, independently of one another; (2) a bilingual method to obtain the initial
alignment of the monolingual spaces; and (3) our own method which improves the integra-
tion of the monolingual spaces obtained in the previous step. The initial bilingual alignment
of monolingual spaces is usually modelled as an orthogonal linear transformation (Artetxe

7.1. MEETING IN THE MIDDLE 85

et al., 2016; Conneau et al., 2018a; Xing et al., 2015), where a matrix W is learned such
that it minimizes the following objective:1

Q =

n∑
i=1

‖xiW − zi‖2 (7.1)

where we write xi for the vector representation of some word xi in the source language and
zi is the vector representation of the translation zi of wi in the target language. When we
add the orthogonality constraint WWT = 1, the resulting optimization problem is known
as the orthogonal Procrustes problem, whose exact solution can be computed efficiently,
similarly to any regular least-squares regression problem. Note that this approach relies on
a bilingual dictionary containing the training pairs (x1, z1), ..., (xn, zn). However, once the
matrix W has been learned, for any word w in the source language, we can use xW as a
prediction of the vector representation of the translation of w. In particular, to predict which
word in the target language is the most likely translation of the word w from the source
language, we can then simply take the word z whose vector z is closest to the prediction
xW. In this work, we use two well-known methods to obtain the bilingual alignments:
VecMap (Artetxe et al., 2018a) and MUSE (Conneau et al., 2018a).

The third step in our multilingual integration framework constitutes our main con-
tribution. After the initial bilingual alignment described in the previous paragraph, we
propose to apply a post-processing step which aims at improving the integration of the
resulting bilingual space. To this end, we learn an unconstrained linear transformation that
maps word vectors from one space onto the average of that word vector and the vector
representation of its translation according, once again, to a given bilingual dictionary. We
call this approach Meemi (Meeting in the middle),2 which is illustrated in Figure 7.1. In
particular, the figure shows the three-step nature of our approach: (1) we first obtain the
monolingual spaces; (2) we then learn an initial transformation (in this case, orthogonal,
using VecMap or MUSE), which aligns the two monolingual spaces as much as possible
without changing their internal structure; and (3) finally, we map both spaces into a middle
ground between them through a non-orthogonal linear transformation. Since we already
start this step from aligned spaces, the changes applied by this transformation are expected
to be relatively small. Notably, this approach can naturally be applied to more than two
monolingual spaces given some specific conditions, as we will see in Section 7.1.2. But first,
let us consider the traditional bilingual case.

1We will see shortly how we can obtain truly multilingual models starting with bilingual alignments.
2Code is available at https://github.com/yeraidm/meemi. This page will be updated with pre-trained

models for new languages and tailored code to apply our models in cross-lingual tasks.

https://github.com/yeraidm/meemi

86 CHAPTER 7. CROSS-LINGUAL WORD EMBEDDINGS

Figure 7.1: Step by step integration of two monolingual embedding spaces: (1) obtaining
isolated monolingual spaces, (2) aligning these spaces through an orthogonal linear trans-
formation, and (3) map both spaces using an unconstrained linear transformation learned
on the averages of translation pairs.

7.1.1 Bilingual models

Let D be the given bilingual dictionary, encoded as a set of word pairs (w,w′). Using the
pairs in D as training data, we learn a linear mapping X such that wX ≈ w+w′

2 for all
(w,w′) ∈ D, where we write w for the vector representation of word w in the given (aligned)
monolingual space. This mapping X can then be used to predict the averages for words
outside the given dictionary. To find the mapping X, we solve the following least squares
linear regression problem:

Ebi =
∑

(w,w′)∈D

∥∥∥∥wX− w + w′

2

∥∥∥∥2 (7.2)

Similarly, we separately learn a mapping X′ such that w′X′ ≈ w+w′

2 .
It is worth pointing out that we experimented with several variants of this linear

regression formulation. For example, we also tried using a multilayer perceptron to learn
non-linear mappings, and we experimented with several regularization terms to penalize
mappings that deviate too much from the identity mapping. None of these variants, however,
were found to improve on the much simpler formulation in Equation 7.2, which can be
solved exactly and efficiently. Furthermore, one may wonder whether the initial alignment
is actually needed, since e.g., Coates and Bollegala (2018) obtained high-quality meta-
embeddings without such an alignment set. However, when applying our approach directly
to the initial monolingual non-aligned embedding spaces, we did not obtain competitve

7.1. MEETING IN THE MIDDLE 87

results in our current setting.
On the other hand, we do consider a weighted variant of Meemi where the linear

model is trained on weighted averages based on word frequency. Specifically, let fw be
the occurrence count of word w in the corresponding monolingual corpus, then w+w′

2 is
replaced by:

fww + fw′w′

fw + fw′
(7.3)

The intuition behind this weighted model is that the embedding for the word w might be
more relevant (i.e., encode the underlying concept more effectively) than the one for w′,
given that it is more frequent in its training corpus compared to the other, or the reverse.
Suppose, for instance, that w = w′, and w is the name of a Spanish city. Then, we may
expect to see more occurrences of w in a Spanish corpus than in an English corpus, and
hence the training algorithm could use more context information to refine the Spanish
embedding.

7.1.2 Multilingual models

To apply Meemi in a multilingual setting, we exploit the fact that bilingual orthogonal
methods such as VecMap (without re-weighting) and MUSE do not modify the target
monolingual space but only apply the transformation to the source. Hence, by simply
applying this method to multiple language pairs while fixing the target language (i.e., for
languages l1, l2, ..., ln, we construct pairs of the form (li, ln) with i ∈ {1, ..., n − 1}), we
can obtain a multilingual space in which all of the corresponding monolingual models are
aligned with the same target embedding space. And this is truly the central requirement of
this multilingual approach: that the initial mapping allows us to map all the corresponding
monolingual spaces into a common shared multilingual space. Note, however, that if we
applied a re-weighting strategy, as suggested by Artetxe et al. (2018a) for VecMap, the target
space would no longer remain fixed for all source languages and would instead change
depending on the source considered in each case.

While most previous work has been limited to bilingual formulations, multilingual
models involving more than two languages have already been studied by Ammar et al.
(2016). They use an approach based on Canonical Correlation Analysis (CCA) which
also designates one specific language as reference for all the mappings. Having said this,
we decided to use the bilingual approaches of VecMap and MUSE given their current
state-of-the-art consideration.

Formally, let D be a multilingual dictionary, encoded as a set of tuples (w1, w2, ..., wn),
where n is the number of languages. Using the tuples in D as training data, we learn a

88 CHAPTER 7. CROSS-LINGUAL WORD EMBEDDINGS

linear mapping Xi for each language, such that wiXi ≈ w1+...+wn
n for all (w1, ..., wn) ∈ D.

This mapping Xi can then be used to predict the averages for words in the ith language
outside the given dictionary. To find the mappings Xi, we solve the following least squares
linear regression problem for each language:

Emulti =
∑

(w1,...,wn)∈D

∥∥∥∥wiXi −
w1 + ...+ wn

n

∥∥∥∥2 (7.4)

Note that while a weighted variant of this model can straightforwardly be formulated, we
will not consider this in the following experiments.

7.2 Experimental setting

In this section we explain the common training settings for all experiments. Firstly, the
corpora and other training details used when learning the initial monolingual embeddings
are presented in Section 7.2.1. Then, the bilingual and multilingual dictionaries which serve
as supervision signals are explained in Section 7.2.2. Finally, all compared systems are listed
in Section 7.2.3.

7.2.1 Corpora and monolingual embeddings

Instead of using comparable corpora such as Wikipedia, as in the majority of the previous
work (Artetxe et al., 2017; Conneau et al., 2018a), we make use of independent corpora
extracted from the Web. This represents a more realistic setting where alignments are harder
to obtain, as already noted by Artetxe et al. (2018b). For English, we use the 3B-word
UMBC WebBase Corpus (Han et al., 2013b), containing over 3 billion words. In the case of
Spanish, we use the Spanish Billion Words Corpus (Cardellino, 2016), consisting of over
a billion words. For Italian and German, we use the itWaC and sdeWaC corpora from the
WaCky project (Baroni et al., 2009), containing 2 and 0.8 billion words, respectively.3 For
Finnish and Russian, we use their corresponding Common Crawl monolingual corpora from
the Machine Translation of News Shared Task 2016,4 composed of 2.8 and 1.1 billion words,
respectively. Finally, for Farsi we leverage the newswire Hamshahri corpus (AleAhmad et al.,
2009), composed of almost 200 million words.

3The same English, Spanish, and Italian corpora are used as input corpora for the hypernym discovery
SemEval task (see Section 7.4.1).

4http://www.statmt.org/wmt16/translation-task.html

http://www.statmt.org/wmt16/translation-task.html

7.2. EXPERIMENTAL SETTING 89

In a preprocessing step, all corpora were tokenized using the Stanford tokenizer (Man-
ning et al., 2014) and lowercased. Next, we trained fastText word embeddings (Bojanowski
et al., 2016) on the preprocessed corpora for each language. The dimensionality of the
vectors was set to 300, using the default values for the remaining hyperparameters.

7.2.2 Training dictionaries

We use the training dictionaries provided by Conneau et al. (2018a) as supervision. These
bilingual dictionaries were compiled using the internal translation tools from Facebook. To
make the experiments comparable across languages, we randomly extracted 8,000 training
pairs from these splits for all language pairs considered, as this is the size of the smallest
available dictionary. For completeness we also present results for fully unsupervised systems
(see the following section), which do not take advantage of any dictionaries.

7.2.3 Compared systems

In the bilingual case, we use the supervised and unsupervised variants of VecMap and MUSE
to obtain the base alignments and then apply plain Meemi and weighted Meemi on the
results. For VecMap, we consider both its orthogonal version (VecMaportho) (Artetxe et al.,
2016) and the non-orthogonal multi-step procedure (VecMapmultistep) (Artetxe et al., 2018a).
It is worth noting that the unsupervised version of VecMap (VecMapuns) (Artetxe et al.,
2018b) is based on the non-orthogonal procedure, while both variants of MUSE (MUSE and
MUSEuns, supervised and unsupervised, respectively) (Conneau et al., 2018a) are based on
orthogonal transformations.

The multilingual case is formed exclusively by Meemi models, where we follow the
procedure described in Section 7.1.2 for all seven languages considered: English (EN),
Spanish (ES), Italian (IT), German (DE), Finnish (FI), Farsi (FA), and Russian (RU). Note
that while in the bilingual case we can use any VecMap variant, in the multilingual setting
we can only use the orthogonal methods, this is, VecMaportho, MUSE, and MUSEuns, although
we only consider the former at the moment.

Finally, we will write Meemi (M) to refer to the model obtained by applying Meemi
after the base method M , where M may be any variant of VecMap or MUSE. Similarly, we
will write Meemiw (M) in those cases where the weighted version of Meemi is used, and
Meemi-multi for the multilingual models.

90 CHAPTER 7. CROSS-LINGUAL WORD EMBEDDINGS

7.3 Intrinsic evaluation

In this section we assess the intrinsic performance of our post-processing techniques in
cross-lingual and monolingual settings.

7.3.1 Cross-lingual performance

We evaluate the performance of all compared cross-lingual embedding models on standard
purely cross-lingual tasks, namely dictionary induction and cross-lingual word similarity.

Model
English-Spanish English-Italian English-German

P@1 P@5 P@10 P@1 P@5 P@10 P@1 P@5 P@10

VecMapuns 34.8 60.6 67.0 31.4 53.7 60.7 23.2 42.7 50.2
MUSEuns 31.4 51.2 57.7 31.4 51.2 57.7 20.8 38.7 46.6
VecMaportho 32.6 58.1 65.8 32.9 56.5 63.4 22.8 42.8 50.4
Meemi (VecMaportho) 33.9 60.7 67.4 33.8 58.8 65.6 23.7 45.0 52.9
Meemiw (VecMaportho) 33.4 60.9 67.4 33.1 58.5 66.3 22.9 44.3 52.5
Meemi-multi (VecMaportho) 33.4 60.9 67.1 33.7 58.1 65.5 23.0 44.5 52.8
VecMapmultistep 33.8 60.7 68.4 33.7 58.9 66.5 24.1 45.3 53.6
Meemi (VecMapmultistep) 33.8 61.4 68.4 33.7 59.0 66.8 23.4 45.7 53.6
Meemiw (VecMapmultistep) 33.2 60.9 68.1 32.5 58.2 66.2 22.8 44.8 53.1
MUSE 32.5 58.2 65.9 32.5 56.0 63.2 22.4 40.9 48.9
Meemi (MUSE) 33.9 60.7 68.4 33.8 58.4 65.6 23.7 45.3 52.3
Meemiw (MUSE) 33.3 61.2 68.2 33.0 58.8 65.3 22.8 44.4 52.3

Model
English-Finnish English-Farsi English-Russian

P@1 P@5 P@10 P@1 P@5 P@10 P@1 P@5 P@10

VecMapuns 0.1 0.5 0.7 19.7 34.6 40.4 13.8 30.9 38.6
MUSEuns 23.7 45.0 52.9 18.1 32.8 37.8 14.4 31.2 38.5
VecMaportho 22.1 44.5 52.9 18.5 33.6 40.5 15.6 35.5 44.2
Meemi (VecMaportho) 24.8 48.9 57.7 20.0 37.1 43.8 19.0 40.5 49.9
Meemiw (VecMaportho) 22.6 48.3 56.5 19.8 35.2 41.6 17.4 39.9 49.4
Meemi-multi (VecMaportho) 23.1 48.3 57.2 21.0 37.9 44.4 18.8 41.7 50.5
VecMapmultistep 22.5 48.4 57.5 20.8 36.1 43.4 18.2 40.2 49.5
Meemi (VecMapmultistep) 24.0 50.8 58.9 20.0 36.9 42.4 19.3 41.5 50.6
Meemiw (VecMapmultistep) 21.6 48.3 57.2 21.5 38.5 43.7 17.4 40.9 49.7
MUSE 20.0 40.1 48.3 17.4 31.6 37.6 15.5 35.6 44.1
Meemi (MUSE) 23.0 46.1 54.0 19.3 36.0 41.7 18.7 40.5 49.7
Meemiw (MUSE) 21.7 46.9 55.0 19.5 33.8 39.8 18.1 40.0 49.5

Table 7.1: P@k performance of different cross-lingual embedding models in the bilingual
dictionary induction task.

7.3. INTRINSIC EVALUATION 91

Bilingual dictionary induction

Also referred to as word translation, this task consists in automatically retrieving the word
translations in a target language for words in a source language. Acting on the corresponding
cross-lingual embedding space which integrates the two (or more) languages of a particular
test case, we obtain the nearest neighbors to the source word in the target language as
our translation candidates. The performance is measured with precision at k (P@k), the
proportion of test instances where the correct translation candidate for a given source word
was among the k highest ranked candidates. The nearest neighbors ranking is obtained by
using cosine similarity as the scoring function. For this evaluation we use the corresponding
test dictionaries released by Conneau et al. (2018a).

Table 7.1 shows the results attained by a wide array of models. We can observe
that the best figures are generally obtained by Meemi over the bilingual VecMap models.
Unsurprisingly, the impact of Meemi is more apparent when used in combination with
the orthogonal base models. On the other hand, using the weighted version of Meemi
(Meemiw) does not seem to be particularly beneficial on this task, with the only exception
of English-Farsi. In general, the performance of unsupervised models (VecMapuns and
MUSEuns) is competitive in closely-related languages such as English-Spanish and English-
German but considerably under-perform for distant languages, especially on English-Finnish
and English-Russian.

Finally, the results obtained by the multilingual model that includes all seven languages
considered, i.e., Meemi-multi (VecMaportho), improve over the base orthogonal model, but
they do not improve over the results of our bilingual model. We further discuss the impact
of adding languages to the multilingual model in Section 7.5.2.

Cross-lingual word similarity

This task consists in measuring the semantic similarity between pairs of words and compar-
ing the obtained scores to a gold standard given by human annotators. In a word embedding
space, the similarity between two words can be measured through a distance or similarity
metric between the corresponding vectors in that space, such as cosine similarity. In this
case, and in contrast to monolingual similarity (see below), words in a given pair (a, b)

belong to different languages; e.g., a may belong to English and b to Farsi, which in turn
happen to be integrated into the same cross-lingual space. For this task, we make use of the
SemEval-17 multilingual similarity benchmark (Camacho Collados et al., 2017), considering
the four cross-lingual datasets that include English as target language, but discarding multi-
word expressions. Performance is computed in terms of Pearson and Spearman correlation
with respect to the gold standard.

92 CHAPTER 7. CROSS-LINGUAL WORD EMBEDDINGS

Model
EN-ES EN-IT EN-DE EN-FA
r ρ r ρ r ρ r ρ

VecMapuns 71.1 70.5 69.2 68.8 70.9 70.4 35.7 33.4
MUSEuns 71.7 71.6 69.4 69.4 70.3 70.0 29.6 23.8
VecMaportho 71.6 71.6 70.2 70.1 70.9 70.7 29.2 23.7
Meemi (VecMaportho) 72.3 72.0 71.2 70.7 72.5 72.1 35.3 31.6
Meemiw (VecMaportho) 72.1 72.0 70.0 69.7 70.5 70.2 34.2 30.2
Meemi-multi (VecMaportho) 73.9 73.4 71.6 71.0 72.5 72.2 39.6 37.2
VecMapmultistep 72.8 72.4 71.6 71.2 72.7 72.2 36.5 31.7
Meemi (VecMapmultistep) 72.1 71.5 71.1 70.9 72.6 72.3 40.4 39.0
Meemiw (VecMapmultistep) 71.5 71.2 69.7 69.8 70.3 70.3 39.6 40.8
MUSE 71.9 71.9 70.4 70.4 70.5 70.2 29.7 23.9
Meemi (MUSE) 72.5 72.3 71.5 71.1 72.5 72.1 36.4 33.0
Meemiw (MUSE) 72.3 72.2 70.4 70.0 70.5 70.4 33.6 28.9

Table 7.2: Cross-lingual word similarity results in terms of Pearson (r) and Spearman (ρ)
correlation.

As we can see in Table 7.2, our fine-tuned models clearly outperform the original orthog-
onal mappings of VecMap and MUSE, and also their unsupervised variants. Furthermore,
Meemi-multi (VecMaportho) proves a consistently good performance across the board, being
superior to its bilingual counterpart while tying with VecMapmultistep for Italian and German.
On the other hand, and similarly to the dictionary induction task, Meemi seems to be
essential when considering distant languages, as is the present case with Farsi, where Meemi
(VecMapmultistep) obtains almost four more points than its competitive base model (going
from 36.5% to 40.4%). This result is not entirely surprising, as with more similar languages
we could expect a lesser impact in the transformation performed by Meemi.

7.3.2 Monolingual performance

As already mentioned at the beginning of this chapter, orthogonal transformations do not
modify the internal structure of monolingual embedding spaces. For this reason, they
cannot exploit the integration of cross-lingual information to improve the monolingual
structures, as noted by Faruqui and Dyer (2014), and thus their performance will not change
in monolingual tasks. However, methods that break this orthogonality constraint, such as
Meemi and VecMap (with re-weighting), should report different performance figures in
these cases. In order to test this, we use the monolingual word similarity task, where we
measure the semantic similarity between two words from the same language. Similarly

7.4. EXTRINSIC EVALUATION 93

Model
English Spanish Italian German Farsi
r ρ r ρ r ρ r ρ r ρ

VecMapuns 72.8 72.3 70.2 70.4 67.8 68.1 70.6 70.2 23.5 21.1
MUSEuns 74.2 74.2 70.5 71.9 67.4 69.2 69.8 69.8 21.1 17.3
VecMaportho 74.1 73.9 70.0 71.5 67.2 69.0 70.1 70.1 21.1 18.2
Meemi (VecMaportho) 74.4 73.9 71.6 72.1 69.0 69.4 71.1 70.7 24.3 22.5
Meemiw (VecMaportho) 74.4 74.0 71.8 71.8 68.2 68.8 68.8 68.9 28.5 29.8
Meemi-multi (VecMaportho) 75.1 74.3 73.0 72.9 70.1 70.4 70.7 70.7 27.3 26.0
VecMapmultistep 73.8 73.3 71.8 72.0 69.6 69.7 71.8 71.2 24.8 22.2
Meemi (VecMapmultistep) 73.3 72.6 71.7 71.6 69.4 69.8 71.1 71.0 27.3 26.2
Meemiw (VecMapmultistep) 73.5 72.9 70.9 70.6 67.2 68.4 67.0 67.8 27.3 25.6
MUSE 74.2 74.2 70.5 71.9 67.4 69.2 69.8 69.8 21.1 17.3
Meemi (MUSE) 74.6 74.1 71.9 72.4 69.5 69.9 71.0 70.6 24.6 22.5
Meemiw (MUSE) 74.5 74.4 71.7 71.8 68.5 68.9 68.3 68.2 27.0 25.5
fastText 72.3 72.4 69.0 70.2 66.3 67.5 71.0 70.3 24.3 20.6
Human upper bound 89.3 - 89.0 - 90.0 - 91.6 - 90.6 -

Table 7.3: Monolingual word similarity results in terms of Pearson (r) and Spearman (ρ)
correlation.

to the cross-lingual case, the evaluation is performed in terms of Spearman and Pearson
correlation with respect to human judgements, and we use the monolingual datasets from
the SemEval-17 task (English, Spanish, German, and Farsi). The results provided by the
original monolingual fastText embeddings are also reported as baseline.

Table 7.3 shows the results on monolingual word similarity, where our multilingual
model clearly stands out obtaining the best overall results for English, Spanish, and Italian,
and improving over the base VecMaportho model on the rest. With the sole exception of
German, where the multi-step framework of Artetxe et al. (2018a) proves effective, the
plain Meemi transformation outperforms the base models, both for VecMap and MUSE.

7.4 Extrinsic evaluation

We complement the intrinsic evaluation experiments, which are typically a valuable source
for understanding the properties of the vector spaces, with downstream cross-lingual tasks.
For the remainder of this section, we will focus on the orthogonal model of VecMap (i.e.,
VecMaportho), in combination with the proposed Meemi strategy, both in bilingual and
multilingual settings. For the latter case, we consider all six languages: Spanish, Italian,
German, Finnish, Farsi, and Russian; while keeping English as the target language.

The tasks considered are cross-lingual hypernym discovery and cross-lingual natural
language inference.

94 CHAPTER 7. CROSS-LINGUAL WORD EMBEDDINGS

7.4.1 Cross-lingual hypernym discovery

Hypernymy is an important lexical relation with a direct impact on downstream NLP tasks
such as semantic search (Hoffart et al., 2014; Roller and Erk, 2016), question answer-
ing (Prager et al., 2008; Yahya et al., 2013), or textual entailment (Geffet and Dagan,
2005). In addition, hypernyms are the backbone of taxonomies and lexical ontologies (Yu
et al., 2015), which are in turn useful for organizing, navigating, and retrieving online
content (Bordea et al., 2016). Here, we propose to evaluate the quality of the considered
cross-lingual vector spaces in the extrinsic task of bilingual hypernym discovery, i.e., given
an input word in a given language (e.g., “cat”), retrieve or discover its most likely set of
valid hypernyms in another language (e.g., “animal”, “mamı́fero”, “felino”, etc.).5 Intuitively,
by leveraging a bilingual vector space condensing the semantics of two languages, one of
them being English, the need for large amounts of training data in the target language may
be reduced.

The base model for this task is a linear transformation trained on English hyponym-
hypernym pairs (Espinosa-Anke et al., 2016), which is afterwards used to predict the most
likely set of hypernyms given a new term. Training and evaluation data come from the
SemEval 2018 Shared Task on Hypernym Discovery (Camacho-Collados et al., 2018). Note
that current state-of-the-art systems aimed at modelling hypernymy (Shwartz et al., 2016;
Bernier-Colborne and Barriere, 2018) combine large amounts of annotated data along with
language-specific rules and cue phrases such as Hearst Patterns (Hearst, 1992), both of
which are generally scarcely available, if at all, for languages other than English. We also
consider augmenting our models with extra data from the target language in each case.

The results shown in Table 7.4 correspond to the models trained on English data only
(11,779 hyponym-hypernym pairs), and then those augmented models informed with
relatively few training pairs (500, 1K, and 2K) from the target languages. Evaluation is
conducted with the same metrics as in the original SemEval task: Mean Reciprocal Rank
(MRR), Mean Average Precision (MAP), and Precision at 5 (P@5). These measures
explain the behavior of a model from complementary prisms, namely how often at least
one valid hypernym was highly ranked (MRR), and in cases where there is more than one
correct hypernym, to what extent they were all correctly retrieved (MAP and P@5).

The first noticeable trend is the better performance of the unsupervised VecMap version
versus its orthogonal counterpart. Nevertheless, we obtain consistent gains over both
VecMap variants when applying Meemi, across all configurations for the two language pairs
considered. In fact, the weighted version (Meemiw) brings an increase in performance
between 4 and 5 MRR points and between 1 and 2 MAP in the English-only training setting

5Spanish translations for “animal”, “mammal”, and “feline”, respectively.

7.4. EXTRINSIC EVALUATION 95

Train data Model
Spanish Italian

MAP MRR P@5 MAP MRR P@5

EN

VecMapuns 5.8 15.0 5.5 5.2 12.4 4.8
VecMap 5.3 13.6 5.2 3.9 9.0 3.6
Meemi (VecMap) 6.5 16.8 6.1 5.5 12.7 5.3
Meemiw (VecMap) 7.7 20.6 7.2 7.0 17.2 6.4
Meemi-multi (VecMap) 5.9 15.4 5.5 6.0 13.9 5.7

EN + 500

VecMapuns 5.9 14.5 5.7 5.9 14.1 5.6
VecMap 5.6 13.9 5.6 4.9 11.5 4.7
Meemi (VecMap) 7.0 17.6 6.7 6.2 14.2 5.9
Meemiw (VecMap) 7.7 20.8 7.2 7.3 17.4 6.8
Meemi-multi (VecMap) 6.1 15.8 6.0 6.4 14.8 6.1

EN + 1K

VecMapuns 6.3 15.1 6.0 5.9 13.9 5.6
VecMap 5.7 14.4 5.6 5.2 12.6 4.9
Meemi (VecMap) 7.1 17.8 6.7 6.6 15.1 6.4
Meemiw (VecMap) 7.9 21.2 7.4 7.3 17.3 6.9
Meemi-multi (VecMap) 6.4 16.5 6.2 6.5 14.6 6.2

EN + 2K

VecMapuns 6.2 14.2 6.1 6.5 15.1 6.1
VecMap 5.7 14.0 5.4 6.0 14.0 5.7
Meemi (VecMap) 7.0 17.2 6.7 7.1 16.1 6.8
Meemiw (VecMap) 7.7 20.2 7.2 7.4 17.3 7.2
Meemi-multi (VecMap) 6.4 16.1 6.2 6.8 15.4 6.4

Table 7.4: Cross-lingual hypernym discovery results. In this case: VecMap = VecMaportho .

for Spanish and Italian, respectively. This is in contrast to the intrinsic evaluation, where the
weighted model did not seem to provide noticeable improvements over the plain version of
Meemi. Finally, concerning the fully multilingual model, the experimental results suggest
that, while still better than the orthogonal baselines, it falls short when compared to the
weighted bilingual version of Meemi. This result suggests that exploring weighting schemes
for the multilingual setting may bring further gains, but we leave this for future work.

7.4.2 Cross-lingual natural language inference

The task of natural language inference (NLI) consists in detecting entailment, contradiction,
or neutral relations in pairs of sentences. In our case, we test a zero-shot cross-lingual
transfer setting (XNLI) where a system is trained with English corpora and is then evaluated
on a different language.

96 CHAPTER 7. CROSS-LINGUAL WORD EMBEDDINGS

Model EN-ES EN-DE
VecMapuns 45.5 44.4
VecMaportho 43.9 43.6
Meemi (VecMaportho) 44.9 43.8
Meemiw (VecMaportho) 40.4 43.5
Meemi-multi (VecMaportho) 46.6 45.5
VecMapmultistep 44.4 37.7
Meemi (VecMapmultistep) 44.2 43.2
Lower bound 38.0 33.4

Table 7.5: Accuracy on the XNLI task using different cross-lingual embeddings as features.

We base our approach on the assumption that better aligned cross-lingual embeddings
should lead to better XNLI models, and that the impact of the input embeddings may
become more apparent in simple methods; as opposed to, for instance, complex neural
network architectures. Hence, and also to account for the coarser linguistic granularity
of this task (being a sentence classification problem rather than word-level), we employ
a simple bag-of-words approach where a sentence embedding is obtained through word
vector averaging.

We then train a linear classifier6 to predict one of the three possible labels in this
task, namely entailment, contradiction, or neutral. We use the full MultiNLI English cor-
pus (Williams et al., 2018) for training and the Spanish and German test sets from XNLI (Con-
neau et al., 2018b) for testing. For comparison, we also include a lower bound obtained by
considering English monolingual embeddings for input; in this case fastText trained on the
UMBC corpus, which is the same model used to obtain multilingual embeddings.

Accuracy results are shown in Table 7.5. The main conclusion in light of these results
is the remarkable performance of the unsupervised VecMap model and, most notably,
multilingual Meemi for both Spanish and German, clearly outperforming the orthogonal
and multistep bilingual mapping baselines. Our results are encouraging for two reasons.
First, they suggest that, at least for this task, collapsing several languages into a unified
vector space is better than performing pairwise alignments. And second, the inherent benefit
of having one single model accounting for an arbitrary number of languages.

6The codebase for these experiments is that of SentEval (Conneau and Kiela, 2018).

7.5. ANALYSIS 97

crazy telegraph
VecMap Meemi Meemi-multi VecMap Meemi Meemi-multi

loco loco chifladas telégrafo telegráfico telegraph
tonto loca locos telégrafos telégrafo telegraaf

enloquecere enloquećı loca telegráfico telegráfono telegraphone
locos enloquećıas estúpidas telegráfica telegraf telegráfono

enloqueci locos alocadas telegrafo telegráfo telégrafo
conventions discover

VecMap Meemi Meemi-multi VecMap Meemi Meemi-multi
convenciones internaciones convenios descubrirá descubre descubr
internacional7 1972naciones reglas descubr descubrir descubrirán

convención protocolos convención descubrirán descubriendo descubrirnos
1961naciones convenios normas descubren descubra descubrira

internacionales3 1961naciones legislacionesnacionales descubriron descubrira descubrire
remarks lyon

VecMap Meemi Meemi-multi VecMap Meemi Meemi-multi
astrométricos lobservaciones observaciones rocquigny beaubois marcigny

observacionales mediciones observacionales rémilly bourgmont lyon
astrométricas lasobservaciones observacional martignac marcigny pierreville

astronométricas deobservaciones predicciones beaubois rémilly jacquemont
predicciones susobservaciones mediciones chambourcy jacquemont beaubois

Table 7.6: Word translation examples from English and Spanish, comparing VecMap with
the bilingual and multilingual variants of Meemi. For each source word, we show its five
nearest cross-lingual synonyms. Bold translations are correct, according to the source test
dictionary (see Section 7.3.1).

7.5 Analysis

We complement our quantitative evaluation, covering intrinsic and extrinsic tasks, with a
qualitative analysis which aims at discovering the most salient properties of the transforma-
tion performed by Meemi and their linguistic implications. We perform this analysis using
the examples in Section 7.5.1 and different combinations of languages in the case of the
multilingual model in Section 7.5.2.

7.5.1 Studying word translations

Table 7.6 lists a number of examples where, for a source English word, we explore its
highest ranked cross-lingual synonyms (or word translations) in a target language. We select
Spanish as a use case.

Let us study the examples listed in Table 7.6, as they constitute illustrative cases of
linguistic phenomena which go beyond correct or incorrect translations. First, the word
“crazy” is correctly translated by both VecMap and Meemi; “loco” (masculine singular),

98 CHAPTER 7. CROSS-LINGUAL WORD EMBEDDINGS

“locos” (masculine plural), or “loca” (femenine) being standard translations, with no further
connotations, of the source word. However, the most interesting finding lies on the fact
that for Meemi-multi, the preferred translation is a colloquial (or even vulgar) translation
which was not considered as correct in the gold test dictionary. The Spanish word “chifladas”
translates to English as “going mental” or “losing it”. Similarly, we would like to highlight the
case of “telegraph”. This word has two major senses, namely that of a message transmitter,
but also as a proper noun that refers to media outlets (several newspapers have the word
“telegraph” in their name). VecMap and Meemi (correctly) translate this word into the
common translation “telégrafo” (the transmission device), whereas Meemi-multi does prefer
its named-entity sense.

Other cases, such as “conventions” and “discover” share the property of being common
ambiguous nouns. A common outstanding pattern can be observed in that in both cases
candidate translations are either misspellings of the correct translation (“descubr”, instead
of “descubrir”, for “discover”) or misspellings involving tokens conflating two words whose
compositional meaning is actually a correct candidate translation for the source word; e.g.,
“legislaciones nacionales” (“national rulings”) for “conventions”. Finally, the last example of
this batch, the word “remarks”, is interesting because it allows us to interpret the semantics
of candidate translations when ambiguity causes major disruptions. “Remark” translates
in Spanish to “observación”, which in turn has an astronomical sense; “astronomical
observatory” translates to “observatorio astronómico”.

7.5.2 Multilingual performance

In this section, we assess the benefits of our proposed multilingual integration (see Sec-
tion 7.1.2). To this end, we measure fluctuations in performance as more languages are
added to the initially bilingual model. Thus, starting from a bilingual embedding space
obtained with VecMaportho, we apply Meemi over a number of aligned spaces, which ul-
timately leads to a fully multilingual space containing the following languages: Spanish,
Italian, German, Finnish, Farsi, Russian, and English. This latter language is used as the
target embedding space for the orthogonal transformations due to it being the richest in
terms of resource availability.

To avoid a lengthy and overly exhaustive approach where all possible combinations
from two to seven languages are evaluated, we opted for conducting an experiment where
languages are added one by one in a fixed order, starting from the languages which are
closer to English in terms of language family and alphabet: Spanish, Italian, and German,
and then Finnish, Farsi, and Russian. However, this approach does not allow us to use, for
example, the English-Farsi test set until reaching the fifth step. To solve this, in these cases

7.5. ANALYSIS 99

Languages
English-Spanish English-Italian English-German

P@1 P@5 P@10 P@1 P@5 P@10 P@1 P@5 P@10

x-en (VecMaportho) 32.6 58.1 65.8 32.9 56.5 63.4 22.8 42.8 50.4
x-en 33.9 60.7 67.4 33.8 58.8 65.6 23.7 45.0 52.9
es-x-en 34.2 60.8 68.2 33.3 58.1 66.5 23.9 45.9 53.2
es-it-x-en 34.1 61.2 68.1 33.8 58.9 66.7 23.8 45.8 53.1
es-it-de-x-en 34.2 61.3 68.3 33.9 58.8 66.5 23.9 45.6 53.4
es-it-de-fi-x-en 33.6 60.9 67.5 33.8 58.0 65.8 23.1 44.7 52.7
es-it-de-fi-fa-ru-en 33.4 60.9 67.1 33.7 58.1 65.5 23.0 44.5 52.8

Languages
English-Finnish English-Farsi English-Russian

P@1 P@5 P@10 P@1 P@5 P@10 P@1 P@5 P@10

x-en (VecMaportho) 22.1 44.5 52.9 18.5 33.6 40.5 15.6 35.5 44.2
x-en 24.2 48.8 57.7 20.0 37.1 43.8 19.0 40.5 49.9
es-x-en 24.7 50.1 58.4 21.1 37.9 43.9 17.9 40.2 49.3
es-it-x-en 24.1 51.1 59.2 20.9 37.6 44.5 18.9 41.6 50.6
es-it-de-x-en 23.9 50.2 58.5 21.0 37.7 44.9 18.9 41.5 50.8
es-it-de-fi-x-en 23.5 48.6 57.5 21.2 37.5 44.0 19.1 42.1 51.4
es-it-de-fi-fa-ru-en 23.1 48.3 57.2 21.0 37.9 44.4 18.8 41.7 50.5

Table 7.7: Dictionary induction results obtained with multilingual Meemi over (VecMaportho).
The sequence in which source languages are added to the multilingual models is: Spanish,
Italian, German, Finnish, Farsi, and Russian (English is the target). The x indicates the
use of an alternative model that includes the required language to evaluate on the specific
dataset in each case. We also include the scores of the original VecMaportho as baseline.

we replace the next language in the sequence that would be considered by default with the
language needed to run the corresponding test set. For instance, when adding Italian as the
second source language, thus obtaining the model Spanish-Italian-English, and using it for
the English-Spanish and English-Italian test sets, we also consider replacing it with either
German, Finnish, Farsi, or Russian in order to allow the testing of a trilingual model on the
rest of the test sets. In Table 7.7 we show the results obtained by the multilingual models in
bilingual dictionary induction.

The best results are achieved when more than two languages are involved in the training,
which correlates with the results obtained in the rest of the tasks and highlights the ability
of Meemi to successfully exploit multilingual information to improve the quality of the
embedding models involved. In general, the performance fluctuates more significantly when
adding the first language to the bilingual models and then stabilizes at a similar level to the
bilingual case when adding more distant languages.

100 CHAPTER 7. CROSS-LINGUAL WORD EMBEDDINGS

7.6 Embedding models to replace language identification

Going back to the multilinguality concern in user-generated texts, one of the central
points of this dissertation, we now have two options to overcome its derived difficulties:
(1) discriminating texts based on the language(s) they are written in to process them with
the adequate modules afterwards, which amounts to the task of language identification
in a preprocessing pipeline as described in Chapter 1; or (2) directly using a cross-lingual
embedding model which translates words in any of the considered languages into a common
language of vectors, so that other NLP modules only have to deal with this universal language.
As already discussed in Chapter 6, we lean towards the second approach due to its postulated
advantages in our use case. However, we should mention here an added difficulty affecting
the cross-lingual models obtained in this chapter, and which is caused by the existence of
cross-lingual homographs. These are words that exist in multiple languages where they have
the same or different meanings. For example, the term “probable” means ’likely to occur’
in both languages; whereas the term “sensible” means ’showing good sense’ in English but
’sensitive’ in Spanish. Consequently, they also have multiple embedding representations in
our cross-lingual embedding spaces, one per language where they are used. We consider
two possible solutions to this:

1. Use word-sense disambiguation techniques (Navigli, 2009) to select the correct lan-
guage-sense embedding in a given context. This might be viewed as a form of soft
language identification, although it is worth noting that context fragmentation, one of
the main limitations of the preprocessing approach that used hard language identifi-
cation, is still solved within this approach. Then, having all the context available for
disambiguation can make this task easier than traditional language identification.

2. Obtain unique word embeddings for homographs. Camacho-Collados et al. (2019)
show that directly using the average of homograph embeddings yields surprisingly
good results in multiple tasks. However, we have not seen the same trend in the results
for the experimental setup in this chapter, which leads us to think that averaging
might not be an adequate general solution.

Having said that, one could argue that focusing on other methods to obtain cross-lingual
word embeddings which avoid the homograph problem altogether would have been prefer-
able.

One such method is just training a regular embedding model on a concatenation of
monolingual corpora in different languages, as is the case of multilingual BERT (Devlin
et al., 2019).7 Going one step further, we can apply artificial code-switching to these

7https://github.com/google-research/bert/blob/master/multilingual.md

https://github.com/google-research/bert/blob/master/multilingual.md

7.6. EMBEDDING MODELS TO REPLACE LANGUAGE IDENTIFICATION 101

Spanish-English
DI WS

XNLI
P@1 P@5 P@10 r ρ

Meemi 33.9 60.7 67.4 72.3 72.0 44.9
CC 16.5 16.6 16.6 56.5 60.0 41.0
ACS 16.5 17.0 17.4 62.8 64.2 44.2

German-English
DI WS

XNLI
P@1 P@5 P@10 r ρ

Meemi 23.7 45.0 52.9 72.5 72.1 43.8
CC 16.0 16.7 16.9 59.9 62.4 33.7
ACS 16.0 17.8 19.5 59.6 59.4 39.5

Table 7.8: Results obtained by the Corpus Concatenation (CC) and Artificial Code-Switching
(ACS) models in the usual test corpora for Dictionary Induction (DI), Word Similarity (WS),
and Cross-lingual Natural Language Inference (XNLI). We include the figures from the
bilingual Meemi (VecMaportho) model for comparison.

corpora where we replace words in a multilingual dictionary with their translations to pass
the contextual information obtained for a given language to the rest (Luong et al., 2015;
Wick et al., 2016). However, we have found that the performance of this approach across
tasks is not promising when compared to the bilingual Meemi (VecMaportho), as we can
see in Table 7.8. Furthermore, the training time of this type of models grows rapidly with
the number of languages considered, especially when we induce context-switching; from
minutes for a bilingual model to weeks for a 7-language model, rendering it impractical
for us. Hence, in general, this approach has a more limited modularity compared to our
current 3-step framework while obtaining lower performance figures.

As opposed to this, the alignment of monolingual spaces is a well-studied subject at this
point (Artetxe et al., 2018a; Conneau et al., 2018a; Ammar et al., 2016; Mikolov et al.,
2013a; Lu et al., 2015; Lazaridou et al., 2015) and is also a fine example of the benefits of
modularity, which allows the complex problem of obtaining cross-lingual embeddings to be
more easily studied and improved upon. Along this line, adding a new language to Meemi
does not affect the initially aligned monolingual spaces and only requires four inexpensive
steps: (1) obtaining the initial alignment for the corresponding new monolingual space,
(2) re-calculating the means, (3) obtaining new linear mappings, and (4) applying them
to the embedding spaces. This would also cover for introducing major changes to an
already existing monolingual model, which could lead to a full re-training of that part of
the multilingual space.

102 CHAPTER 7. CROSS-LINGUAL WORD EMBEDDINGS

On the other hand, we do not consider those cross-lingual embedding approaches that
require comparable or parallel corpora (Søgaard et al., 2015; Mogadala and Rettinger,
2016; Gouws et al., 2015; Luong et al., 2015). in an attempt to reduce human supervision
as much as possible and improve adaptability. In this sense, we build on methods that can
minimize the required external supervision signal and even bootstrap their own (Artetxe
et al., 2017, 2018b; Conneau et al., 2018a), rendering them as unsupervised in practice.

Finally, one could argue that language identification is still necessary to gather monolin-
gual corpora for the base embeddings used in our cross-lingual framework. While it is true
that we need to discriminate the training data by language, the conditions under which we
do this are far more advantageous than those in the usual language identification setting.
For once, we may limit the data crawling to sources that we know produce text in a particu-
lar language or set of languages, including multilingual websites such as Wikipedia (hence
its wide-spread use in multilingual tasks) or tweets written by specific users that are known
to speak a certain language. The second advantage is that a high classification accuracy is
no longer needed since misclassifying entire documents or being unable to properly handle
code-switching are no longer big concerns. In fact, having some amount of language mixing
could be even beneficial for the cross-lingual alignments (Camacho-Collados et al., 2019).
By comparison, in a typical language identification scenario, we are forced to give the best
answer possible to whatever input is provided.

7.7 Related work

The approach of aligning two isolated monolingual embedding spaces, obtained through the
usual word embedding models such as word2vec (Mikolov et al., 2013), GloVe (Pennington
et al., 2014), or fastText (Bojanowski et al., 2016), was popularized by Mikolov et al.
(2013a), who showed that a high-quality alignment between two monolingual spaces can
be obtained by simply learning a linear mapping from the word embedding space of the
source language into the word embedding space of the target language.

Specifically, they proposed to learn a matrix W which minimizes the objective shown in
Equation 7.1, modelling this as a least-squares regression problem. The restriction to linear
mappings might intuitively seem overly strict. However, it was found that higher-quality
alignments can be found by being even more restrictive. In particular, Xing et al. (2015)
suggested to normalize the word vectors in the monolingual spaces, and restrict the matrix
W to an orthogonal matrix (i.e., imposing the constraint that WWT = 1). Another ap-
proach was taken by Faruqui and Dyer (2014), who proposed to learn linear transformations
Ws and Wt, which respectively map vectors from the source and target language word
embeddings onto a shared vector space. They used CCA to find the transformations Ws

7.7. RELATED WORK 103

and Wt which minimize the dimension-wise covariance between XWs and ZWt, where X

is a matrix whose rows are x1, ...,xn and similarly Z is a matrix whose rows are z1, ..., zn.
Note that while the aim of Xing et al. (2015) is to avoid making changes to the cosine

similarities between word vectors from the same language, Faruqui and Dyer (2014)
specifically want to take into account information from the other language with the aim of
improving the monolingual embeddings themselves. Artetxe et al. (2016) propose a model
which combines ideas from Xing et al. (2015) and Faruqui and Dyer (2014). Specifically,
they use the formulation in Equation 7.1 with the constraint that W be orthogonal, as in
Xing et al. (2015), but they also apply a preprocessing strategy called mean centering which
is closely related to the model from Faruqui and Dyer (2014).

On top of this, in Artetxe et al. (2018a) they propose a multi-step framework in which
they experiment with several pre-processing and post-processing strategies. These strategies
include: (1) whitening, which involves applying a linear transformation to the word
vectors such that their covariance matrix is the identity matrix; (2) re-weighting each
coordinate according to its cross-correlation, which means that the relative importance
of those coordinates with the strongest agreement between both languages is increased;
(3) de-whitening, inverting the whitening step to restore the original covariances; and (4)
dimensionality reduction, which is seen as an extreme form of re-weighting in which those
coordinates with the least agreement across both languages are simply dropped. They also
consider the possibility of using orthogonal mappings of both embedding spaces into a
shared space, rather than mapping one embedding space onto the other, where the objective
is based on maximizing cross-covariance.

Other approaches that have been proposed for aligning monolingual word embedding
spaces include models which replace the objective shown in Equation 7.1 with a max-
margin objective (Lazaridou et al., 2015) and models which rely on neural networks to
learn non-linear transformations (Lu et al., 2015).

A central requirement of the aforementioned methods is that they need a sufficiently
large bilingual dictionary. Several approaches have been proposed to address this limitation,
showing that high-quality results can be obtained in a purely unsupervised way. For instance,
Artetxe et al. (2017) propose a method that can work with a small synthetic seed dictionary;
for example, a dictionary only containing pairs of identical numerals (1,1), (2,2), (3,3),
etc. To this end, they alternatingly use the current dictionary to learn a corresponding
orthogonal transformation and then use the learned cross-lingual embedding to improve
the synthetic dictionary. This improved dictionary is constructed by assuming that the
translation of a given word w is the nearest neighbor of xW among all words from the
target language.

The same authors subsequently improved their approach (Artetxe et al., 2018b), ob-

104 CHAPTER 7. CROSS-LINGUAL WORD EMBEDDINGS

taining state-of-the-art results without even assuming the availability of a synthetic seed
dictionary. The key idea underlying their approach, called VecMap, is to initialize the seed
dictionary in a fully unsupervised way based on the idea that the histogram of similarity
scores between a given word w and the other words from the source language should be
similar to the histogram of similarity scores between its translation z and the other words
from the target language.

Another approach which aims to learn bilingual word embeddings in a fully unsupervised
way, called MUSE, is proposed in (Conneau et al., 2018a). The main difference with VecMap
lies in how the initial seed dictionary is learned. For this purpose, MUSE relies on adversarial
training (Goodfellow et al., 2014), similar as in earlier models (Barone, 2016; Zhang et al.,
2017) but using a simpler formulation, based on the model of Equation 7.1 with the
orthogonality constraint on W. The main intuition is to choose W such that it is difficult for
a classifier to distinguish between word vectors z sampled from the target word embedding
and vectors xW, with x sampled from the source word embedding.

7.8 Conclusions

In this chapter, we have presented Meemi, a post-processing method that improves the
integration of cross-lingual embedding spaces previously obtained by aligning isolated mono-
lingual spaces. Our initial goal was to improve the bilingual alignments obtained by state-of-
the-art cross-lingual methods such as VecMap (Artetxe et al., 2018a) and MUSE (Conneau
et al., 2018a). We do this by applying an unconstrained linear transformation on their
results which is learned by mapping word translations in the constituent aligned mono-
lingual spaces into their average representations. Notably, we went beyond the usual
bilingual setting and showed how Meemi can be naturally extended to map embeddings
for an arbitrary number of languages into a single shared vector space. In this case, we
use orthogonal methods in the first alignment step of our framework which only transform
the embedding space of the source language while leaving the target space intact, which
becomes the multilingual embedding space.

Regarding the evaluation, we include not only the usual Indo-European languages such
as English, Spanish, Italian, and German, but also other distant languages such as Finnish,
Farsi, and Russian. The results obtained show that Meemi is able to improve the results
achieved by the base methods, with significant gains when applied over orthogonal variants
and also when considering distant languages. At the task level, we observed that: models
based on VecMapmultistep stand out in dictionary induction, Meemiw (VecMap) obtains
impressive results in cross-lingual hypernym discovery, and Meemi-multi(VecMaportho) is
remarkably good both at word similarity and cross-lingual natural language inference. In

7.8. CONCLUSIONS 105

light of these results, we are particularly encouraged by the multilingual models, which
demonstrate that bringing together more than two languages in a shared vector space is
highly beneficial in several cases.

With respect to tackling the multilinguality concern in user-generated texts, we should
be able to replace the explicit preprocessing step of language identification with the use
of multilingual embeddings, which provide a common intermediate language to represent
words in any of the languages considered. Furthermore, this approach also resolves the
problem of context fragmentation, which is notably less trivial to solve with the language
identification alternative.

106 CHAPTER 7. CROSS-LINGUAL WORD EMBEDDINGS

Chapter 8

Word embeddings for noisy texts

Research on monolingual word embeddings has mainly focused on improving their per-
formance on standard corpora, disregarding the difficulties posed by user-generated text,
which is usually affected by texting phenomena (see Section 1.1.1).

In the previous chapter, we proposed a method to encode the multilinguality concern of
this domain into cross-lingual word embeddings. Now, we turn to the remaining productive
texting phenomena which give rise to the wide array of lexical variants, and how they
can also be encoded in an embedding space. By doing this, we seek to benefit current
end-to-end approaches (Bordes et al., 2016; Klein et al., 2017; Schmitt et al., 2018) which
exploit the raw data from the source without applying explicit preprocessing steps, in an
attempt to harness every bit of information for the specific task at hand while avoiding the
error propagation problem described earlier.

In this regard, a normalization step usually alters the original information encoded in the
input text, although in a way that would benefit the next stages of the pipeline. For instance,
if we normalize “nooooo” to “no”, the emphatic connotation of the first word is lost, which
could be useful for a system that looks for this kind of marks, such as sentiment analysis or
opinion mining. In this case, it is important to highlight the existence of intentionality when
using one form over the other, in contrast with accidentally introducing spelling mistakes in
the writing.1

Granted, a task or system tailored to normalized inputs which cannot exploit the nuances
of non-standard texts will probably benefit from using “no” instead of “nooooo”. For example,
in PoS tagging, emphasis, and other texting phenomena are not likely to help in obtaining
the correct tags; quite the contrary, in fact (Gimpel et al., 2011; Hovy et al., 2014). This
aligns with the results obtained by van der Goot et al. (2017), who used a state-of-the-art

1Spelling mistakes may still convey some sort of information such as the educational level of the writer.

107

108 CHAPTER 8. EMBEDDINGS FOR NOISY TEXT

normalization system called MoNoise (van der Goot and van Noord, 2017) before the PoS
tagging step to improve its performance. But more interestingly for us, they also found
that using a pretrained word2vec model over the unnormalized input together with the
tagger was competitive with the previous normalization alternative. The main reason is
that, as already introduced in Section 4.4, word embedding models cluster lexical variants
together, thus reducing the sparsity that would be otherwise tackled by a normalization
system. Hence, it is not entirely clear whether a normalization approach outperforms the
direct use of a simple word embedding model even on this kind of tasks. On the other hand,
if we take into account that the PoS tagger was implemented as a bi-directional recurrent
neural network (Bilty; Plank et al. 2016), we have found another example in favor of using
word embeddings as initialization parameters for more complex neural networks.

In this chapter, we introduce an adaptation of the skipgram model proposed by Bo-
janowski et al. (2016) to train word embeddings that better integrate word variants (oth-
erwise considered noisy words) at training time. This can be regarded as an analogous
incremental improvement over fastText to what this one was over word2vec. Then, we
perform an evaluation on a wide array of intrinsic and extrinsic tasks, comparing their
performance to that of well-known embedding models such as word2vec and fastText on
both standard and noisy English texts. The results show a clear improvement over the
baselines in semantic similarity and Sentiment Analysis (SA) tasks, with a general tendency
to retain the performance of the best baseline on standard texts and outperform them on
noisy texts. Our ultimate goal in this chapter is to improve the performance of traditional
embedding models in the context of noisy texts. This would eliminate, or at least alleviate,
the need for the usual microtext normalization step, and act as a good starting point for
modern end-to-end NLP approaches.

8.1 Towards noise-resistant word embeddings

Word embedding models such as word2vec, GloVe, or fastText are able to cluster word
variants together when given a big enough training corpus that includes standard and non-
standard language (Sumbler et al., 2018). That is, given enough examples where “friend”
(standard word), “freind” (spell-checking error), “frnd” (phonetic-compressed spelling),
and even “dog” or “dawg” (street-talk) appear in similar contexts, these words will be
translated to similar vector representations. Taking advantage of this fact, many state-of-
the-art microtext normalization systems use word embeddings in their pipelines (Bertaglia
and Nunes, 2016; van der Goot and van Noord, 2017; Ansari et al., 2017; Sridhar, 2016),
both when generating and selecting normalization candidates for the input words.

The problem with this approach is that the contexts where those example words appear

8.1. NOISE-RESISTANT EMBEDDINGS 109

are also likely to be affected by the same phenomena as the words themselves. For example,
“friend” might appear in phrases such as “that’s my best friend” or “friend for life”, while
“frnd” in others such as “dats my bst frnd” or “frnd 4 lifee”. This can make it difficult for the
embedding algorithm to find the semantic similarity between “friend” and “frnd” when only
relying on the assumption that the training corpus is big and diverse enough to effectively
convey this variability. However, not all of the embedding algorithms are equally affected
by this, as those which take subword information into account may have an advantage:
in our example, the similar morphology shared by the word variants may be exploited by
algorithms such as fastText, which uses character n-grams, to give them more similar vector
representations.

In this chapter we present a modification of the skipgram model proposed by Bojanowski
et al. (2016), in turn a modification of the original by Mikolov et al. (2013), which tries to
improve the clustering of standard words and their noisy variants. This is attained through
the use of bridge-words, normalized derivatives of the original words from the training
corpus where one of their constituent characters is removed.2 By using these new words
at training time in addition to the original ones, our objective is to increase the similarity
between word variants, using those bridge-words as intermediate terms that match the
words we want to cluster together. For example, “friend” and “freind” have in common the
bridge-words “frind” and “frend”. Even if the original words do not appear in the same
context in the training corpus, using the bridge-words in place of the originals allows for
indirect paths to be discovered: “friend”-“frind”-“freind” and “friend”-“frend”-“freind”. In the
case of “friend” and “frnd”, and assuming that we use an embedding algorithm that exploits
subword information, as we propose here, the higher morphological similarities of the latter
with respect to the bridge-words “frend” and “frind” benefits their grouping together in the
same cluster. Notably, it should be also possible to apply analogous modifications to the
ones described here to other training models, such as the continuous bag of words (Mikolov
et al., 2013).

It is worth pointing out that we did not consider the latest state-of-the-art models such
as ELMo (Peters et al., 2018) and BERT (Devlin et al., 2019) as it would not be feasible to
apply analogous modifications to these large and complex models at this point. On the other
hand, although we currently consider a monolingual English setup, our method should be
suitable for any other language with a similar concept of character, in contrast to those
based on logograms such as Chinese.

2In the sense that these are intermediate (or normalized) representations that tie together otherwise isolated
terms, they may resemble the index terms used in information retrieval. Since there is no index in our case, we
will not refer to them as such.

110 CHAPTER 8. EMBEDDINGS FOR NOISY TEXT

Figure 8.1: Visualization of the adapted skipgram model where bridge-words have a lower
impact than the original word in the context.

8.1.1 Modified skipgram model

The skipgram model found in tools like word2vec and fastText establishes that for each word
in a text it should be possible to predict those in their corresponding contexts (Mikolov et al.,
2013). As a consequence, the words that appear in similar contexts end up represented by
similar vectors, so that the transformation learned by the model can effectively map one
group of words onto the other.

Based on the skipgram model from fastText, our proposal aims at increasing the similarity
between standard words and their noisy counterparts by introducing extra words at training
time: the bridge-words of the original terms. To obtain them, for each word in the training
corpus, we first lowercase, strip diacritics, and remove character successive repetitions,3

and then obtain one bridge-word for each remaining character in the term by removing
one different character each time. Note that this procedure is exclusively applied to
obtain all the bridge-words, and the unprocessed corpus will be used during training.
Formally, let V be the word vocabulary extracted from the training corpus so that V =

{w1, w2, ..., wn} with n the size of the vocabulary. The set of bridge-words is then defined
as B = {b1,1, b1,2, ..., b1,|w1|, ..., bn,1, bn,2, ..., bn,|wn|}, where |wi| is the length of word wi, and
bi,j is the bridge-word obtained by first normalizing as described earlier and then removing
the character at position j from the word wi ∈ V.4

These new words are used in addition to the original words when predicting their
context in the skipgram model training, as depicted in Figure 8.1. For example, in the
phrase “that’s my best Friëndd ever”, the objective is not only to predict “that’s”, “my”,

3This applies both to standard and non-standard repetitions (e.g., “success” vs. “daaammn”), obtaining a
common denominator for when users make the mistake of removing standard repetitions (e.g., from “success”
to “succes”) or add repetitions to provide emphasis (e.g., from “damn” to “daaammn”). The resulting words
are very similar and can still be read mostly in the same way. An analogous reasoning is used in the case of
lowercasing and stripping diacritics.

4It is possible that V ∩ B 6= ∅.

8.1. NOISE-RESISTANT EMBEDDINGS 111

“best”, and “ever” using the word “Friëndd”, but also using the derived bridge-words “riend”,
“fiend”, “frend”, “frind”, “fried”, and “frien”. This idea of removing one character at a time is
similar to the one used in the tool SymSpell5 to speed up spell-checking, where it replaces
the exhaustive approach of considering all possible edit operations.6

In our case, bridge-words are not interesting per se but as intermediaries between other
words. We do not require that they coincide with real words with which they would establish
a direct connection; in fact, we assume that these connections will be indirect most of the
time. For instance, we do not consider the substitution operations that would construct
“tome” and “tame” from “time”, which would explicitly connect the three, but only “tme”,
which can be obtained from the three of them by removing one character, linking them
together indirectly.

It is important to observe that these bridge-words also constitute artificial noise intro-
duced in our training process that could play a harmful role. As an example, the word
“fiend” appears as a bridge-word for “friend”, while also being a standard word from the
English dictionary without much semantic relation to the concept of friendship. Because
of this, bridge-words should not have the same impact as the original words when tuning
the parameters of the model. We propose two mechanisms for lowering the weight of
bridge-words in the training process: (1) introducing them randomly, with a fixed proba-
bility pb, instead of for all the original words; and (2) reducing the impact in the objective
function by adding a weighting factor. Formally, let wx be an input word of length |wx|,
bj the bridge-word for wx when the character at position j is removed, wy a target word
in the context of wx, H a random variable with P (H = 1) = pb and P (H = 0) = 1 − pb,
h ∼ H, λ the weight factor, and Eft(wx, wy) the objective function of the skipgram model
from fastText, then our new objective function, Erobust, is defined as:

Erobust = Eft(wx,wy) + h · λ ·
|wx|∑
j=1

Eft(bj,wy) (8.1)

where wx, wy, and bj are the vector representations of the corresponding input, target and
bridge words.

In any case, the proposed technique does not rule out the requirement of a training
corpus where standard and noisy variants of words are used. Rather, it enhances the
capacity of already existing models (in this case, the skipgram model from fastText) to
bridge or further interconnect these word variants.7

5https://github.com/wolfgarbe/SymSpell
6Addition, removal, substitution, and transposition of characters.
7The corresponding source code is available at https://github.com/yeraidm/bridge2vec.

https://github.com/wolfgarbe/SymSpell
https://github.com/yeraidm/bridge2vec

112 CHAPTER 8. EMBEDDINGS FOR NOISY TEXT

8.2 Evaluation

We use multiple intrinsic and extrinsic evaluation tasks to study the performance of our
approach together with word2vec and fastText. The models are trained using the same
unprocessed corpus of Web text and tweets. Starting with the usual word similarity task, we
also include outlier detection (Camacho-Collados and Navigli, 2016), most of the extrinsic
tasks from the SentEval benchmark (Conneau and Kiela, 2018), and then we add Twitter SA
from various editions of the SemEval workshop. Ideally, we should see that our embeddings
are able to retain the performance of “vanilla” fastText embeddings (Bojanowski et al.,
2016) for standard and less-corrupted text, while outperforming them on noisier texts, and
that word2vec (Mikolov et al., 2013) is at a disadvantage in this case.

8.2.1 Word embedding training

In this work, we use a combination of Web corpora, specifically the UMBC corpus (Han
et al., 2013b), and tweets collected through the Twitter Streaming API from dates between
October 2015 and July 2018. It is worth noting that we did not perform any preprocessing
or normalization step over the resulting corpus, and the final dataset is formed by 64.653M
lines and 3.3B tokens, of which 24.558M are unique.

We employed a modified version of the skipgram model from fastText which incorporates
the changes described in Section 8.1.1 together with a vanilla version and a word2vec base-
line, using the default hyperparameters for all models. In the case of the proposed model,
we train four instances in order to take a first look at the influence of the hyperparameters
introduced: probability of introducing a bridge-word (pb) and weight for bridge-words in
the objective (λ). The combinations are (pb = 1, λ = 1), (pb = 0.5, λ = 1), (pb = 1, λ = 0.1),
and (pb = 0.5, λ = 0.1). In this work, we do not perform hyperparameter optimization, and
those values were selected according to the initial hypothesis that a decreased impact of
bridge-words in the training process should be beneficial to the model.

8.2.2 Intrinsic tasks: word similarity and outlier detection

The first intrinsic evaluation task is the well-known semantic word similarity task, which
has already been introduced in Section 7.3.1. Here we use the monolingual variant,
which consists in scoring the similarity between pairs of words in the same language,
measured through the cosine similarity of their corresponding word embeddings. The
evaluation is performed using the Spearman correlation between the list of similarity
scores obtained and the gold standard. In this case, we use the wordsim353 (Finkelstein

8.2. EVALUATION 113

et al., 2002), SCWS (Huang et al., 2012), SimLex999 (Hill et al., 2015), and SemEval17
(monolingual) (Camacho Collados et al., 2017) evaluation datasets.

The second task is outlier detection, which consists in identifying the word that does
not belong in a group of words according to their pair-wise semantic similarities. As an
example, “snake” would be an outlier in the set “german shepherd”, “golden retriever”, and
“french bulldog” since, in spite of also being an animal, it is not a dog. In this case, we
use the 8-8-8 (Camacho-Collados and Navigli, 2016) and wiki-sem-500 (Blair et al., 2016)
datasets, and measure the proportion of times in which the outlier was successfully detected
(i.e., the accuracy) as performance metric.

8.2.3 Extrinsic tasks: the SentEval benchmark and Twitter SA

Since it is not evident that performance on intrinsic tasks translates proportionally to
extrinsic tasks (Faruqui et al., 2016; Chiu et al., 2016), where word embeddings are used as
part of bigger systems, we resort to the SentEval benchmark (Conneau and Kiela, 2018)
in order to evaluate our embeddings in a more realistic setup. The tasks included in this
benchmark evaluate sentence embeddings, which can be obtained from word embeddings
using an aggregating function, which can go from the simple bag of words to the more
complex neural-based models InferSent (Conneau et al., 2017) or GenSen (Subramanian
et al., 2018). Additionally, some tasks require a classifier to be trained on the sentence
embeddings in order to obtain an output of the desired type. In both cases, we maintain a
simple approach where we focus on the raw performance of the word embeddings rather
than the models used on top of them. This means using the bag of words model to obtain
sentence representations, which simply averages the corresponding word embeddings from
each sentence, and then linear regression for the classification tasks.

SentEval includes 17 extrinsic tasks, of which we use 16, and 10 probing tasks. The
first group includes semantic textual similarity (STS 2012-2016, STS Benchmark, and
SICK-Relatedness), natural language inference (SICK-Entailment and SNLI), sentiment
analysis (SST, both binary and fine-grained), opinion-polarity (MPQA), movie and product
review (MR and CR), subjectivity status (SUBJ), question-type classification (TREC), and
paraphrase detection (MRPC). The second group is formed by tasks that evaluate other
linguistic properties which could be found encoded in sentence embeddings, such as
sentence length, depth of the syntactic tree, or the number of the subject of the main clause.
For a more detailed description of these tasks together with references to the original sources,
see (Conneau and Kiela, 2018).8 In general, for the similarity tasks, the performance is
measured using Spearman correlation, while in the rest of the cases, which correspond to

8We already introduced the natural language inference task in Section 7.4.2.

114 CHAPTER 8. EMBEDDINGS FOR NOISY TEXT

classification tasks, the accuracy of the classification is obtained. Unfortunately, we leave
image-caption retrieval task (COCO) out of our test bench as it is not possible to access the
source texts, which would be needed for the processing that we perform as described in the
next section.

Finally, we also evaluate on the SA datasets released in the SemEval workshops by
Nakov et al. (2013) (task 2, subtask B), Rosenthal et al. (2014) (task 9, subtask B),9 and
Nakov et al. (2016) (task 4, subtasks B, D, C, and E). These already include noisy texts in
the form of tweets, thus they are not processed in the same way as the following datasets
are processed, as explained below. However, since we still use the SentEval code, we did
filter the neutral/objective tweets in ternary SA datasets. We also performed downsampling
on the 2016 training and development datasets, both binary and fine-grained, in order to
compensate for the substantial unbalance across instance classes. This is important as the
test datasets are also skewed in the same manner, and it lead the classifiers to adjust to this
bias to obtain unrealistic results. In the case of the binary task, we equated the positive
instances with the number of negative ones, while in the case of the fine-grained task we
used a fixed maximum number of 500 instances per class, given the huge gap between the
least frequent class (accounting for 71 instances) and the most frequent one (including
2876 instances).10

8.2.4 Dataset de-normalization

Since we could not find noisy text datasets for such a wide variety of evaluation tasks as the
ones from the SentEval benchmark, we decided to de-normalize (i.e., introduce artificial
noise into) these standard datasets, while also keeping the originals of the benchmark, in
order to cover the case of noisy texts in the extension needed by this work. The procedure
consists in randomly replacing every word in the texts by a noisy variant with some fixed
probability. The noisy variants are obtained from two publicly available normalization
dictionaries formed by (non-standard, standard) word pairs, utdallas and unimelb, that
were released in the first (2015) edition of the W-NUT workshop (Baldwin et al., 2015).

For the word similarity and outlier detection datasets, this probability pd was fixed to 1;
i.e., we modify all the words in the test set which appear in our normalization dictionaries
(which cover 78.61% of them). In the case of the SentEval datasets, we created three
versions for each one of them: a heavily corrupted version (pd = 1), a more balanced
version (pd = 0.6), and a less noisy one (pd = 0.3). As an example, from the original
sentence “A man is playing a flute” we obtain “aa woma isz playiin thw flute”, “aa mann is

9In this case, we use the training data from the previous edition.
10Other datasets used in this work are also unbalanced, although to a significantly lesser extent and with no

such measurable impact on the results.

8.2. EVALUATION 115

standard
SCWS WS353 SL999 Sem17

word2vec 64.7 69.1 32.2 68.2
fastText 65.4 72.7 33.5 70.3
ours 65.1 73.1 33.8 70.4

noisy
SCWS WS353 SL999 Sem17

word2vec 13.0 13.7 -10.9 11.2
fastText 35.2 38.1 7.3 37.2
ours 42.1 44.2 16.4 43.1

Table 8.1: Spearman correlation results of word similarity on SCWS, wordsim353 (WS353),
SimLex999 (SL999), and SemEval17 (Sem17) datasets.

playng da flute”, and “aa wman is playing the flute”, in each respective case. The Twitter SA
datasets, on the other hand, were not de-normalized.

Furthermore, we perform 10 de-normalization runs over the intrinsic tasks datasets
and three over the extrinsic ones, obtaining multiple noisy versions of each dataset. By
averaging the results over the different de-normalizations, we try to neutralize extreme
measurements that can be caused by different noisy variants of words.

8.2.5 Results

Our currently best model is obtained with the hyperparameter combination (pb = 0.5, λ =

0.1), which in some way validates our hypothesis that bridge-words should be introduced in
a restrained fashion. In general terms, this model has a similar performance to fastText in
the standard case, while outperforming both word2vec and fastText in noisy setups, with
wider margins towards noisier texts.

Intrinsic evaluation. Table 8.1 shows the results on the intrinsic word similarity task. On
standard words, fastText and our model obtain similar performance, both surpassing that of
word2vec. On non-standard words, however, our model is able to consistently outperform
fastText in every dataset, while word2vec falls further behind possibly due to its lack of
support for OOV words in this scenario, as 48.77% of the unique noisy test words are not
included in the vocabulary of the word2vec model.

In the case of the results for outlier detection, shown in Table 8.2, we obtained mixed
results. On the 8-8-8 dataset, our model outperforms the baselines both in the standard
and noisy scenarios, although with visibly lower margins than in the case of semantic

116 CHAPTER 8. EMBEDDINGS FOR NOISY TEXT

standard noisy
8-8-8 wiki 8-8-8 wiki

word2vec 59.4 53.8 22.8 39.3
fastText 65.6 49.0 31.7 41.1
ours 67.2 47.8 33.3 41.1

Table 8.2: Accuracy results of outlier detection on 8-8-8 and wiki-sem-500 (wiki) datasets.

similarity. However, on the wiki-sem-500 dataset, word2vec outperforms its competitors on
standard words and does not lose much performance on the noisy setup. The latter may
be explained by the low amount of successfully denormalized words, with just 7.5% of the
total (compared to 52.2% on the 8-8-8 dataset), which also hints to the tie between fastText
and our model.

Extrinsic evaluation. Given the considerable amount of tasks and datasets included in
the SentEval benchmark, we decided to group similar tasks and datasets and show the
aggregated results instead of following an exhaustive approach. In this case, and given the
variability in dataset sizes, we use a weighted average as the aggregation function.

First of all, we show in Figure 8.2 the dynamic behaviour of each model when going
from standard texts to noisier ones. In this case, we divided the tasks into two groups based
on the performance metric: Spearman correlation or accuracy. The first one encompasses
the semantic similarity and relatedness tasks (STS*11 and SICK-Relatedness) and the second
one the rest of the tasks. Except in the case of word2vec on the first group (yellow lines and
crosses), all the models start from a very similar position in the standard scenario. Then,
the performance begins its downward trend, where our model starts to stand out above the
baselines. As we go towards noisier texts, our model manages to stay above the rest of the
lines, increasing the distance margin up until the last stretch.

Next, Table 8.3 shows in greater detail the performance of each model in a less aggre-
gated view. In this case, datasets have been grouped by task as described in Section 8.2.3. As
we can see, our model is on par with the baselines on standard texts, with a few interesting
exceptions: (1) it is able to obtain some advantage on sentiment analysis, which fastText
also obtains over word2vec; (2) on question-type classification, word2vec obtains the best
performance, and still clearly outperforms fastText on the lowest noise level, although not
our model; and (3) on the probing tasks, word2vec takes the lead again, this time by a
smaller margin.

11The star notation is used here as a wildcard character; STS* accounts in this particular case for all task
names that start with the string “STS”.

8.2. EVALUATION 117

Figure 8.2: Performance of each considered model when going from standard texts to
noisier ones on the extrinsic tasks. In lines and dots is the aggregated performance on
semantic similarity and relatedness tasks (Spearman correlation). In continuous lines is the
aggregated performance on the rest of the tasks (accuracy).

Regarding noisy texts, our model is clearly superior on semantic similarity and related-
ness, as we had already seen before, and it also outperforms the baselines on the rest of
the tasks, with wider margins on noisier texts, but with the sole exception of paraphrase
detection. In this surprising case, word2vec outperforms both fastText and our model
obtaining better accuracy on texts with the highest level of noise compared to the previous
step. It appears that, with the proper training (and hence, vocabulary), word2vec remains
a strong baseline on extrinsic tasks, even in the case of noisy texts, where the level of
noise has to be increased notably in order for fastText to obtain a clear advantage. This
can also be observed following the continuous lines in Figure 8.2. On the other hand, the
weakness seen on word semantic similarity (Table 8.1) relating to OOV words does not
seem to translate to extrinsic tasks, where having more context and hence a higher chance
of finding IV words mitigates the problem, as we can see in the semantic similarity and
relatedness results (Table 8.3).

Finally, in Table 8.4 we show the results obtained on the SemEval Twitter SA datasets. In
this case, word2vec continues to display a strong performance, fastText loses the advantage
it had on the SentEval benchmark for the same SA task, and our approach is able to revert
this performance loss to outperform, once again, both of the baselines. At this point, we
can observe how fastText is inferior to word2vec on a real-world social media setting, when

118 CHAPTER 8. EMBEDDINGS FOR NOISY TEXT

standard
noisy

standard
noisy

low mid high low mid high
Semantic sim. & rel. Binary classification

word2vec 56.8 40.1 29.2 26.0 81.5 78.8 76.1 71.4
fastText 60.7 44.6 35.8 32.0 81.8 79.0 75.8 72.1
ours 60.4 48.1 41.5 37.7 81.6 79.4 77.7 74.1

Sentiment analysis Entailment
word2vec 57.9 55.4 50.5 42.8 66.3 54.9 48.8 35.8
fastText 58.8 55.8 52.6 47.0 66.2 54.0 50.0 40.2
ours 59.3 56.9 54.6 51.1 66.3 55.1 51.4 48.1

Question-type classification Paraphrase detection
word2vec 79.4 65.6 53.3 35.0 72.6 67.0 61.2 65.5
fastText 74.8 62.5 52.1 41.8 72.3 62.7 57.1 56.8
ours 73.4 67.5 59.4 49.5 72.9 66.9 60.2 56.3

Probing tasks
word2vec 58.2 51.5 45.3 39.3
fastText 57.8 51.2 45.9 41.0
ours 57.7 52.8 48.4 43.6

Table 8.3: Results of the extrinsic evaluation on the SentEval benchmark. The noise levels
are low (pd = 0.3), mid (pd = 0.6), and high (pd = 1).

we may have expected the opposite at first. But, for this same reason, it is remarkable
to see our approach taking the lead despite being a modification of fastText, which also
demonstrates the benefit of including the bridge-words at training time. Having said that, it
would be relevant to investigate if higher performance figures can be obtained by modifying
the skipgram model from word2vec.

8.3 The importance of word segmentation

In principle, when using word embeddings we assume that the input text is correctly
segmented into words. However, suppose that this is not the case, and that it goes beyond
frequent de-normalization instances where words are joined or merged together; e.g.,
“noway”-“no way”, “yesplease”-“yes please”; or even instances where the individual words
cannot be immediately recovered such as with “tryna”-“trying to”, or “whatchu”-“what
are/do you”. Instead, in the present case we will consider sentences like “theproblem was
veryclear” or “the prob lem was very clea r”. A possible solution would be to perform a word
segmentation preprocessing step (see Chapter 5) before obtaining the corresponding word

8.3. WORD SEGMENTATION 119

SE13 B SE14 B SE16 BD SE16 CE
word2vec 84.3 88.3 77.4 35.1
fastText 83.3 88.1 76.5 33.7
ours 84.8 88.6 78.4 35.5

Table 8.4: Accuracy results of the extrinsic evaluation on SemEval (SE) Twitter SA datasets.

embeddings, which would imply introducing again the notion of sequential tasks together
with the risk of error propagation, as explained in Section 6.1.

However, let us now consider that the two operations involved in bad word segmenta-
tion (i.e., word joining and splitting) might not have the same impact on the process of
obtaining relevant word embeddings. If we take into account that models such as fastText,
and by extension the modification presented in this chapter, use subword information to
construct word embeddings, we might argue that joining words together may be moderately
supported by these models, as they would still consider the words inside the merging as
character n-grams modelled during training. On the contrary, splitting words would be more
problematic, as it removes parts of a word which could be crucial to obtain the adequate
vector representation.

To check this hypothesis, we have devised new experiments using new de-normalized
versions of the STS* datasets from the SentEval benchmark, which we have divided into
two sets: join and split. In the former, we randomly removed word delimiters from input
sentences with a fixed probability pj , while in the latter we added delimiters between word
characters with a lower probability ps, ps < pj , in order to account for the higher amount of
non-delimiter characters.

The results obtained, which are shown in Table 8.5, seem to support our hypothesis.
Therefore, using a word segmenter with a slight tendency to join words (e.g., through
a threshold parameter as shown by Doval et al. (2016)) or even the raw input directly
(taking into account the low frequency of splits, while joins are frequent in special elements
such as hashtags or URLs), can be considered good practical solutions so long as we use
embedding models that exploit subword information. Nonetheless, the latter option is
specially relevant for us, since it shows that we may finally dispense with any form of input
preprocessing for languages that delimit words; English in our current case. But even in
the case of Chinese, where words are not explicitly delimited and word segmentation is a
well-studied and complex subject (see Section 5.5), it has been recently shown that this
preprocessing step might not be necessary. Meng et al. (2019) propose directly operating
over Chinese characters rather than strict words. We highlight this strictness property as
characters are frequently used as words themselves, but not always. That solution obtains

120 CHAPTER 8. EMBEDDINGS FOR NOISY TEXT

joinρ splitρ
word2vec 11.0 18.3
fastText 39.2 18.7
ours 39.2 17.2

Table 8.5: Spearman correlation averages on the new de-normalized STS* datasets, with
pj = 0.5 and ps = 0.1.

better results than other systems that require a previous word segmentation step, even when
all of them are implemented as state-of-the-art neural networks. In our case, this shows
that we could relax the definition of a word, and obtain the embeddings at the character- or
sequence-of-characters level.

8.4 Related work

Word embeddings have been at the forefront of NLP research since the past decade, although
the first application of vector representations of words dates back to the work of Rumelhart
et al. (1986). More recently, word2vec (Mikolov et al., 2013) and GloVe (Pennington et al.,
2014) were the first models to attain wide use, which take words as basic and indivisible
units, implying that the word vocabulary is fixed at training time and any unknown word
would be given the same vector representation, regardless of its context or any other
intrinsic property. To address the limitations of word2vec and GloVe with OOV words, where
morphologically-rich languages such as Finnish or Turkish are specially affected, new models
appeared which take subword information into account. The type of subword information
used varies in each particular approach: some of them require a preprocessing step to extract
morphemes (Luong et al., 2013), while others employ a less strict approach by directly
using the characters (Ling et al., 2015; Kim et al., 2016) or character n-grams (Bojanowski
et al., 2016; Wieting et al., 2016) that form the words.

When targeting noisy texts from social media, such as tweets from Twitter, previous
work relies solely on the high coverage that can be obtained from training in an equally
noisy domain (Sumbler et al., 2018). An exception to this rule is the work from Malykh
et al. (2018), where they try to obtain robust embeddings to misspelled words (one or two
edit operations away from the correct form) by using a new neural-based model. In this
case, the flexibility is obtained by an encoding of the prefix, suffix, and set of characters
that form each word. By using this set of characters in the encoding, where the specific
order between them is disregarded, this approach achieves some form of robustness to
low-level noise, while the prefix and suffix part encodes most of the semantic information.

8.5. CONCLUSIONS 121

The main difference of our approach is that we are not proposing a whole new model but a
generic technique to adapt existing ones. This could be applied to many others, including
that from Malykh et al. (2018) itself. Furthermore, we evaluate our embeddings in the
context of non-standard texts, a noisier medium than the slightly misspelled standard texts
regarded in (Malykh et al., 2018).12

Lastly, if we consider standard and non-standard texts as pertaining to different lan-
guages, our approach would be similar to (Luong et al., 2015), where the authors also
adapt the skipgram model to obtain bilingual embeddings. In this work, they start with
comparable bilingual corpora and automatically calculate alignments between words across
languages. At training time, they use the words from alignment pairs interchangeably in
the texts from each language, requiring each word to predict not only the context in its
own language but also the context in the other language. In our case, we only consider one
training corpus and create a set of bridge-words that act as alignments between standard
words and their noisy counterparts. On the other hand, the weight given to these new words
in the objective function is λ < 1 as they represent noisy examples, whereas in (Luong et al.,
2015) the words from the other language are given more weight (λ > 1).

8.5 Conclusions

In this chapter, we have proposed a modification of the skipgram model from fastText
intended to improve the performance of word embedding models on noisy texts as they are
found on social media, while retaining the performance on standard texts. These embed-
dings can be used inside end-to-end approaches which eliminate the need for preprocessing
steps that modify the original input and, as explained in previous chapters, could introduce
errors in the pipeline. On the other hand, van der Goot et al. (2017) has also shown that
normalizing noisy texts does not yield a clear improvement over the plain usage of word
embeddings in certain cases.

Existing word embedding models such as word2vec and fastText rely on the fact that
an adequate training corpus, mixing standard and non-standard text, will be provided in
order to implicitly cope with this kind of texts. In our case, we also exploit this situation and
introduce a new set of words in the training process, called bridge-words, whose objective is
to connect standard words with their noisy counterparts. To the best of our knowledge, this
is the first attempt at explicitly dealing with this type of noisy texts at the word embedding

12Unfortunately, we could not include this approach in our test bench as, probably due to differences in
the development environment setup, we were not able to train new models nor extract embeddings through
pretrained models using the latest version of the code at https://gitlab.com/madrugado/robust-w2v/tree/
py3_launch.

https://gitlab.com/madrugado/robust-w2v/tree/py3_launch
https://gitlab.com/madrugado/robust-w2v/tree/py3_launch

122 CHAPTER 8. EMBEDDINGS FOR NOISY TEXT

level, going beyond the support for OOV words of models such as fastText.
We have evaluated the performance of the proposed approach together with word2vec

and fastText baselines on a wide array of intrinsic and extrinsic tasks. In addition to the usual
word similarity task, we include outlier detection, 26 tasks from the SentEval benchmark,
and Twitter SA from various editions of the SemEval workshop. The results show that, while
the performance of our best model on standard texts is mostly preserved when compared
to the baselines, it generally outperforms them on noisier texts with wider margins as the
level of noise increases. On the extrinsic tasks, in fact, word2vec performs surprisingly
well, and it is only clearly bested by fastText once the highest levels of noise are reached.
This implies that, given a large enough corpus, word2vec remains a strong baseline for
embedding models.

Finally, embedding models that take subword information into account also support, to
some extent, bad word segmentation in the form of word joining. Given the low frequency
of this phenomenon outside of special elements such as URLs and hashtags, together with
the comparatively lower frequency of word splits, we can conclude that the explicit word
segmentation step in our pipeline may be even skipped altogether, eliminating the need for
any explicit preprocessing step for languages that delimit words.

Part V

Conclusion

123

Chapter 9

Conclusions and future work

In this dissertation, we have studied two approaches to overcome the challenges posed
by user-generated texts in NLP: a traditional, discrete approach which addresses each
individual concern through a modular framework, in the form of a sequential preprocessing
pipeline, and then a continuous approach that encodes those concerns in real-valued vectors
representing words acting as the new building block for other systems. Specifically, we have
analyzed the inherent limitations of the first approach, which may impose an upper bound
to their achievable performance, in order to justify a transition to the second one. This latter
approach is not only free from those limitations, but is also aligned with machine learning
state-of-the-art NLP models which already use feature-based representations for linguistic
elements such as words, which account for the vast majority of them.

User-generated text as we can find it on the Web, chat applications, or social media plat-
forms, is well-known for its writing style, which usually contains lexical variants and other
non-standard linguistic constructs; as well as for its multilinguality and code-switching, since
several languages might be used together in a relatively small context frame. Furthermore,
this is the domain which supports language evolution nowadays, serving as a testing ground
for new terms and concepts. These circumstances make any form of automatic processing
notably difficult. Despite this, user-generated texts still constitute a highly valuable data
stream to be exploited in multiple NLP applications, such as opinion mining (Vilares et al.,
2017a), reputation surveillance (Law et al., 2017), political analysis (Vilares et al., 2015),
health surveillance (Karisani and Agichtein, 2018), crime prediction (Gerber, 2014) or
disaster management (Rudra et al., 2016), to name just a few. At this point, we have
two options to overcome the challenges posed by texting phenomena (Eisenstein, 2013):
adapt systems to support this type of texts or adapt the texts themselves to be more easily
processed by any system.

System adaptation has the benefit of a high degree of integration, as a particular process

125

126 CHAPTER 9. CONCLUSIONS AND FUTURE WORK

is globally optimized based on the raw, non-standard input, and the desired output for
the main task at hand. However, the modularity of this approach is equally low, as the
process is implemented using a single model which has to deal with several different tasks
simultaneously and is hardly reusable in other settings. On the contrary, the input adaptation
path has the benefit of being modular, as we decouple input preprocessing from the main
process, and enables the reuse of the preprocessing part. Analogously, it also obtains a
low degree of integration, since it is not easy to optimize the final system that includes
the preprocessing and main processing steps as a whole, which may ultimately impact its
performance. Besides all this, we should also seek some flexibility in order to easily support
the dynamism of languages, meaning that our solution should adapt to changes in the
domain with minimal human intervention.

Specifically, in Part II we presented our proposals to explicitly tackle the preprocessing
tasks mentioned earlier organized into a pipeline:

• In the case of language identification (Chapter 3), we adapted existing tools to the
domain of the TweetLID workshop (Zubiaga et al., 2014), which accounts for tweets
written in the languages spoken in the Iberian peninsula alongside English.

• Likewise, our microtext normalization approach (Chapter 4) was developed on the
occasion of the W-NUT 2015 shared task 2 (Baldwin et al., 2015), where we presented
a simple proposal based on the two-step framework of Han and Baldwin (2011):
a candidate generation step implemented by a spell checker and a normalization
dictionary, followed by a candidate selection process supported by a word-level
language model.

• In both of the previous tasks, we analyzed the shortcomings of our approaches and
acknowledged the complexity of the problems at hand. Then, instead of improving
our solutions by moving towards other successful approaches, we suggested that the
underlying difficulties may be confronted from a different perspective by using word
embeddings.

• For word segmentation (Chapter 5), we studied the performance of different types
of language models, used in combination with a search algorithm that tries to find
the optimal segmentation for an input text where word delimiters are removed. In
this case, we obtained remarkable results both with neural-based and n-gram models,
which did surprise us given the simplicity of the latter compared with the theoretical
flexibility and power of the former.

• Furthermore, we have also found that obtaining the correct strict segmentation of an

127

input text into words might not be necessary to attain a practical solution based on
continuous models.

Then, in Chapter 6 we discussed the limitations of a preprocessing pipeline approach
and concluded that, rather than focusing on adapting the input, we could instead adapt
continuous representations of lexical elements, such as word embeddings, to encode the
characteristics of user-generated texts. These embeddings are then used in other machine
learning models as part of their internal representation of the input, hence establishing a
direct link between the raw input (although through a more effective representation) and
the main processing components. Because of this, we can consider this approach as an
hybrid between input and system adaptation, benefiting from the modularity of the former
and the integration of the latter. On the other hand, we should also note the change of focus
from the discrimination of the right answers to their integration alongside other relevant
answers. That is, we are moving from deciding on the specific language a word belongs to
or the correct standard word from which a lexical variant is derived, to giving similar vector
representations not only to words in different languages relating to similar concepts, but
also to any derived lexical variant used similarly to its standard counterpart.

Finally, in Part IV we showed how to encode into word embeddings the various concerns
raised by user-generated texts, which in previous chapters had been explicitly tackled
through preprocessing tasks:

• The multilinguality concern of this type of text can be encoded in cross-lingual word
embeddings (Chapter 7). There are multiple approaches to obtain them, and we have
presented a technique to improve the integration of multilingual embedding spaces
obtained through the alignment of two or more monolingual spaces.

• The remaining concerns which relate to texting phenomena can be already encoded
in word embeddings to some extent given a training corpus that mixes standard and
non-standard texts (Chapter 8). Given this observation, we proposed an adaptation for
existing embedding models which facilitates the encoding of the similarities between
lexical variants.

It must be noted that our aim was not on obtaining a performance improvement over
traditional discrete approaches at this point, but to show that continuous models are able
to overcome some crucial limitations of those that would impose an upper bound on their
performance and usefulness.

128 CHAPTER 9. CONCLUSIONS AND FUTURE WORK

9.1 Future work

After transitioning from discrete to continuous models in the course of this dissertation, the
future lines of research will mostly focus on improving the latter at two levels:

Multilingual embeddings

• Obtain singleton representations for cross-lingual homographs. This issue has been
extensively discussed in Section 7.6.

• As an alternative to the previous point, look into the feasibility of selecting language-
sense embeddings during evaluation.

• Continue to explore the possibilities of post-processing multilingual models, inves-
tigating their impact in different tasks. Given the fact that going from restrictive
orthogonal transformations to the more unconstrained Meemi transformation seems
clearly beneficial in the integration of monolingual models, it remains to be seen
whether some form of constrained non-linear transformation can be successfully
applied on the current models obtained with Meemi.

• Include more languages in our multilingual models and continue to analyze the
possible performance improvements.

Robust embeddings

• Train embedding models for languages other than English which have normalization
lexicons or training data available, such as Spanish using the resources published by
TweetNorm organizers (Alegria et al., 2013, 2015).

• Adapt other embedding models to make them more robust to noisy text, such as the
state-of-the-art models ELMo (Peters et al., 2018) and BERT (Devlin et al., 2019),
or even apply the adaptation to models that distill the knowledge of those two into
smaller packages (Tang et al., 2019).

• It would be also interesting to consider other types of bridge-words such as phonetic
codes obtained from a phonetic algorithm like the Metaphone (Philips, 1990). To this
end, the study of such algorithms in the context of normalization candidate generation
shown in Appendix A will surely be useful.

9.1. FUTURE WORK 129

• Our approach should also be orthogonal to other techniques that enhance the per-
formance of word embeddings, such as the ones described by Mikolov et al. (2018),
which could also be applied to the models obtained in this work.

Although there is no reason to think that both approaches would not work well together,
since the former was tested on fastText embeddings and the latter is just a modification of
that same model, we will conduct experiments to analyze the performance of combining both
of them and compare it with discrete approaches.1 Lastly, we also intend to investigate how
to support dynamically evolving vocabularies, which should greatly increase the adaptability
of our models. At this respect, we might take a hybrid approach where the monolingual
part is frequently updated, taking inspiration from the Gavai living lexicon (Sahlgren et al.,
2016), but the multilingual alignments are updated less often.

1Note, again, that obtaining higher performance than discrete approaches was not an objective of this work.

130 CHAPTER 9. CONCLUSIONS AND FUTURE WORK

Bibliography

Adda-Decker, M., Adda, G., and Lamel, L. (2000). Investigating text normalization and
pronunciation variants for German broadcast transcription. In Proc. of the 6th Int. Conf.
on Spoken Language Processing, ICSLP 2000 / INTERSPEECH 2000, pages 266–269.

Ahmad, W. U., Zhang, Z., Ma, X., Hovy, E., Chang, K.-W., and Peng, N. (2018). On Difficulties
of Cross-Lingual Transfer with Order Differences: A Case Study on Dependency Parsing.
In Proc. of the 16th Annual Conf. of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, NAACL-HLT 2018.

Akhtar, M. S., Sikdar, U. K., and Ekbal, A. (2015). IITP: Hybrid approach for text normaliza-
tion in Twitter. In Proc. of the 1st Workshop on Noisy User-generated Text, W-NUT 2015,
pages 106–110.

Al-Rfou, R., Perozzi, B., and Skiena, S. (2013). Polyglot: Distributed Word Representations
for Multilingual NLP. In Proc. of the 17th Conf. on Computational Natural Language
Learning, CoNLL 2013, pages 183–192.

AleAhmad, A., Amiri, H., Darrudi, E., Rahgozar, M., and Oroumchian, F. (2009). Hamshahri:
A standard Persian text collection. Knowledge-Based Systems, 22(5):382–387.

Alegria, I., Aranberri, N., Comas, P. R., Fresno, V., Gamallo, P., Padró, L., San Vicente, I.,
Turmo, J., and Zubiaga, A. (2015). TweetNorm: A benchmark for lexical normalization
of Spanish tweets. Language resources and evaluation, 49(4):883–905.

Alegria, I., Aranberri, N., Fresno, V., Gamallo, P., Padró, L., San Vicente, I., Turmo, J., and
Zubiaga, A. (2013). Introducción a la tarea compartida Tweet-Norm 2013: Normalización
léxica de tuits en español. In Proc. of the Tweet Normalization Workshop, Tweet-Norm
2013, co-located with 29th Conf. of the Spanish Society for Natural Language Processing,
SEPLN 2013., pages 1–9.

131

132 BIBLIOGRAPHY

Alfonseca, E., Bilac, S., and Pharies, S. (2008). Decompounding Query Keywords from
Compounding Languages. In Proc. of the 46th Annual Meeting of the ACL: Short Papers,
HLT-Short ’08, pages 253–256.

Ammar, W., Mulcaire, G., Tsvetkov, Y., Lample, G., Dyer, C., and Smith, N. A. (2016).
Massively multilingual word embeddings. arXiv preprint arXiv:1602.01925.

Ansari, S. A., Zafar, U., and Karim, A. (2017). Improving text normalization by optimizing
nearest neighbor matching. arXiv preprint arXiv:1712.09518.

Artetxe, M., Labaka, G., and Agirre, E. (2016). Learning principled bilingual mappings of
word embeddings while preserving monolingual invariance. In Proc. of the 2016 Conf. on
Empirical Methods in Natural Language Processing, EMNLP 2016, pages 2289–2294.

Artetxe, M., Labaka, G., and Agirre, E. (2017). Learning bilingual word embeddings with
(almost) no bilingual data. In Proc. of the 55th Annual Meeting of the Association for
Computational Linguistics, ACL 2017, pages 451–462.

Artetxe, M., Labaka, G., and Agirre, E. (2018a). Generalizing and improving bilingual word
embedding mappings with a multi-step framework of linear transformations. In Proc. of
the 32th AAAI Conf. on Artificial Intelligence, AAAI 2018, pages 5012–5019.

Artetxe, M., Labaka, G., and Agirre, E. (2018b). A robust self-learning method for fully
unsupervised cross-lingual mappings of word embeddings. In Proc. of the 56th Annual
Meeting of the Association for Computational Linguistics, ACL 2018, pages 789–798.

Atkinson, K. (2011). GNU Aspell (rel. 0.60). Available at: http://aspell.net.

Aw, A., Zhang, M., Xiao, J., and Su, J. (2006). A phrase-based statistical model for SMS
text normalization. In Proc. of the Main Conf. Poster Sessions of the Int. Committee on
Computational Linguistics and the Association for Computational Linguistics, COLING-ACL
2006, pages 33–40.

Baldwin, T., Cook, P., Lui, M., MacKinlay, A., and Wang, L. (2013). How noisy social media
text, how diffrnt social media sources? In Proc. of the 6th Int. Joint Conf. on Natural
Language Processing, IJCNLP 2013, pages 356–364.

Baldwin, T., de Marneffe, M.-C., Han, B., Kim, Y.-B., Ritter, A., and Xu, W. (2015). Shared
Tasks of the 2015 Workshop on Noisy User-generated Text: Twitter Lexical Normalization
and Named Entity Recognition. In Proc. of the 1st Workshop on Noisy User-generated Text,
W-NUT 2015, pages 126–135.

http://aspell.net

BIBLIOGRAPHY 133

Baldwin, T. and Lui, M. (2010). Language Identification: The Long and the Short of the
Matter. In Proc. of the 11th Annual Conf. of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, NAACL-HLT 2010, pages
229–237.

Bansal, M., Gimpel, K., and Livescu, K. (2014). Tailoring Continuous Word Representations
for Dependency Parsing. In Proc. of the 52nd Annual Meeting of the Association for
Computational Linguistics, ACL 2014, volume 2, pages 809–815.

Barone, A. V. M. (2016). Towards cross-lingual distributed representations without parallel
text trained with adversarial autoencoders. In Proc. of the 1st Workshop on Representation
Learning for NLP, RepL4NLP 2016, pages 121–126.

Baroni, M., Bernardini, S., Ferraresi, A., and Zanchetta, E. (2009). The WaCky wide web: a
collection of very large linguistically processed web-crawled corpora. Language resources
and evaluation, 43(3):209–226.

Beaufort, R., Roekhaut, S., Cougnon, L.-A., and Fairon, C. (2010). A Hybrid Rule/Model-
based Finite-state Framework for Normalizing SMS Messages. In Proc. of the 48th Annual
Meeting of the Association for Computational Linguistics, ACL 2010, pages 770–779.

Beckley, R. (2015). Bekli: A Simple Approach to Twitter Text Normalization. In Proc. of the
1st Workshop on Noisy User-generated Text, W-NUT 2015, pages 82–86.

Beider, A. (2008). Beider-Morse phonetic matching: An alternative to Soundex with fewer
false hits. Avotaynu: the International Review of Jewish Genealogy (Summer 2008).

Bengio, Y., Ducharme, R., Vincent, P., and Janvin, C. (2003). A Neural Probabilistic
Language Model. The Journal of Machine Learning Research, 3:1137–1155.

Benton, A., Mitchell, M., and Hovy, D. (2017). Multitask Learning for Mental Health
Conditions with Limited Social Media Data. In Proc. of the 15th Conf. of the European
Chapter of the Association for Computational Linguistics, EACL 2017, volume 1, pages
152–162.

Bergsma, S., McNamee, P., Bagdouri, M., Fink, C., and Wilson, T. (2012). Language
Identification for Creating Language-specific Twitter Collections. In Proc. of the 2nd
Workshop on Language in Social Media, LSM 2012, pages 65–74.

Bernier-Colborne, G. and Barriere, C. (2018). CRIM at SemEval-2018 Task 9: A Hybrid Ap-
proach to Hypernym Discovery. In Proc. of the 12th Int. Workshop on Semantic Evaluation,
SemEval 2018, pages 722–728.

134 BIBLIOGRAPHY

Bertaglia, T. F. C. and Nunes, M. d. G. V. (2016). Exploring word embeddings for unsuper-
vised textual user-generated content normalization. In Proc. of the 2nd Workshop on Noisy
User-generated Text, W-NUT 2016.

Bilenko, M., Mooney, R., Cohen, W., Ravikumar, P., and Fienberg, S. (2003). Adaptive name
matching in information integration. IEEE Intelligent Systems, 18(5):16–23.

Bingel, J. and Søgaard, A. (2017). Identifying beneficial task relations for multi-task
learning in deep neural networks. In Proc. of the 15th Conf. of the European Chapter of the
Association for Computational Linguistics, EACL 2017, volume 2, pages 164–169.

Bisani, M. and Ney, H. (2008). Joint-sequence models for grapheme-to-phoneme conversion.
Speech communication, 50(5):434–451.

Blair, P., Merhav, Y., and Barry, J. (2016). Automated generation of multilingual clusters for
the evaluation of distributed representations. arXiv preprint arXiv:1611.01547.

Bojanowski, P., Grave, E., Joulin, A., and Mikolov, T. (2016). Enriching Word Vectors
with Subword Information. Transactions of the Association of Computational Linguistics,
5(1):135–146.

Bordea, G., Lefever, E., and Buitelaar, P. (2016). Semeval-2016 task 13: Taxonomy Extrac-
tion Evaluation (TExEval-2). In Proc. of the 10th Int. Workshop on Semantic Evaluation,
SemEval 2016, pages 1081–1091.

Bordes, A., Boureau, Y.-L., and Weston, J. (2016). Learning end-to-end goal-oriented dialog.
arXiv preprint arXiv:1605.07683.

Boyd, D. and Crawford, K. (2012). Critical questions for big data: Provocations for a
cultural, technological, and scholarly phenomenon. Information, Communication &
Society, 15(5):662–679.

Branting, L. K. (2003). A comparative evaluation of name-matching algorithms. In Proc. of
the 9th Int. Conf. on Artificial Intelligence and Law, ICAIL 2003, pages 224–232.

Brants, T. and Franz, A. (2006). Web 1T 5-gram Version 1 (ref. LDC2006T13). DVD.
Distributed by Linguistic Data Consortium.

Brill, E. and Moore, R. C. (2000). An improved error model for noisy channel spelling
correction. In Proc. of the 38th Annual Meeting on Association for Computational Linguistics
- ACL ’00, pages 286–293.

BIBLIOGRAPHY 135

Brown, P. F., deSouza, P. V., Mercer, R. L., Pietra, V. J. D., and Lai, J. C. (1992). Class-based
N-gram Models of Natural Language. Computational Linguistics, 18(4):467–479.

Cai, D. and Zhao, H. (2016). Neural word segmentation learning for Chinese. In Proc. of the
54th Annual Meeting of the Association for Computational Linguistics, ACL 2016, volume 1,
pages 409–420.

Camacho Collados, J., Pilehvar, M. T., Collier, N., and Navigli, R. (2017). SemEval-2017
Task 2: Multilingual and cross-lingual semantic word similarity. In Proc. of the 11th Int.
Workshop on Semantic Evaluation, SemEval 2017, pages 15–26.

Camacho-Collados, J., Delli Bovi, C., Espinosa-Anke, L., Oramas, S., Pasini, T., Santus,
E., Shwartz, V., Navigli, R., and Saggion, H. (2018). SemEval-2018 Task 9: Hypernym
Discovery. In Proc. of the 12th Int. Workshop on Semantic Evaluation, SemEval 2018, pages
712–724.

Camacho-Collados, J., Doval, Y., Mart́ınez-Cámara, E., Espinosa-Anke, L., Barbieri, F., and
Schockaert, S. (2019). Learning Cross-lingual Embeddings from Twitter via Distant
Supervision. arXiv preprint arXiv:1905.07358.

Camacho-Collados, J. and Navigli, R. (2016). Find the word that does not belong: A
framework for an intrinsic evaluation of word vector representations. In Proc. of the 1st
Workshop on Evaluating Vector-Space Representations for NLP, RepEval 2016, pages 43–50.

Cardellino, C. (2016). Spanish Billion Words Corpus and Embeddings. Available at http:
//crscardellino.me/SBWCE/.

Carter, S., Weerkamp, W., and Tsagkias, M. (2013). Microblog language identification:
overcoming the limitations of short, unedited and idiomatic text. Language Resources and
Evaluation, 47(1):195–215.

Cavnar, W. B. and Trenkle, J. M. (1994). N-Gram-Based Text Categorization. In Proc. of
the 3rd Annual Symposium on Document Analysis and Information Retrieval, SDAIR 1994,
pages 161–175.

Ceylan, H. and Kim, Y. (2009). Language identification of search engine queries. In Proc.
of the Joint Conf. of the 47th Annual Meeting of the ACL and the 4th Int. Joint Conf. on
Natural Language Processing of the AFNLP, ACL-AFNLP 2009, volume 2, pages 1066–1074.

Chen, S. F. and Goodman, J. (1996). An Empirical Study of Smoothing Techniques for Lan-
guage Modeling. In Proc. of the 34th Annual Meeting of the Association for Computational
Linguistics, ACL 1996, pages 310–318.

http://crscardellino.me/SBWCE/
http://crscardellino.me/SBWCE/

136 BIBLIOGRAPHY

Chen, X., Qiu, X., Zhu, C., and Huang, X. (2015). Gated Recursive Neural Network for
Chinese Word Segmentation. In Proc. of the 53rd Annual Meeting of the ACL and the 7th
Int. Joint Conf. on Natural Language Processing of the Asian Federation of Natural Language
Processing, ACL-IJCNLP 2015, volume 1, pages 1744–1753.

Chen, X., Qiu, X., Zhu, C., Liu, P., and Huang, X. (2015). Long Short-Term Memory Neural
Networks for Chinese Word Segmentation. In Proc. of the Conf. on Empirical Methods in
Natural Language Processing, EMNLP 2015, pages 1197–1206.

Chi, C.-H., Ding, C., and Lim, A. (1999). Word Segmentation and Recognition for Web
Document Framework. In Proc. of the Eighth Int. Conf. on Information and Knowledge
Management, CIKM ’99, pages 458–465.

Chiu, B., Korhonen, A., and Pyysalo, S. (2016). Intrinsic evaluation of word vectors fails
to predict extrinsic performance. In Proc. of the 1st Workshop on Evaluating Vector-Space
Representations for NLP, pages 1–6.

Choudhury, M., Saraf, R., Jain, V., Sarkar, S., and Basu, A. (2008). Investigation and
Modeling of the Structure of Texting Language. International Journal on Document
Analysis and Recognition, 10(3-4):63–70.

Christen, P. (2006). A comparison of personal name matching: Techniques and practical
issues. In Data Mining Workshops, 2006. ICDM Workshops 2006. Sixth IEEE Int. Conf. on,
pages 290–294.

Chrupała, G. (2014). Normalizing tweets with edit scripts and recurrent neural embeddings.
In Proc. of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume
2: Short Papers), volume 2, pages 680–686.

Coates, J. and Bollegala, D. (2018). Frustratingly easy meta-embedding–computing meta-
embeddings by averaging source word embeddings. In Proc. of the 2018 Conf. of the
North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 2 (Short Papers), pages 194–198.

Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., and Kuksa, P. (2011).
Natural language processing (almost) from scratch. Journal of machine learning research,
12(Aug):2493–2537.

Conneau, A. and Kiela, D. (2018). Senteval: An evaluation toolkit for universal sentence
representations. In Proc. of the 11th Int. Conf. on Language Resources and Evaluation,
LREC-2018, pages 1699–1704.

BIBLIOGRAPHY 137

Conneau, A., Kiela, D., Schwenk, H., Barrault, L., and Bordes, A. (2017). Supervised
Learning of Universal Sentence Representations from Natural Language Inference Data.
In Proc. of the 2017 Conf. on Empirical Methods in Natural Language Processing, EMNLP
2017, pages 670–680.

Conneau, A., Lample, G., Ranzato, M., Denoyer, L., and Jégou, H. (2018a). Word translation
without parallel data. In Proc. of the 6th Int. Conf. on Learning Representations, ICLR 2018.

Conneau, A., Rinott, R., Lample, G., Williams, A., Bowman, S. R., Schwenk, H., and
Stoyanov, V. (2018b). XNLI: Evaluating Cross-lingual Sentence Representations. In Proc.
of the 2018 Conf. on Empirical Methods in Natural Language Processing, EMNLP 2018.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2019). BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding. In Proc. of the 2019 Annual Conf.
of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, NAACL-HLT 2019, pages 4171–4186.

Doval, Y., Camacho-Collados, J., Espinosa-Anke, L., and Schockaert, S. (2018a). Improving
cross-lingual word embeddings by meeting in the middle. In Proc. of the 2018 Conf. on
Empirical Methods in Natural Language Processing, EMNLP 2018, pages 294–304.

Doval, Y., Camacho-Collados, J., Espinosa-Anke, L., and Schockaert, S. (2019). On the
robustness of unsupervised and semi-supervised cross-lingual word embedding learning.
arXiv preprint arXiv:1908.07742.

Doval, Y. and Gómez-Rodŕıguez, C. (2019). Comparing neural-and n-gram-based language
models for word segmentation. Journal of the Association for Information Science and
Technology, 70(2):187–197.

Doval, Y., Gómez-Rodŕıguez, C., and Vilares, J. (2016). Spanish word segmentation through
neural language models. Procesamiento del Lenguaje Natural, 57:75–82.

Doval, Y., Vilares, D., and Vilares, J. (2014). Identificación automática del idioma en Twitter:
adaptación de identificadores del estado del arte al contexto ibérico. In Proc. of the Tweet
Language Identification Workshop co-located with the 30th Conf. of the Spanish Society for
Natural Language Processing, TweetLID@SEPLN 2014, pages 39–43.

Doval, Y., Vilares, J., and Gómez-Rodŕıguez, C. (2015). LYSGROUP: Adapting a Spanish
microtext normalization system to English. In Proc. of the 1st Workshop on Noisy User-
generated Text, W-NUT 2015, pages 99–105.

138 BIBLIOGRAPHY

Doval, Y., Vilares, M., and Vilares, J. (2018b). On the performance of phonetic algorithms
in microtext normalization. Expert Systems with Applications, 113:213–222.

Dunning, T. (1994). Statistical identification of language. Technical report, Computing
Research Laboratory, New Mexico State University Las Cruces.

Duran, M. S., Nunes, M. d. G. V., and Avanço, L. (2015). A normalizer for UGC in Brazilian
Portuguese. In Proc. of the 1st Workshop on Noisy User-generated Text, W-NUT 2015, pages
38–47.

Duwairi, R. M., Marji, R., Sha’ban, N., and Rushaidat, S. (2014). Sentiment Analysis in
Arabic Tweets. In Proc. of the 5th Int. Conf. on Information and Communication Systems,
ICICS 2014.

Eisenstein, J. (2013). What to do about bad language on the Internet. In Proc. of the
2013 Conf. of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, NAACL-HLT 2013, pages 359–369.

Erhan, D., Bengio, Y., Courville, A., Manzagol, P.-A., Vincent, P., and Bengio, S. (2010).
Why does unsupervised pre-training help deep learning? Journal of Machine Learning
Research, 11(Feb):625–660.

Eshel, Y., Cohen, N., Radinsky, K., Markovitch, S., Yamada, I., and Levy, O. (2017). Named
Entity Disambiguation for Noisy Text. In Proc. of the 21st Conf. on Computational Natural
Language Learning, CoNLL 2017, pages 58–68.

Espinosa-Anke, L., Camacho-Collados, J., Delli Bovi, C., and Saggion, H. (2016). Supervised
Distributional Hypernym Discovery via Domain Adaptation. In Proc. of the Conf. on
Empirical Methods in Natural Language Processing, EMNLP 2016, pages 424–435.

Faruqui, M. and Dyer, C. (2014). Improving vector space word representations using
multilingual correlation. In Proc. of the 14th Conf. of the European Chapter of the Association
for Computational Linguistics, EACL 2014, pages 462–471.

Faruqui, M., Tsvetkov, Y., Rastogi, P., and Dyer, C. (2016). Problems with evaluation of
word embeddings using word similarity tasks. In Proc. of the 1st Workshop on Evaluating
Vector-Space Representations for NLP, RepEval 2016, pages 30–35.

Finkel, J. R., Manning, C. D., and Ng, A. Y. (2006). Solving the problem of cascading errors:
Approximate bayesian inference for linguistic annotation pipelines. In Proc. of the 2006
Conf. on Empirical Methods in Natural Language Processing, EMNLP 2006, pages 618–626.

BIBLIOGRAPHY 139

Finkelstein, L., Evgeniy, G., Yossi, M., Ehud, R., Zach, S., Gadi, W., and Eytan, R. (2002).
Placing search in context: The concept revisited. ACM Transactions on Information Systems,
20(1):116–131.

Firth, J. R. (1957). A synopsis of linguistic theory, 1930-1955. Special Volume of the
Philological Society.

Foster, J., Cetinoglu, O., Wagner, J., Le Roux, J., Nivre, J., Hogan, D., and Van Genabith, J.
(2011). From news to comment: Resources and benchmarks for parsing the language
of Web 2.0. In Proc. of 5th Int. Joint Conf. on Natural Language Processing, IJCNLP 2011,
pages 893–901.

Fuentes, A. A. G., Parra, I. P., Quevedo-Torrero, J. U., and Perez, R. D. (2016). Comparative
Analysis of Phonetic Algorithms Applied to Spanish. In Proc. of the 2016 Int. Conf. on
Computational Science and Computational Intelligence, CSCI 2016, pages 1180–1185.

Gadd, T. (1988). ‘Fisching fore werds’: phonetic retrieval of written text in information
systems. Program, 22(3):222–237.

Gadd, T. (1990). Phonix: The algorithm. Program, 24(4):363–366.

Gálvez, C. (2006). Identificación de nombres personales por medio de sistemas de
codificación fonética. Encontros Bibli: revista eletrônica de biblioteconomia e ciência
da informação, 22:105–116. Available at http://www.redalyc.org/articulo.oa?id=
14702209.

Gamallo, P., Garcia, M., Sotelo, S., and Campos, J. R. P. (2014). Comparing Ranking-based
and Naive Bayes Approaches to Language Detection on Tweets. In Proc. of the Tweet
Language Identification Workshop co-located with the 30th Conf. of the Spanish Society for
Natural Language Processing, TweetLID@SEPLN 2014, pages 12–16.

Geffet, M. and Dagan, I. (2005). The distributional inclusion hypotheses and lexical
entailment. In Proc. of the 43rd Annual Meeting of the Association for Computational
Linguistics, ACL 2005, pages 107–114.

Gerber, M. S. (2014). Predicting crime using Twitter and kernel density estimation. Decision
Support Systems, 61:115–125.

Giguet, E. (1996). The stakes of multilinguality: Multilingual text tokenization in natural
language diagnosis. In Proc. of the PRICAI Workshop on Future Issues for Multilingual Text
Processing.

http://www.redalyc.org/articulo.oa?id=14702209
http://www.redalyc.org/articulo.oa?id=14702209

140 BIBLIOGRAPHY

Gill, L., Goldacre, M., Simmons, H., Bettley, G., and Griffith, M. (1993). Computerised link-
ing of medical records: methodological guidelines. Journal of Epidemiology & Community
Health, 47(4):316–319.

Gill, L. E. and Baldwin, J. A. (1987). Textbook of Medical Record Linkage, chapter Methods
and Technology of Record Linkage: Some Practical Considerations, pages 39–54.

Gimpel, K., Schneider, N., O’Connor, B., Das, D., Mills, D., Eisenstein, J., Heilman, M.,
Yogatama, D., Flanigan, J., and Smith, N. A. (2011). Part-of-speech Tagging for Twit-
ter: Annotation, Features and Experiments. In Proc. of the 49th Annual Meeting of the
Association for Computational Linguistics: Human Language Technologies, ACL-HLT 2011,
volume 2, pages 42–47.

Glavaš, G., Litschko, R., Ruder, S., and Vulić, I. (2019). How to (Properly) Evaluate
Cross-Lingual Word Embeddings: On Strong Baselines, Comparative Analyses, and Some
Misconceptions. In Proc. of the 57th Annual Meeting of the Association for Computational
Linguistics, ACL 2019, pages 710–721.

Godin, F., Vandersmissen, B., De Neve, W., and Van de Walle, R. (2015). Named Entity
Recognition for Twitter Microposts using Distributed Word Representations. In Proc. of
the 1st Workshop on Noisy User-generated Text, W-NUT 2015, pages 146–153.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A.,
and Bengio, Y. (2014). Generative adversarial nets. In Proc. of the 2014 Conf. on Neural
Information Processing Systems, NIPS 2014, pages 2672–2680.

Gouws, S., Bengio, Y., and Corrado, G. (2015). Bilbowa: Fast bilingual distributed repre-
sentations without word alignments. In Proc. of the 32nd Int. Conf. on Machine Learning,
ICML 2015.

Gouws, S., Hovy, D., and Metzler, D. (2011). Unsupervised mining of lexical variants from
noisy text. In Proc. of the 1st Workshop on Unsupervised Learning in NLP, pages 82–90.

Gutmann, M. U. and Hyvärinen, A. (2012). Noise-contrastive estimation of unnormalized
statistical models, with applications to natural image statistics. Journal of Machine
Learning Research, 13(Feb):307–361.

Hammarström, H. (2007). A fine-grained model for language identification. In Proc. of the
ACM SIGIR 2007 Workshop on Improving Non English Web Searching, iNEWS 2007, pages
14–20.

BIBLIOGRAPHY 141

Han, B. and Baldwin, T. (2011). Lexical normalisation of short text messages: makn sens
a #twitter. In Proc. of the 49th Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies, ACL-HLT 2011, volume 1, pages 368–378.

Han, B., Cook, P., and Baldwin, T. (2013a). Lexical normalization for social media text.
ACM Transactions on Intelligent Systems and Technology, 4(1):5:1–5:27.

Han, L., Kashyap, A., Finin, T., Mayfield, J., and Weese, J. (2013b). UMBC EBIQUITY-
CORE: Semantic textual similarity systems. In Proc. of the 2nd Joint Conf. on Lexical and
Computational Semantics, *SEM 2013, volume 1, pages 44–52.

Hashimoto, K., Xiong, C., Tsuruoka, Y., and Socher, R. (2017). A Joint Many-Task Model:
Growing a Neural Network for Multiple NLP Tasks. In Proc. of the 2017 Conf. on Empirical
Methods in Natural Language Processing, EMNLP 2017, pages 1923–1933.

Hassan, H. and Menezes, A. (2013). Social text normalization using contextual graph
random walks. In Proc. of the 51st Annual Meeting of the Association for Computational
Linguistics, ACL 2013), volume 1, pages 1577–1586.

Heafield, K., Pouzyrevsky, I., Clark, J. H., and Koehn, P. (2013). Scalable Modified Kneser-
Ney Language Model Estimation. In Proc. of the 51st Annual Meeting of the Association for
Computational Linguistics, ACL 2013, pages 690–696.

Hearst, M. A. (1992). Automatic acquisition of hyponyms from large text corpora. In Proc.
of the 14th Int. Conf. on Computational Linguistics, COLING 1992, pages 539–545.

Hill, F., Reichart, R., and Korhonen, A. (2015). Simlex-999: Evaluating semantic models
with (genuine) similarity estimation. Computational Linguistics, 41(4):665–695.

Hochreiter, S. and Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation,
9(8):1735–1780.

Hoffart, J., Milchevski, D., and Weikum, G. (2014). STICS: searching with strings, things,
and cats. In Proc. of the 37th Int. ACM SIGIR Conf. on Research & Development in Information
Retrieval, pages 1247–1248.

Hollingshead, K. and Roark, B. (2007). Pipeline iteration. In Proc. of the 45th Annual
Meeting of the Association of Computational Linguistics, ACL 2007, pages 952–959.

Holmes, D. and McCabe, M. C. (2002). Improving precision and recall for Soundex retrieval.
In Proc. of the Int. Conf. on Information Technology: Coding and Computing, ITCC 2002,
pages 22–26.

142 BIBLIOGRAPHY

Hong, L., Convertino, G., and Chi, E. H. (2011). Language matters in Twitter: A large scale
study. In Proc. of the 5th Int. AAAI Conf. on Weblogs and Social Media, ICWSM 2011.

Hood, D. (2002). Caverphone: Phonetic matching algorithm. Technical Paper CTP060902,
University of Otago. Available at http://caversham.otago.ac.nz/files/working/

ctp060902.pdf.

Hood, D. (2004). Caverphone revisited. Technical Paper CTP150804, University of Otago.
Available at http://caversham.otago.ac.nz/files/working/ctp150804.pdf.

Hovy, D., Plank, B., and Søgaard, A. (2014). When POS data sets don’t add up: Combatting
sample bias. In Proc. of the 9th Int. Conf. on Language Resources and Evaluation, LREC
2014, pages 4472–4475.

Howard, J. and Ruder, S. (2018). Universal language model fine-tuning for text classification.
In Proc. of the 56th Annual Meeting of the Association for Computational Linguistics, ACL
2018, pages 328–339.

Huang, E. H., Socher, R., Manning, C. D., and Ng, A. Y. (2012). Improving word representa-
tions via global context and multiple word prototypes. In Proc. of the 50th Annual Meeting
of the Association for Computational Linguistics, ACL 2012, volume 1, pages 873–882.

Hurtado, L. F., Pla, F., Giménez, M., and Arnal, E. S. (2014). ELiRF-UPV en TweetLID:
Identificación del Idioma en Twitter. In Proc. of the Tweet Language Identification Workshop
co-located with the 30th Conf. of the Spanish Society for Natural Language Processing,
TweetLID@SEPLN 2014, pages 35–38.

Ikeda, T., Shindo, H., and Matsumoto, Y. (2016). Japanese text normalization with encoder-
decoder model. In Proc. of the 2nd Workshop on Noisy User-generated Text, W-NUT 2016,
pages 129–137.

Ioffe, S. and Szegedy, C. (2015). Batch Normalization: Accelerating Deep Network Training
by Reducing Internal Covariate Shift. In Proc. of the 32nd International Conference on
Machine Learning (ICML-15), pages 448–456.

Iyyer, M., Boyd-Graber, J. L., Claudino, L. M. B., Socher, R., and Daumé III, H. (2014). A
Neural Network for Factoid Question Answering over Paragraphs. In Proc. of the Conf. on
Empirical Methods in Natural Language Processing, EMNLP 2014, pages 633–644.

Jenks, G. (2017). WordSegment. Available at: http://www.grantjenks.com/docs/

wordsegment/.

http://caversham.otago.ac.nz/files/working/ctp060902.pdf
http://caversham.otago.ac.nz/files/working/ctp060902.pdf
http://caversham.otago.ac.nz/files/working/ctp150804.pdf
http://www.grantjenks.com/docs/wordsegment/
http://www.grantjenks.com/docs/wordsegment/

BIBLIOGRAPHY 143

Jin, N. (2015). NCSU-SAS-Ning: Candidate generation and feature engineering for super-
vised lexical normalization. In Proc. of the 1st Workshop on Noisy User-generated Text,
W-NUT 2015, pages 87–92.

Johnson, M., Schuster, M., Le, Q. V., Krikun, M., Wu, Y., Chen, Z., Thorat, N., Viégas,
F., Wattenberg, M., Corrado, G., et al. (2017). Google’s multilingual neural machine
translation system: enabling zero-shot translation. Transactions of the Association for
Computational Linguistics, 5:339–351.

Jurafsky, D. and Martin, J. H. (2009). Speech and Language Processing: An Introduction to
Natural Language Processing, Computational Linguistics, and Speech Recognition (2nd ed.).
2 edition.

Kacmarcik, G., Brockett, C., and Suzuki, H. (2000). Robust Segmentation of Japanese Text
into a Lattice for Parsing. In Proc. of the 18th Conf. on Computational Linguistics, COLING
2000, volume 1, pages 390–396.

Karisani, P. and Agichtein, E. (2018). Did You Really Just Have a Heart Attack?: Towards
Robust Detection of Personal Health Mentions in Social Media. In Proc. of the 2018 World
Wide Web Conf., WWW 2018, pages 137–146.

Karpathy, A., Johnson, J., and Fei-Fei, L. (2015). Visualizing and understanding recurrent
networks. arXiv preprint arXiv:1506.02078.

Kementchedjhieva, Y., Ruder, S., Cotterell, R., and Søgaard, A. (2018). Generalizing
Procrustes Analysis for Better Bilingual Dictionary Induction. In Proc. of the Conf. on
Computational Natural Language Learning, CoNLL 2018, pages 211–220.

Kim, Y., Jernite, Y., Sontag, D., and Rush, A. M. (2016). Character-aware neural language
models. In Proc. of the 30th AAAI Conf. on Artificial Intelligence, AAAI 2016, pages
2741–2749.

Kingma, D. and Ba, J. (2014). Adam: A method for stochastic optimization. In Proc. of the
2014 Int. Conf. on Learning Representations, ICLR 2014.

Klein, G., Kim, Y., Deng, Y., Senellart, J., and Rush, A. M. (2017). OpenNMT: Open-Source
Toolkit for Neural Machine Translation. In Proc. of the 2017 Annual Meeting of the
Association for Computational Linguistics, System Demonstrations, ACL 2017, pages 67–72.

Klementiev, A., Titov, I., and Bhattarai, B. (2012). Inducing crosslingual distributed repre-
sentations of words. In Proc. of the 24th Int. Conf. on Computational Linguistics, COLING
2012, pages 1459–1474.

144 BIBLIOGRAPHY

Kneser, R. and Ney, H. (1995). Improved backing-off for M-gram language modeling. In In
Proc. of the IEEE Int. Conf. on Acoustics, Speech and Signal Processing, ICASSP 95, volume 1,
pages 181–184.

Kobus, C., Yvon, F., and Damnati, G. (2008a). Normalizing SMS: are two metaphors better
than one? In Proc. of the 22nd Int. Conf. on Computational Linguistics, volume 1, pages
441–448.

Kobus, C., Yvon, F., and Damnati, G. (2008b). Transcrire les SMS comme on reconnâıt la
parole. In Actes de la 15e Conférence sur le Traitement Automatique des Langues, TALN
2008, pages 128–138.

Koehn, P. and Knight, K. (2003). Empirical Methods for Compound Splitting. In Proc. of the
10th Conf. of the European Chapter of the ACL, EACL 2003, volume 1, pages 187–193.

Kong, L., Schneider, N., Swayamdipta, S., Bhatia, A., Dyer, C., and Smith, N. A. (2014). A
dependency parser for tweets. In Proc. of the 2014 Conf. on Empirical Methods in Natural
Language Processing, EMNLP 2014, pages 1001–1012.

Krott, A., Schreuder, R., Harald Baayen, R., and Dressler, W. U. (2007). Analogical effects
on linking elements in German compound words. Language and cognitive processes,
22(1):25–57.

Kutuzov, A., Velldal, E., and Øvrelid, L. (2016). Redefining part-of-speech classes with
distributional semantic models. In Proc. of the 20th SIGNLL Conf. on Computational
Natural Language Learning, CoNLL 2016, pages 115–125.

Laboreiro, G., Bošnjak, M., Sarmento, L., Rodrigues, E. M., and Oliveira, E. (2013). De-
termining Language Variant in Microblog Messages. In Proc. of the 28th Annual ACM
Symposium on Applied Computing, SAC 2013, pages 902–907.

Lait, A. J. and Randell, B. (1996). An assessment of name matching algorithms. Technical
report, University of Newcastle upon Tyne, Department of Computing Science. Available
at http://homepages.cs.ncl.ac.uk/brian.randell/Genealogy/NameMatching.pdf.

Law, D., Gruss, R., and Abrahams, A. S. (2017). Automated defect discovery for dishwasher
appliances from online consumer reviews. Expert Systems with Applications, 67:84–94.

Lazaridou, A., Dinu, G., and Baroni, M. (2015). Hubness and pollution: Delving into
cross-space mapping for zero-shot learning. In Proc. of the 53rd Annual Meeting of the
Association for Computational Linguistics and the 7th Int. Joint Conf. on Natural Language
Processing, ACL-IJCNLP 2015, pages 270–280.

http://homepages.cs.ncl.ac.uk/brian.randell/Genealogy/NameMatching.pdf

BIBLIOGRAPHY 145

Leeman-Munk, S., Lester, J., and Cox, J. (2015). NCSU SAS SAM: Deep encoding and
reconstruction for normalization of noisy text. In Proc. of the 1st Workshop on Noisy
User-generated Text, W-NUT 2015, pages 154–161.

Léonard, N., Waghmare, S., Wang, Y., and Kim, J.-H. (2015). rnn: Recurrent library for
Torch. arXiv preprint arXiv:1511.07889.

Levenshtein, V. I. (1966). Binary codes capable of correcting deletions, insertions and
reversals. Soviet Physics Doklady, 10(8):707–710.

Li, J., Chen, X., Hovy, E., and Jurafsky, D. (2016). Visualizing and understanding neural
models in NLP. In Proc. of the 2016 Annual Conf. of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, NAACL-HLT
2016, pages 681–691.

Ling, W., Dyer, C., Black, A. W., Trancoso, I., Fermandez, R., Amir, S., Marujo, L., and Luis, T.
(2015). Finding Function in Form: Compositional Character Models for Open Vocabulary
Word Representation. In Proc. of the 2015 Conf. on Empirical Methods in Natural Language
Processing, EMNLP 2015, pages 1520–1530.

Lins, R. D. and Gonçalves, P. (2004). Automatic language identification of written texts. In
Proc. of the 2004 ACM Symposium on Applied Computing, SAC 2004, pages 1128–1133.

Lodhi, H., Saunders, C., Shawe-Taylor, J., Cristianini, N., and Watkins, C. (2002). Text
classification using string kernels. Journal of Machine Learning Research, 2(Feb):419–444.

Low, J. K., Ng, H. T., and Guo, W. (2005). A maximum entropy approach to Chinese word
segmentation. In Proc. of the 4th SIGHAN Workshop on Chinese Language Processing, pages
448–455.

Lu, A., Wang, W., Bansal, M., Gimpel, K., and Livescu, K. (2015). Deep multilingual
correlation for improved word embeddings. In Proc. of the 2015 Conf. of the North
American Chapter of the Association for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2015, pages 250–256.

Lui, M. and Baldwin, T. (2011). Cross-domain Feature Selection for Language Identification.
In Proc. of 5th Int. Joint Conf. on Natural Language Processing, IJCNLP 2011, pages
553–561.

Lui, M. and Baldwin, T. (2012). langid.py: An off-the-shelf language identification tool.
In Proc. of the 2012 Annual Meeting of the Association for Computational Linguistics, ACL

146 BIBLIOGRAPHY

2012, System Demonstrations, pages 25–30. Tool available at: https://github.com/
saffsd/langid.py.

Lui, M. and Baldwin, T. (2014). Accurate Language Identification of Twitter Messages. In
Proc. of the 5th Workshop on Language Analysis for Social Media, LASM 2014, pages 17–25.

Lui, M., Lau, J. H., and Baldwin, T. (2014). Automatic detection and language identification
of multilingual documents. Transactions of the Association for Computational Linguistics,
2:27–40.

Luong, M., Le, Q. V., Sutskever, I., Vinyals, O., and Kaiser, L. (2016). Multi-task Sequence to
Sequence Learning. In Proc. of the 4th Int. Conf. on Learning Representations, ICLR 2016.

Luong, T., Pham, H., and Manning, C. D. (2015). Bilingual word representations with
monolingual quality in mind. In Proc. of the 1st Workshop on Vector-Space Modeling for
NLP, RepEval 2016, pages 151–159.

Luong, T., Socher, R., and Manning, C. (2013). Better word representations with recursive
neural networks for morphology. In Proc. of the Seventeenth Conf. on Computational
Natural Language Learning, pages 104–113.

Lynch, B. T. and Arends, W. L. (1977). Selection of a surname coding procedure for the
SRS record linkage system. Washington, DC: US Department of Agriculture, Sample Survey
Research Branch, Research Division.

Majlǐs, M. (2012). Yet Another Language Identifier. In Proc. of the Student Research Workshop
at the 13th Conf. of the European Chapter of the Association for Computational Linguistics,
EACL 2012, pages 46–54. Tool available at http://ufal.mff.cuni.cz/tools/yali/
(visitada en julio 2014).

Malykh, V., Logacheva, V., and Khakhulin, T. (2018). Robust Word Vectors: Context-
Informed Embeddings for Noisy Texts. In Proc. of the 4th Workshop on Noisy User-generated
Text, W-NUT 2018, pages 54–63.

Manning, C., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S., and McClosky, D. (2014). The
Stanford CoreNLP natural language processing toolkit. In Proc. of 52nd Annual Meeting of
the Association for Computational Linguistics, ACL 2014, System Demonstrations, pages
55–60.

Manning, C. D., Raghavan, P., and Schütze, H. (2008). Introduction to information retrieval.

https://github.com/saffsd/langid.py
https://github.com/saffsd/langid.py
http://ufal.mff.cuni.cz/tools/yali/

BIBLIOGRAPHY 147

Manning, C. D. and Schütze, H. (1999). Foundations of Statistical Natural Language
Processing.

Marciniak, T. and Strube, M. (2005). Beyond the pipeline: Discrete optimization in nlp. In
Proc. of the 9th Conf. on Computational Natural Language Learning, CoNLL 2005, pages
136–143.

Mart́ınez Alonso, H. and Plank, B. (2017). When is multitask learning effective? Semantic
sequence prediction under varying data conditions. In Proc. of the 15th Conf. of the
European Chapter of the Association for Computational Linguistics, volume 1, pages 44–53.

Maynard, D. and Greenwood, M. A. (2014). Who cares about Sarcastic Tweets? Investigating
the Impact of Sarcasm on Sentiment Analysis. In Proc. of the 9th Int. Conf. on Language
Resources and Evaluation, LREC 2014, pages 4238–4243.

McNamee, P. (2005). Language Identification: A Solved Problem Suitable for Undergraduate
Instruction. Journal of Computing Sciences in Colleges, 20(3):94–101.

Meng, Y., Li, X., Sun, X., Han, Q., Yuan, A., and Li, J. (2019). Is Word Segmentation
Necessary for Deep Learning of Chinese Representations? In Proc. of the 57th Annual
Meeting of the Association for Computational Linguistics, ACL 2019, pages 3242–3252.

Mikolov, T., Corrado, G., Chen, K., and Dean, J. (2013). Efficient estimation of word repre-
sentations in vector space. Proc. of the International Conference on Learning Representations,
ICLR 2013, pages 1–12.

Mikolov, T., Grave, E., Bojanowski, P., Puhrsch, C., and Joulin, A. (2018). Advances in
pre-training distributed word representations. In Proc. of the 11th Int. Conf. on Language
Resources and Evaluation, LREC-2018.

Mikolov, T., Le, Q. V., and Sutskever, I. (2013a). Exploiting similarities among languages
for machine translation. arXiv preprint arXiv:1309.4168.

Mikolov, T., Yih, W.-t., and Zweig, G. (2013b). Linguistic regularities in continuous space
word representations. In Proc. of the 2013 Annual Conf. of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, NAACL-HTL
2013, pages 746–751.

Mikolov, T. and Zweig, G. (2012). Context dependent recurrent neural network language
model. In Proc. of the 2012 IEEE Spoken Language Technology Workshop, SLT 2012, pages
234–239.

148 BIBLIOGRAPHY

Min, W. and Mott, B. (2015). NCSU SAS WOOKHEE: a deep contextual long-short term
memory model for text normalization. In Proc. of the 1st Workshop on Noisy User-generated
Text, W-NUT 2015, pages 111–119.

Mogadala, A. and Rettinger, A. (2016). Bilingual word embeddings from parallel and
non-parallel corpora for cross-language text classification. In Proc. of the 2016 Conf. of the
North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2016, pages 692–702.

Moore, G. B. (1977). Accessing individual records from personal data files using non-unique
identifiers, volume 13.

Mosquera, A. (2011). The Spanish Metaphone Algorithm (Algoritmo del Metáfono para el
español). Code available at: https://github.com/amsqr/Spanish-Metaphone.

Nakov, P., Ritter, A., Rosenthal, S., Sebastiani, F., and Stoyanov, V. (2016). SemEval-2016
Task 4: Sentiment analysis in Twitter. In Proc. of the 10th Int. Workshop on Semantic
Evaluation, SemEval 2016, pages 1–18.

Nakov, P., Rosenthal, S., Kozareva, Z., Stoyanov, V., Ritter, A., and Wilson, T. (2013).
SemEval-2013 Task 2: Sentiment Analysis in Twitter. In Proc. of the 7th Int. Workshop on
Semantic Evaluation, SemEval 2013, pages 312–320.

Navigli, R. d. R. L. S. (2009). Word sense: A Survey. ACM Computing Survey.

Norvig, P. (2009). Natural language corpus data. In Segaran, T. and Hammerbacher, J.,
editors, Beautiful Data, pages 219–242.

Odell, M. and Russell, R. C. (1918). The Soundex coding system. US Patents 1261167.

Odell, M. K. (1956). The profit in records management. Systems, 20(20).

Okazaki, N. and Tsujii, J. (2010). Simple and Efficient Algorithm for Approximate Dictionary
Matching. In Proc. of the 23rd Int. Conf. on Computational Linguistics, COLING 2010, pages
851–859.

Owoputi, O., O’Connor, B., Dyer, C., Gimpel, K., Schneider, N., and Smith, N. A. (2013).
Improved part-of-speech tagging for online conversational text with word clusters. In
Proc. of the 2013 Conf. of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, NAACL-HLT 2013, pages 380–390.

https://github.com/amsqr/Spanish-Metaphone

BIBLIOGRAPHY 149

Padró, L. and Stanilovsky, E. (2012). Freeling 3.0: Towards Wider Multilinguality. In Proc.
of the 8th Int. Conf. on Language Resources and Evaluation, LREC 2012, pages 2473–2479.
Toolkit available at: http://nlp.lsi.upc.edu/freeling/.

Parmar, V. P. and Kumbharana, C. (2014). Study existing various phonetic algorithms
and designing and development of a working model for the new developed algorithm
and comparison by implementing it with existing algorithm(s). International Journal of
Computer Applications, 98(19).

Pauls, A. and Klein, D. (2011). Faster and Smaller N-gram Language Models. In Proc. of the
49th Annual Meeting of the Association for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2011, volume 1, pages 258–267. BerkeleyLM source code
available at https://code.google.com/p/berkeleylm/.

Pei, W., Ge, T., and Chang, B. (2014). Max-Margin Tensor Neural Network for Chinese Word
Segmentation. In Proc. of the 52nd Annual Meeting of the Association for Computational
Linguistics, ACL 2014, volume 1, pages 293–303.

Peng, F., Feng, F., and McCallum, A. (2004). Chinese Segmentation and New Word Detection
Using Conditional Random Fields. In Proc. of the 20th Int. Conf. on Computational
Linguistics, COLING 2004, pages 562–568.

Pennington, J., Socher, R., and Manning, C. D. (2014). GloVe: Global Vectors for Word
Representation. In Proc. of the Conf. on Empirical Methods in Natural Language Processing,
EMNLP 2014, volume 14, pages 1532–1543.

Peters, M. E., Ammar, W., Bhagavatula, C., and Power, R. (2017). Semi-supervised sequence
tagging with bidirectional language models. arXiv preprint arXiv:1705.00108.

Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., and Zettlemoyer, L.
(2018). Deep contextualized word representations. In Proc. of the 2018 Annual Conf.
of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, NAACL-HTL 2018, pages 2227–2237.

Phang, J., Févry, T., and Bowman, S. R. (2018). Sentence encoders on STILTs: Supplemen-
tary training on intermediate labeled-data tasks. arXiv preprint arXiv:1811.01088.

Philips, L. (1990). Hanging on the Metaphone. Computer Language, 7(12):39–43.

Philips, L. (2000). The double Metaphone search algorithm. C/C++ users journal, 18(6):38–
43.

http://nlp.lsi.upc.edu/freeling/
https://code.google.com/p/berkeleylm/

150 BIBLIOGRAPHY

Pinto, D., Vilariño, D., Alemán, Y., Gómez, H., Loya, N., and Jiménez-Salazar, H. (2012).
The soundex phonetic algorithm revisited for sms text representation. In Text, Speech and
Dialogue, pages 47–55.

Plank, B., Søgaard, A., and Goldberg, Y. (2016). Multilingual Part-of-Speech Tagging with
Bidirectional Long Short-Term Memory Models and Auxiliary Loss. In Proc. of the 54th
Annual Meeting of the Association for Computational Linguistics, ACL 2016, August 7-12,
2016, Berlin, Germany, Volume 2: Short Papers.

Porta, J. (2014). Twitter Language Identification using Rational Kernels and its potential
application to Sociolinguistics. In Proc. of the Tweet Language Identification Workshop
co-located with the 30th Conf. of the Spanish Society for Natural Language Processing,
TweetLID@SEPLN 2014, pages 17–20.

Poutsma, A. (2001). Applying Montecarlo techniques to language identification. In Compu-
tational Linguistics in the Netherlands 2001, pages 179–189.

Prager, J., Chu-Carroll, J., Brown, E. W., and Czuba, K. (2008). Question answering by
predictive annotation. In Advances in Open Domain Question Answering, pages 307–347.

Principe, J., Principe, J. C., and Kuo, J.-M. (1993). Backpropagation Through Time with
Fixed Memory Size Requirements. In Proc. of the 3rd Workshop on Neural Networks for
Signal Processing, IEEE-SP 1993, pages 207–215.

Ratnaparkhi, A. (1996). A maximum entropy model for part-of-speech tagging. In Proc. of
the Conf. on Empirical Methods in Natural Language Processing, volume 1, pages 133–142.

Ratner, A., Hancock, B., Dunnmon, J., Goldman, R. E., and Ré, C. (2018). Snorkel
MeTal: Weak Supervision for Multi-Task Learning. In Proc. of the 2nd Workshop on Data
Management for End-To-End Machine Learning, DEEM@SIGMOD 2018, pages 3:1–3:4.

Ritter, A., Clark, S., Etzioni, O., et al. (2011). Named entity recognition in tweets: an
experimental study. In Proc. of the Conf. on Empirical Methods in Natural Language
Processing, EMNLP 2011, pages 1524–1534.

Roller, S. and Erk, K. (2016). Relations such as hypernymy: Identifying and exploiting
Hearst patterns in distributional vectors for lexical entailment. In Proc. of the 2016 Conf.
on Empirical Methods in Natural Language Processing, EMNLP 2016, pages 2163–2172.

Rosenthal, S., Ritter, A., Nakov, P., and Stoyanov, V. (2014). SemEval-2014 Task 9: Senti-
ment analysis in Twitter. In Proc. of the 8th Int. Workshop on Semantic Evaluation, SemEval
2014, pages 73–80.

BIBLIOGRAPHY 151

Roth, D. and Yih, W.-t. (2004). A linear programming formulation for global inference
in natural language tasks. In Proc. of the 8th Conf. on Computational Natural Language
Learning, CoNLL@NAACL-HLT 2004, pages 1–8.

Ruder, S., Vulić, I., and Søgaard, A. (2017). A survey of cross-lingual word embedding
models. arXiv preprint arXiv:1706.04902.

Rudra, K., Banerjee, S., Ganguly, N., Goyal, P., Imran, M., and Mitra, P. (2016). Summarizing
situational tweets in crisis scenario. In Proc. of the 27th ACM Conf. on Hypertext and Social
Media, HT 2016, pages 137–147.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning representations by
back-propagating errors. Nature, 323:533–536.

Sahlgren, M., Gyllensten, A. C., Espinoza, F., Hamfors, O., Karlgren, J., Olsson, F., Persson,
P., Viswanathan, A., and Holst, A. (2016). The Gavagai Living Lexicon. Proc. of the Tenth
International Conference on Language Resources and Evaluation, LREC 2016.

Samuelsson, Y., Täckström, O., Velupillai, S., Eklund, J., Fǐsel, M., and Saers, M. (2008).
Mixing and blending syntactic and semantic dependencies. In Proc. of the 12th Conf. on
Computational Natural Language Learning, CoNLL 2008, pages 248–252.

Satapathy, R., Guerreiro, C., Chaturvedi, I., and Cambria, E. (2017). Phonetic-based
microtext normalization for twitter sentiment analysis. In Proc. of the 2017 IEEE Int. Conf.
on Data Mining Workshops, ICDMW 2017, pages 407–413.

Schmitt, M., Steinheber, S., Schreiber, K., and Roth, B. (2018). Joint aspect and polarity
classification for aspect-based sentiment analysis with end-to-end neural networks. In
Proc. of the 2018 Conf. on Empirical Methods in Natural Language Processing, EMNLP 2018,
pages 1109–1114.

Schulz, S., Pauw, G. D., Clercq, O. D., Desmet, B., Hoste, V., Daelemans, W., and Macken,
L. (2016). Multimodular text normalization of Dutch user-generated content. ACM
Transactions on Intelligent Systems and Technology, 7(4):61.

Shannon, C. E. (1948). A mathematical theory of communication. Bell system technical
journal, 27(3):379–423.

Shuyo, N. (2010). Language Detection Library for Java. Tool available at http://code.
google.com/p/language-detection/.

http://code.google.com/p/language-detection/
http://code.google.com/p/language-detection/

152 BIBLIOGRAPHY

Shwartz, V., Goldberg, Y., and Dagan, I. (2016). Improving hypernymy detection with an
integrated path-based and distributional method. In Proc. of the 54th Annual Meeting of
the Association for Computational Linguistics, ACL 2016, pages 2389–2398.

Signorini, A., Segre, A. M., and Polgreen, P. M. (2011). The use of Twitter to track levels of
disease activity and public concern in the us during the influenza a H1N1 pandemic. PloS
one, 6(5):1–10.

Smith, S. L., Turban, D. H., Hamblin, S., and Hammerla, N. Y. (2017). Offline bilingual
word vectors, orthogonal transformations and the inverted softmax. In Proc. of the 5th
Int. Conf. on Learning Representations, ICLR 2017.

Snae, C. (2007). A comparison and analysis of name matching algorithms. International
Journal of Applied Science. Engineering and Technology, 4(1):252–257.

Søgaard, A., Agić, Ž., Mart́ınez Alonso, H., Plank, B., Bohnet, B., and Johannsen, A. (2015).
Inverted indexing for cross-lingual NLP. In Proc. of the 2015 Annual Meeting of the
Association for Computational Linguistics, ACL 2015, pages 1713–1722.

Søgaard, A., Ruder, S., and Vulić, I. (2018). On the limitations of unsupervised bilingual dic-
tionary induction. In Proc. of the 56th Annual Meeting of the Association for Computational
Linguistics, ACL 2018, volume 1, pages 778–788.

Sridhar, V. K. R. (2016). Unsupervised text normalization using distributed representations
of words and phrases. In Proc. of the 1st Workshop on Vector-Space Modeling for Natural
Language Processing, RepEval 2016, pages 8–16.

Srinivasan, S., Bhattacharya, S., and Chakraborty, R. (2012). Segmenting Web-domains and
Hashtags Using Length Specific Models. In Proc. of the 21st ACM Int. Conf. on Information
and Knowledge Management, CIKM ’12, pages 1113–1122.

Stolcke, A. (2002). SRILM an extensible language modeling toolkit. In Proc. of the 7th Int.
Conf. on Spoken Language Processing, ICSLP 2002, pages 901–904.

Subramanian, S., Trischler, A., Bengio, Y., and Pal, C. J. (2018). Learning General Purpose
Distributed Sentence Representations via Large Scale Multi-task Learning. In Proc. of the
6th Int. Conf. on Learning Representations, ICLR 2018.

Sumbler, P., Viereckel, N., Afsarmanesh, N., and Karlgren, J. (2018). Handling Noise in
Distributional Semantic Models for Large Scale Text Analytics and Media Monitoring.
Proc. of the 4th Workshop on Noisy User-generated Text, W-NUT 2018, Abstract.

BIBLIOGRAPHY 153

Sundermeyer, M., Schlüter, R., and Ney, H. (2012). LSTM Neural Networks for Language
Modeling. In Proc. of the 13th Annual Conf. of the Int. Speech Communication Association,
INTERSPEECH 2012, pages 194–197.

Supranovich, D. and Patsepnia, V. (2015). IHS RD: Lexical normalization for English tweets.
In Proc. of the 1st Workshop on Noisy User-generated Text, W-NUT 2015, pages 78–81.

Sutton, C. and McCallum, A. (2005). Joint parsing and semantic role labeling. In Proc. of
the 9th Conf. on Computational Natural Language Learning, CoNLL 2005, pages 225–228.

Taft, R. L. (1970). Name search techniques. Special Report 1, Bureau of Systems Develop-
ment, New York State Identification and Intelligence System.

Tang, D., Wei, F., Yang, N., Zhou, M., Liu, T., and Qin, B. (2014). Learning sentiment-specific
word embedding for Twitter sentiment classification. In Proc. of the 2014 Annual Meeting
of the Association for Computational Linguistics, ACL 2014, pages 1555–1565.

Tang, R., Lu, Y., Liu, L., Mou, L., Vechtomova, O., and Lin, J. (2019). Distilling task-specific
knowledge from BERT into simple neural networks. arXiv preprint arXiv:1903.12136.

Thurlow, C. and Brown, A. (2003). Generation Txt? The sociolinguistics of young people’s
text-messaging. Discourse Analysis Online.

Tjong Kim Sang, E. F. and De Meulder, F. (2003). Introduction to the CoNLL-2003 shared
task: Language-independent named entity recognition. In Proc. of the 7th Conf. on Natural
Language Learning, CoNLL@HLT-NAACL 2003, volume 4, pages 142–147.

Toutanova, K. and Moore, R. C. (2002). Pronunciation modeling for improved spelling
correction. In Proc. of the 40th Annual Meeting of the Association for Computational
Linguistics, ACL 2002, page 144.

Tromp, E. and Pechenizkiy, M. (2011). Graph-based n-gram language identification on short
texts. In Proc. of the 20th Belgian Dutch Conf. on Machine Learning, Benelearn 2011, pages
27–34.

Tsoumakas, G. and Katakis, I. (2007). Multi-label classification: An overview. International
Journal of Data Warehousing and Mining, 3(3):1–13.

Tuten, T. L. and Solomon, M. R. (2017). Social media marketing.

Unión Europea (2004). Tratado por el que se establece una Constitución para Europa. Diario
Oficial de la Unión Europea. Available at http://eur-lex.europa.eu/legal-content/
ES/ALL/?uri=OJ:C:2004:310:TOC.

http://eur-lex.europa.eu/legal-content/ES/ALL/?uri=OJ:C:2004:310:TOC
http://eur-lex.europa.eu/legal-content/ES/ALL/?uri=OJ:C:2004:310:TOC

154 BIBLIOGRAPHY

Upadhyay, S., Faruqui, M., Dyer, C., and Roth, D. (2016). Cross-lingual models of word
embeddings: An empirical comparison. In Proc. of the 54th Annual Meeting of the
Association for Computational Linguistics, ACL 2016, volume 1, pages 1661–1670.

Valls-Vargas, J., Zhu, J., and Ontañón, S. (2015). Narrative hermeneutic circle: Improving
character role identification from natural language text via feedback loops. In Proc. of the
24th Int. Joint Conf. on Artificial Intelligence, IJCAI 2015, pages 2517–2523.

van der Goot, R., Plank, B., and Nissim, M. (2017). To normalize, or not to normalize: The
impact of normalization on Part-of-Speech tagging. In Proc. of the 3rd Workshop on Noisy
User-generated Text, W-NUT 2017, pages 31–39.

van der Goot, R. and van Noord, G. (2017). MoNoise: Modeling noise using a modular
normalization system. Computational Linguistics in the Netherlands Journal, 7:129–144.

van Noord, G. (1997). Textcat. Source code. Source code available at: http://odur.let.
rug.nl/~vannoord/TextCat/.

Vilares, D., , Gómez-Rodŕıguez, C., and Alonso, M. A. (2017a). Universal, unsupervised
(rule-based), uncovered sentiment analysis. Knowledge-Based Systems, 118:45–55.

Vilares, D., Alonso, M. A., and Gómez-Rodŕıguez, C. (2017b). Supervised sentiment analysis
in multilingual environments. Information Processing & Management, 53(3):595–607.

Vilares, D. and Gómez-Rodŕıguez, C. (2017). A non-projective greedy dependency parser
with bidirectional LSTMs. In Proc. of the CoNLL 2017 Shared Task: Multilingual Parsing
from Raw Text to Universal Dependencies, CoNLL 2017, pages 152–162.

Vilares, D., Thelwall, M., and Alonso, M. A. (2015). The megaphone of the people? Spanish
SentiStrength for real-time analysis of political tweets. Journal of Information Science,
41(6):799–813.

Vilares, J., Alonso, M. A., and Vilares, D. (2013). Prototipado Rápido de un Sistema de
Normalización de Tuits: Una Aproximación Léxica. In Proc. of the Tweet Normalization
Workshop at the 29th Congreso de la Sociedad Española de Procesamiento del Lenguaje
Natural, SEPLN 2013, pages 76–80.

Viterbi, A. J. (1967). Error bounds for convolutional codes and an asymptotically optimal
decoding algorithm. IEEE Transactions on Information Theory, 13(2):260–269.

Vulić, I. and Korhonen, A. (2016). On the role of seed lexicons in learning bilingual word
embeddings. In Proc. of the 54th Annual Meeting of the Association for Computational
Linguistics, ACL 2016, volume 1, pages 247–257.

http://odur.let.rug.nl/~vannoord/TextCat/
http://odur.let.rug.nl/~vannoord/TextCat/

BIBLIOGRAPHY 155

Vulić, I. and Moens, M.-F. (2015). Monolingual and Cross-Lingual Information Retrieval
Models Based on (Bilingual) Word Embeddings. In Proc. of the 38th Int. ACM SIGIR Conf.
on Research and Development in Information Retrieval, SIGIR 2015, pages 363–372.

Wagner, J. and Foster, J. (2015). DCU-ADAPT: learning edit operations for microblog
normalisation with the generalised perceptron. In Proc. of the 1st Workshop on Noisy
User-generated Text, W-NUT 2015, pages 93–98.

Wang, K. and Li, X. (2009). Efficacy of a constantly adaptive language modeling technique
for web-scale applications. In Proc. of the IEEE Int. Conf. on Acoustics, Speech and Signal
Processing, ICASSP 2009, pages 4733–4736.

Wang, K., Thrasher, C., and Hsu, B.-J. P. (2011). Web Scale NLP: A Case Study on URL
Word Breaking. In Proc. of the 20th Int. Conf. on World Wide Web, WWW 2011, pages
357–366.

Wang, K., Thrasher, C., Viegas, E., Li, X., and Hsu, B.-j. P. (2010). An overview of Microsoft
Web N-gram corpus and applications. In Proc. of the NAACL HLT 2010 Demonstration
Session, HLT-DEMO 2010, pages 45–48.

Wang, P. and Ng, H. T. (2013). A Beam-Search Decoder for Normalization of Social Media
Text with Application to Machine Translation. In Proc. of the 2013 Conf. of the North
American Chapter of the Association for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2013, pages 471–481.

Wellner, B., McCallum, A., Peng, F., and Hay, M. (2004). An integrated, conditional model
of information extraction and coreference with application to citation matching. In Proc.
of the 20th Conf. on Uncertainty in Artificial Intelligence, AUAI 2004, pages 593–601.

Wick, M., Kanani, P., and Pocock, A. (2016). Minimally-Constrained Multilingual Em-
beddings via Artificial Code-Switching. Proc. of the 30th AAAI Conference on Artificial
Intelligence, AAAI 2016.

Wieting, J., Bansal, M., Gimpel, K., and Livescu, K. (2016). Charagram: Embedding Words
and Sentences via Character n-grams. In Proc. of the 2016 Conf. on Empirical Methods in
Natural Language Processing, EMNLP 2016, pages 1504–1515.

Williams, A., Nangia, N., and Bowman, S. (2018). A Broad-Coverage Challenge Corpus
for Sentence Understanding through Inference. In Proc. of the 2018 Conf. of the North
American Chapter of the Association for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2018, volume 1, pages 1112–1122.

156 BIBLIOGRAPHY

Wu, A. and Jiang, Z. (1998). Word segmentation in sentence analysis. In Proc. of the 1998
Int. Conf. on Chinese Information Processing, pages 169–180.

Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M., Macherey, W., Krikun, M., Cao, Y., Gao,
Q., Macherey, K., et al. (2016). Google’s neural machine translation system: Bridging the
gap between human and machine translation. arXiv preprint arXiv:1609.08144.

Xing, C., Wang, D., Liu, C., and Lin, Y. (2015). Normalized word embedding and orthogonal
transform for bilingual word translation. In Proc. of the 2015 Conf. of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies,
NAACL-HLT 2015, pages 1006–1011.

Xiong, S., Lv, H., Zhao, W., and Ji, D. (2018). Towards Twitter sentiment classification by
multi-level sentiment-enriched word embeddings. Neurocomputing, 275(C):2459–2466.

Xu, J. and Sun, X. (2016). Dependency-based Gated Recursive Neural Network for Chi-
nese Word Segmentation. In Proc. of the 54th Annual Meeting of the Association for
Computational Linguistics, ACL 2016, volume 2, pages 567–572.

Xue, N. (2003). Chinese word segmentation as character tagging. Computational Linguistics
and Chinese Language Processing, 8(1):29–48.

Xue, Z., Yin, D., and Davison, B. D. (2011). Normalizing microtext. In Proc. of the 2011
AAAI Workshop on Analyzing Microtext, AAAI 2011, volume WS-11-05 of AAAI Workshops,
pages 74–79.

Yahya, M., Berberich, K., Elbassuoni, S., and Weikum, G. (2013). Robust question answering
over the web of linked data. In Proc. of the 22nd ACM Int. Conf. on Information &
Knowledge Management, CKIM 2013, pages 1107–1116.

Yang, X., Macdonald, C., and Ounis, I. (2018). Using word embeddings in Twitter election
classification. Information Retrieval Journal, 21(2):183–207.

Yang, Y. and Eisenstein, J. (2013). A Log-Linear Model for Unsupervised Text Normalization.
In Proc. of the 2013 Conf. on Empirical Methods in Natural Language Processing, EMNLP
2013, pages 61–72.

Yosinski, J., Clune, J., Nguyen, A., Fuchs, T., and Lipson, H. (2015). Understanding
neural networks through deep visualization. In Proc. of the 2015 ICML Workshop on Deep
Learning, ICML 2015.

BIBLIOGRAPHY 157

Yu, L.-C., He, W.-C., Chien, W.-N., and Tseng, Y.-H. (2013). Identification of code-switched
sentences and words using language modeling approaches. Mathematical Problems in
Engineering, 2013. Article ID 898714.

Yu, Z., Wang, H., Lin, X., and Wang, M. (2015). Learning term embeddings for hypernymy
identification. In Proc. of the 2015 Int. Joint Conf. on Artificial Intelligence, IJCAI 2015,
pages 1390–1397.

Zaremba, W., Sutskever, I., and Vinyals, O. (2014). Recurrent neural network regularization.
arXiv preprint arXiv:1409.2329.

Zhang, M., Liu, Y., Luan, H., and Sun, M. (2017). Adversarial training for unsupervised
bilingual lexicon induction. In Proc. of the 55th Annual Meeting of the Association for
Computational Linguistics, ACL 2017, pages 1959–1970.

Zhang, M., Zhang, Y., and Fu, G. (2016). Transition-based neural word segmentation. In
Proc. of the 54th Annual Meeting of the Association for Computational Linguistics, ACL 2016,
pages 421–431.

Zheng, X., Chen, H., and Xu, T. (2013). Deep Learning for Chinese Word Segmentation and
POS Tagging. In Proc. of the Conf. on Empirical Methods in Natural Language Processing,
EMNLP 2013, pages 647–657.

Zipf, G. K. (1949). Human behavior and the principle of least effort.

Zubiaga, A., San Vicente, I., Gamallo, P., Pichel, J. R., Alegria, I., Aranberri, N., Ezeiza,
A., and Fresno, V. (2016). TweetLID: A benchmark for tweet language identification.
Language Resources and Evaluation, 50(4):729–766.

Zubiaga, A., Vicente, I. S., Gamallo, P., Pichel, J. R., Alegŕıa, I., Aranberri, N., Ezeiza, A.,
and Fresno, V. (2014). Overview of TweetLID: Tweet Language Identification at SEPLN
2014. In Proc. of the Tweet Language Identification Workshop co-located with the 30th Conf.
of the Spanish Society for Natural Language Processing, TweetLID@SEPLN 2014, volume
1228, pages 1–11.

158 BIBLIOGRAPHY

Appendix A

Phonetic algorithms and microtext
normalization

As described in Chapter 4, a common framework to tackle the microtext normalization
problem consists of two main sequential steps: candidate generation and candidate selection.
During the candidate generation step, it is common to resort to mechanisms that exploit
similarities between those words in the input and those in the dictionary of the language in
order to find possible candidates. Interestingly, it is common for users to abuse the phonetic
features of their language in order to shorten or customize the spelling of words. For
instance, to an English speaker, the pairs “sumone”-“someone” or “u”-“you” sound the same
or quite similarly, which is also the case of the emphasis example “dooooo it” when we do
not take into account the prolonged /u/. Therefore, it would be highly desirable to count on
a mechanism which could provide us with this kind of phonetic-based matchings, and this is
precisely the purpose of the so-called phonetic algorithms (Odell and Russell, 1918). Given
an input written word, these algorithms obtain phonetic codes that approximately indicate
the way it is pronounced in a particular language (i.e., they are language-dependent). Thus,
these algorithms can be used to match together words that differ in their written form but
not that much in their pronunciation, as in the case of our previous examples.

However, contrary to expectations, a strict phonetic matching approach based on gra-
pheme-to-phoneme transcription (Bisani and Ney, 2008) using, for example, International
Phonetic Alphabet (IPA) transcriptions (Jurafsky and Martin, 2009, Ch. 7 “Phonetics”),
would not be useful in this context, as its output codes would be too specific for our
needs. For instance, the processing of “beat”-“bit” or “but”-“bought” would result in slightly
different codes accounting for their slightly different pronunciations,1 thus preventing their

1This kind of word pairs are formally known as minimal pairs.

159

160 APPENDIX A. PHONETIC ALGORITHMS

matching. So, in the context of microtext normalization, the use of a fuzzy phonetic-based
matching seems a better choice.

Surprisingly, despite the importance of such phonetic processing of microtexts (Kobus
et al., 2008b; Beaufort et al., 2010; Xue et al., 2011; Baldwin et al., 2013; Schulz et al., 2016)
and the existence of many phonetic algorithms publicly available for the English language,
we have also noticed the lack of any extensive comparison study of the performance of
these algorithms for our problem domain. In this context we have decided to conduct our
own study to compare the performance of several phonetic algorithms on this task. Our
main objective is to facilitate future developers and researchers the choice of the phonetic
algorithm to be used in a particular microtext normalization setup. By improving the
process of normalization candidate generation, the potential effectiveness of the ulterior
selection process and, consequently, that of the whole normalization process should be
notably increased. As a result, the input noise introduced into subsequent information
processing systems should be greatly reduced.

It should be remembered that, although most of the research work on text normalization
has been focusing on English (Baldwin et al., 2015; Han and Baldwin, 2011; Xue et al.,
2011), there is also interest in applying it to other languages (see Section 4.5). With this
in mind, the decision of using English in our experiments was mostly due to the public
availability of both evaluation corpora and ready-to-use implementations for a wide range
of phonetic algorithms.

A.1 Phonetic algorithms

In microtext normalization, the candidate generation step needs to account for highly
productive texting phenomena (see Section 4.1). This implies that it cannot be handled
by traditional edit-distance based approaches alone, as in the case of “nuff”-“enough”,
“da”-“the”, or “str8”-“straight”, for example. Hence, the phonetic processing of microtexts
turns out to be of key importance in order to obtain meaningful sets of normalization
candidates (Beaufort et al., 2010). This task can be accomplished through the use of
so-called phonetic algorithms.

A phonetic algorithm transforms an input written word into a phonetic code which
roughly indicates the way that term is pronounced in a particular language. It is important
to highlight the approximate nature of these codes, as its purpose is to match words with
similar pronunciations, and also the language-dependent aspect of these algorithms.

In this appendix, we study the most popular state-of-the-art phonetic algorithms designed
for the English language in the context of the microtext normalization task. It is worth noting
that most of them were originally designed for the task of personal name matching, although

A.1. PHONETIC ALGORITHMS 161

it is fair to assume that the phonetic phenomena initially considered would also be useful in
matching other types of similarly sounding words. Consequently, it will be interesting to
analyze the performance of these algorithms in the task of microtext normalization when
generating normalization candidates.

Next, the different phonetic algorithms considered for this study are introduced. The
most relevant features of each algorithm, their variations, and the relations existing between
them are detailed. Examples of their output encodings are also shown in Tables A.1 and A.2
for comparison. Notice that we have tried to be concise, keeping in mind that the objective
of this work is not to study the algorithms themselves but to analyze their behaviour in
the context of microtext normalization. Should the reader wish to go into detail about any
particular algorithm, appropriate references have been included.

A.1.1 Soundex

Considered the first phonetic algorithm in history, the well-known and widely used Soundex
algorithm (Odell and Russell, 1918; Odell, 1956) mainly encodes the consonants of an
input word using numerical digits, but also encodes both consonants and vowels in the
first position using that same character. The different digits used are related to the place
of articulation of the consonant (Jurafsky and Martin, 2009, Ch. 7: “Phonetics”), so the
labial consonants “b”, “f”, “p”, and “v” are encoded as the number 1, for example. Before
any other rule is applied, the algorithm checks for character sequences represented by the
same number and chooses either to retain the first of those characters or the full sequence
depending on other characters in the context. Its codes have a fixed length of four characters,
padded with trailing 0’s when needed.

Soundex conforms the basis for many other modern phonetic algorithms. These newer
algorithms mostly try to address its poor precision, as in the refined version of the original
algorithm (Ref. Soundex),2 which is also tested here. This revised version does not impose
a length limit on the encodings and takes vowels more into consideration for the encoding.

A.1.2 IBM Alpha Search Inquiring System

Popularly known as Alpha SIS (Moore, 1977), this algorithm uses two different conversion
tables, one for the first characters of the input word and the other for the rest. The encodings
are conformed by a fixed number of 14 numerical digits, appending trailing 0’s as padding
for shorter words. If two characters with the same phonetic code are adjacent, only the first
one will be used, but a third character would be retained. Alpha SIS also focuses on the

2http://commons.apache.org/proper/commons-codec/

http://commons.apache.org/proper/commons-codec/

162 APPENDIX A. PHONETIC ALGORITHMS

A
lg

or
it

hm
nu

ff
en

ou
gh

cn
tr

tk
xn

co
nt

ra
di

ct
io

n
So

un
de

x
N
1
0
0

E
5
2
0

C
5
3
6

C
5
3
6

R
ef

.
So

un
de

x
N
8
0
2

E
0
8
0
4
0

C
3
8
6
9
6
3
5
8

C
3
0
8
6
9
0
6
0
3
6
0
8

A
lp

ha
SI

S
0
2
8
0
0
0
0
0
0
0
0
0
0
0

1
2
7
0
0
0
0
0
0
0
0
0
0
0

0
7
2
1
4
1
7
2
0
0
0
0
0
0
,

0
6
2
1
4
1
7
2
0
0
0
0
0
0
,

0
7
2
1
4
1
6
7
2
0
0
0
0
0
,

0
6
2
1
4
1
6
7
2
0
0
0
0
0

0
7
2
1
4
1
7
1
2
0
0
0
0
0
,

0
6
2
1
4
1
7
1
2
0
0
0
0
0
,

0
7
2
1
4
1
6
1
2
0
0
0
0
0
,

0
6
2
1
4
1
6
1
2
0
0
0
0
0

N
YS

II
S

N
A
F

E
N
A
G

C
N
T
R
T
C

C
A
N
T
R
A

R
ev

.
N

YS
II

S
N
A
F

E
N
A
G

C
N
T
R
T
C
X
N

C
A
N
T
R
A
D
A
C
T
A
N

M
R

A
N
F

E
N
G
H

C
N
T
K
X
N

C
N
T
C
T
N

M
et

ap
ho

ne
N
F

E
N
K
H

K
N
T
R
T
K
X
N

K
N
T
R
T
K
X
N

D
.M

et
ap

ho
ne

N
F
,
N
F

A
N
K
,
A
N
K

K
N
T
R
,
K
N
T
R

K
N
T
R
,
K
N
T
R

D
-M

So
un

de
x

6
7
0
0
0
0

0
6
5
0
0
0

4
6
3
9
3
5

4
6
3
9
3
4

C
av

er
ph

on
e

1
N
F
1
1
1
1

A
N
F
1
1
1

K
N
T
T
K
N

K
N
T
R
T
K

C
av

er
ph

on
e

2
N
F
1
1
1
1
1
1
1
1

A
N
F
1
1
1
1
1
1
1

K
N
T
T
K
N
1
1
1
1

K
N
T
R
T
K
S
N
1
1

B
ei

de
r-

M
or

se
n
u
f

i
i
n
D
g
,
i
i
n
o
g
,
i
i
n
u
g
,
i
n
D
g
,

i
n
D
g
x
,
i
n
a
g
,
i
n
o
g
,
i
n
o
g
x
,

i
n
u
g
,
i
n
u
g
x

k
n
t
r
t
g
z
n
,
k
n
t
r
t
k
z
n
,

t
z
n
t
r
t
g
z
n
,
t
z
n
t
r
t
k
z
n

k
o
n
t
r
a
d
i
k
t
i
o
n
,
k
o
n
t
r
a
d
i
k
t
n
,

k
o
n
t
r
a
d
i
t
s
t
i
o
n
,
k
o
n
t
r
o
d
i
k
t
i
o
n
,

k
o
n
t
r
o
d
i
k
t
n
,
k
o
n
t
r
o
d
i
t
s
t
i
o
n
,

k
u
n
t
r
a
d
i
k
t
i
o
n
,
k
u
n
t
r
a
d
i
t
s
t
i
o
n
,

k
u
n
t
r
o
d
i
k
t
i
o
n
,
k
u
n
t
r
o
d
i
t
s
t
i
o
n
,

t
s
o
n
t
r
a
d
i
k
t
i
o
n
,
t
s
o
n
t
r
a
d
i
t
s
t
i
o
n
,

t
s
o
n
t
r
o
d
i
k
t
i
o
n
,
t
s
o
n
t
r
o
d
i
t
s
t
i
o
n
,

t
s
u
n
t
r
a
d
i
k
t
i
o
n
,
t
s
u
n
t
r
a
d
i
t
s
t
i
o
n
,

t
s
u
n
t
r
o
d
i
k
t
i
o
n
,
t
s
u
n
t
r
o
d
i
t
s
t
i
o
n

F.
So

un
de

x
N
1

E
5

C
5
3
6
3
7
5

K
5
3
6
3
9
5

Le
in

N
4
0
0

E
2
5
0

C
2
1
3

C
2
1
3

O
nc

a
N
1
0
0

E
5
2
0

C
5
3
6

C
5
3
6

Ph
on

ex
N
1

A
5
2

C
5
3
2
5

C
5
3
6
3
2
3
5

Ph
on

ix
N
5
,
7

V
5
,
7

C
2
5
3
6
3
2
,
2
8
5

K
2
5
3
6
3
2
3
,
5

Ph
on

ix
C

om
m

N
7
0
0

v
7
0
0

C
5
3
6

K
5
3
6

R
og

er
R

oo
t

0
2
8
0
0

1
2
7
0
0

0
7
2
1
4

0
7
2
1
4

St
at

C
an

N
F

E
N
G
H

C
N
T
R

C
N
T
R

Eu
de

x
6
4
8
5
1
8
3
4
6
3
4
1
3
5
1
4
9
2

1
5
5
6
4
4
4
0
3
1
2
4
9
4
4
2
6
1
1
6

4
3
7
4
4
4
6
9
1
6
2
2
4
6
2
4
8
2

1
5
9
3
6
0
6
8
6
4
9
3
3
8
1
7
3
7
3

Table A.1: Example encodings for each of the phonetic algorithms analyzed (1): “nuff”-
“enough” and “cntrtkxn”-“contradiction”

A.1. PHONETIC ALGORITHMS 163

A
lg

or
it

hm
da

th
e

on
ez

on
es

So
un

de
x

D
0
0
0

T
0
0
0

O
5
2
0

O
5
2
0

R
ef

.
So

un
de

x
D
6
0

T
6
0

O
0
8
0
5

O
0
8
0
3

A
lp

ha
SI

S
0
1
0
0
0
0
0
0
0
0
0
0
0
0

0
1
0
0
0
0
0
0
0
0
0
0
0
0

1
2
0
0
0
0
0
0
0
0
0
0
0
0

1
2
0
0
0
0
0
0
0
0
0
0
0
0

N
YS

II
S

D
T
H

O
N

O
N

R
ev

.
N

YS
II

S
D

T
O
N

O
N

M
R

A
D

T
H

O
N
Z

O
N
S

M
et

ap
ho

ne
T

0
O
N
S

O
N
S

D
.M

et
ap

ho
ne

T
,
T

0
,
T

A
N
S
,
A
N
S

A
N
S
,
A
N
S

D
-M

So
un

de
x

3
0
0
0
0
0

3
0
0
0
0
0

0
6
4
0
0
0

0
6
4
0
0
0

C
av

er
ph

on
e

1
T
1
1
1
1
1

T
1
1
1
1
1

A
N
S
1
1
1

A
N
S
1
1
1

C
av

er
ph

on
e

2
T
A
1
1
1
1
1
1
1
1

T
1
1
1
1
1
1
1
1
1

A
N
S
1
1
1
1
1
1
1

A
N
S
1
1
1
1
1
1
1

B
ei

de
r-

M
or

se
d
a
,
d
i
,
d
o

t
,
t
i

Y
n
i
s
,
Y
n
i
t
s
,
o
n
i
,
o
n
i
S
,

o
n
i
s
,
o
n
i
t
s
,
u
n
i
s

Y
n
i
s
,
o
n
i
,
o
n
i
S
,

o
n
i
s
,
u
n
i
s

F.
So

un
de

x
D

T
O
5
9

O
5
9

Le
in

D
0
0
0

T
0
0
0

O
2
5
0

O
2
5
0

O
nc

a
D
0
0
0

T
0
0
0

O
5
0
0

O
5
0
0

Ph
on

ex
D

T
A
5
2

A
5

Ph
on

ix
D
,
3

T
,
3

V
5
,
8

V
,
5
8

Ph
on

ix
C

om
m

D
0
0
0

T
0
0
0

v
8
0
0

v
8
0
0

R
og

er
R

oo
t

0
1
0
0
0

0
1
0
0
0

1
2
0
0
0

1
2
0
0
0

St
at

C
an

D
T
H

O
N
Z

O
N
S

Eu
de

x
8
6
4
6
9
1
1
2
8
4
5
5
1
3
5
2
3
2

1
0
0
8
8
0
6
3
1
6
5
3
0
9
9
2
1
2
8

1
0
6
6
4
5
2
3
9
1
7
6
1
4
5
1
4
3
2
4

1
0
6
6
4
5
2
3
9
1
7
6
1
4
5
1
4
1
9
6

Table A.2: Example encodings for each of the phonetic algorithms analyzed (2): “da”-“the”
and “onez”-“ones”.

164 APPENDIX A. PHONETIC ALGORITHMS

encoding of consonantal sounds, although vowels are encoded if appearing at the beginning
of a word. It also may return multiple alternative encodings as output.

A.1.3 New York State Identification and Intelligence System

Commonly known as NYSIIS (Taft, 1970), its encoding procedure makes use of a small
letter alphabet instead of numerical digits. Its more complex ruleset with respect to the
Soundex algorithm allows for the processing of notable character n-grams such as “sch”
or “rd”, performing different actions depending on their context characters being vowels
or not, and on characters being at the end of the word. The first character of the word is
maintained as-is while the rest of the vowels are replaced with the letter “a”. Finally, the
code is truncated to its first six characters.

A revised version of this algorithm (Rev. NYSIIS), which adds new rules in order to
obtain higher precision codes, is also available.3

A.1.4 Match Rating Approach

Usually referred to as MRA for short, in this case we are not only talking about a phonetic
algorithm but also about a particular comparison scheme for the phonetic codes (Moore,
1977). The encoding rules are quite simple: delete all vowels—except the first one if the
word begins with it—, remove character repetitions, and reduce the length of the code
to six by using the first and last three characters only. However, the complexity of the
system lies in the comparison rules. For encoded strings with a length difference less than
three, a matching threshold value is first calculated using a table. Then, using a forward
and backward pass over the codes of the strings to be compared, the number of distinct
characters between them is obtained. Finally, the encoded strings are considered similar
depending on this number being equal or greater than the given threshold value.

A.1.5 Metaphone

The Metaphone algorithm is employed in the popular aspell spell checker (Philips, 1990).
Its set of contextual rules maps between n-grams of characters from the source to n-grams
of characters from an alphabet of sixteen consonantal symbols. Again, the main focus of this
algorithm is on encoding consonantal sounds, while vowels are included only if appearing
in the first position of the word. No limit on code length is imposed this time.

3http://www.markcrocker.com/rexxtipsntricks/rxtt28.2.0482.html

http://www.markcrocker.com/rexxtipsntricks/rxtt28.2.0482.html

A.1. PHONETIC ALGORITHMS 165

A.1.6 Double Metaphone

With respect to the original Metaphone, the Double Metaphone algorithm (D. Metaphone)
takes into account several spelling peculiarities from different languages, including English,
and outputs two alternative encodings of the input word (Philips, 2000).

Although an even newer iteration in the Metaphone family exists, named Metaphone 3,
unfortunately its source code is not freely available and for this reason has not been included
in this study.

A.1.7 Daitch-Mokotoff Soundex

The so-called Daitch-Mokotoff Soundex algorithm (D-M Soundex) constitutes an improve-
ment on the original Soundex seeking to improve its precision when dealing with Slavic
and Yiddish surnames.4 The most notable differences with the original algorithm are the
length of the codes, up to six characters long; the first character of the word being encoded
as the rest, handling some specific character n-grams as a unit; and, lastly, the possibility of
outputting multiple possible codes instead of a single one.

A.1.8 Caverphone

Designed by Hood (2002) to match common names from New Zealand, this algorithm
(Caverphone 1) performs recursive substitutions and deletions on the original word fol-
lowing a set of rules mostly dealing with character n-grams. In its last steps, it appends a
padding of 1’s to the code to finally trim its length down to six characters, which is the fixed
length for all codes.

Hood (2004) revised his algorithm later (Caverphone 2) by adding a few extra rules
and increasing the length of the encodings to ten characters.

A.1.9 Beider-Morse

The main goal of the Beider-Morse algorithm (Beider, 2008) is to reduce the large amount of
false positives usually returned by Soundex. This problem is managed by first determining
the language of the input text so that a particular set of rules can be used accordingly.
If the language cannot be determined, a generic set of rules is applied instead. A set of
common rules is also applied after such language-specific or generic rules. These common
rules account for final devoicing and regressive assimilation of consonants. Moreover, the
alphabet of this system is based on the IPA (Jurafsky and Martin, 2009, Ch. 7 “Phonetics”),

4http://www.avotaynu.com/soundex.html

http://www.avotaynu.com/soundex.html

166 APPENDIX A. PHONETIC ALGORITHMS

which is then simplified in order to merge together symbols with very similar sounds and
to make it easier to write the codes using a standard keyboard. Finally, as with other
improvements on the Soundex algorithm, it takes into account frequent character n-grams,
code length is not limited, has a better support for vowels, and outputs multiple possible
encodings.

A.1.10 Fuzzy Soundex

This variation of the Soundex algorithm proposed by Holmes and McCabe (2002) and
named Fuzzy Soundex (F. Soundex), employs two mapping tables in two subsequent stages.
In the first, a table with mappings between character n-grams is used. Then, for the second
stage, another table with mappings between individual characters and numerical digits is
used to obtain the final output code, which is not restricted in length.

A.1.11 Lein

A simple variation of the Soundex, the Lein algorithm differs from the original one only in
its conversion table (Lynch and Arends, 1977).

A.1.12 Onca

The Onca algorithm (Gill and Baldwin, 1987; Gill et al., 1993) merely consists of a two-step
application of the NYSIIS and the Soundex algorithms previously described in Sections A.1.3
and A.1.1, respectively. According to its authors, the new algorithm overcomes the low
precision of pure Soundex while retaining its 4-character format.

A.1.13 Phonex

Phonex is a Soundex-like algorithm which aims for a greater coverage of common ortho-
graphic variations (Lait and Randell, 1996). It is also influenced by the Metaphone method,
hence its name. After removing trailing “s” characters, it uses two sets of rules: one for
encoding leading characters and the other for the rest of the word. As in the original
Soundex, 4-character codes are obtained as output.

A.1.14 Phonix

Not to be confused with the previous Phonex algorithm, there are two variants or interpre-
tations of the Phonix algorithm. Its original interpretation (Phonix), described by Gadd
(1988, 1990), specifies a set of rules to encode the input and target words as well as to

A.1. PHONETIC ALGORITHMS 167

obtain a matching code, called ending-sound, for each one of them. It then specifies another
set of matching rules regarding the word encodings and ending-sounds previously obtained,
which allows for the distinction between three different categories of matches: most-likely,
less-likely, and least-likely matches (to be referred to in this work as Phonixmost, Phonixless,
and Phonixleast, respectively). However, the common interpretation of the algorithm (Phonix
Comm) skips the part concerning the ending-sound and operates in a similar way to the
original Soundex algorithm.

A.1.15 Roger Root

The Soundex-like Roger Root algorithm (Lynch and Arends, 1977) produces 5-numerical
codes using two conversion tables: one for the first characters of a word and the second one
for the rest.

A.1.16 Census Modified Statistics Canada

Commonly known as StatCan for short, it is a very simple phonetic algorithm which
preserves the first characters, deletes the remaining vowels and y’s, collapses identical
adjacent characters, and truncates the result to four characters (Lynch and Arends, 1977).

A.1.17 Eudex

The Eudex algorithm5 encodes words in a way that exposes the differences in their pronunci-
ations, by calculating the Hamming distances between their codes. It returns an 8-byte array
as output and makes use of four different conversion tables: two for ASCII and C1 (Latin
Supplement) characters at the initial position of a word, and another two similar ones for the
remaining characters. These tables were obtained using the IPA classifications of consonants
and vowels, encoding the sound articulation features of each symbol into a binary format.
This encoding has the property that similarly pronounced symbols correspond to codes with
a small Hamming distance, but also highlighting the differences between them in the same
way. For this reason, its author suggests using a similarity function that matches codes with
a Hamming distance below a given threshold value.

5https://github.com/ticki/eudex

https://github.com/ticki/eudex

168 APPENDIX A. PHONETIC ALGORITHMS

A.2 Implementation of the phonetic algorithms

In order to avoid unnecessary effort and make their future use by developers and researchers
easier, instead of reimplementing from scratch the specifications for the algorithms studied,
we downloaded and evaluated implementations of them that are publicly available on the
Internet. For each downloaded implementation, its compliance with the original specifi-
cation of the corresponding algorithm was tested. If the implementation did not comply,
alternatives were sought or, when necessary, the source code was modified accordingly.6

After having performed this selection process, these are the open source projects from
which the algorithm implementations to be used were obtained:

• Apache Commons Codec package:7 in the case of the implementations of the Soundex,
Refined Soundex, Daitch-Mokotoff Soundex, Beider-Morse, Caverphone 1, Caverphone
2, MRA, and Double Metaphone algorithms.

• talisman package:8 Alpha SIS, Eudex, Fuzzy Soundex, Lein, Onca, Phonex, Roger
Root, StatCan, Metaphone, and NYSIIS algorithms.

• stringmetric package:9 Refined NYSIIS algorithm.

• phonetic search package:10 Phonix algorithm.

A.3 Evaluation

As stated before, this work intends to study the behaviour of the different phonetic algo-
rithms available for English in the context of candidate generation for microtext normaliza-
tion tasks. The criterion assumed for this purpose states that, for each input OOV, the best
algorithms should return as output the smallest possible candidate set which still contains
the corresponding equivalent normalized word.

A.3.1 Evaluation corpora

Seeking reproducibility, we decided to use the same two lexical normalization dictionaries
which were made publicly available in the W-NUT 2015 shared task 2 (Baldwin et al.,

6All source code produced during this study is available at http://www.grupocole.org/software/VCS/
phon.

7http://commons.apache.org/proper/commons-codec/
8http://github.com/Yomguithereal/talisman
9http://github.com/rockymadden/stringmetric

10http://github.com/olsgaard/phonetic_search

http://www.grupocole.org/software/VCS/phon
http://www.grupocole.org/software/VCS/phon
http://commons.apache.org/proper/commons-codec/
http://github.com/Yomguithereal/talisman
http://github.com/rockymadden/stringmetric
http://github.com/olsgaard/phonetic_search

A.3. EVALUATION 169

Dictionary |chars/word| |entries| |OOV|
utdallas 5 3,974 47
unimelb 7 41,181 96
canonical 8 165,458 –

Table A.3: Evaluation corpora statistics. The column |chars/word| indicates for the first
two rows, corresponding to the lexical normalization dictionaries, the average number of
characters per non-standard word; for the last row, corresponding to the canonical dictionary,
it indicates the average per standard word. Column |entries| indicates the number of lines
in each evaluation dataset. In the case of the first two rows, |OOV| shows the number of
standard words not included in the canonical lexicon used.

2015). These dictionaries, utdallas and unimelb, consist of text files conformed by lists of
non-standard words obtained from real-world microtexts and their corresponding standard
equivalents. It must be noted that non-standard words from these lists are affected by a
wide range of texting phenomena, not limited to the phonetic phenomena in which this
work is interested. For instance, consider the graphemic substitution in “5o” (“so”) or the
abbreviation “2nd” (“second”). Despite this, the full datasets were used in the evaluation,
thus resorting to error analysis to account for those instances missed by the phonetic
algorithms.

In a similar way, the canonical English dictionary made available by the W-NUT 2015
organization for the task (from now on canonical) was used. This dictionary is the list of
words from which the normalization candidates are retrieved using the phonetic algorithms.
Some simple statistics of these datasets are shown in Table A.3.

A.3.2 Experimental methodology

In order to obtain the normalization candidates for each non-standard word of the evaluation
corpora, the following procedure was applied:

1. Before the normalization process, create the phonetic lookup dictionary of key-value
pairs (phonetic code, set of words) corresponding to each phonetic algorithm. Each
pair groups all the words from the canonical dictionary with the same phonetic code
for a particular algorithm.

2. During the normalization process, and for a given phonetic algorithm, match the
phonetic codes obtained from the non-standard words of the evaluation corpora
with these codes (keys) of the corresponding phonetic dictionaries. If a match is
found, retrieve its corresponding set of words (values), which now constitute its

170 APPENDIX A. PHONETIC ALGORITHMS

normalization candidates. When multiple alternative codes are available for the same
non-standard input word, the final candidate set is formed by the union of those
partial sets obtained with each alternative code.

Additionally, in the case of the MRA and Phonix algorithms, their particular lookup proce-
dures (MRAcustom, Phonixmost, Phonixless, and Phonixleast, respectively), previously explained
in Section A.1, were also considered. Similarly, multiple results were obtained for the Eudex
algorithm by varying the Hamming distance threshold value: Eudex, Eudex5, Eudex10, and
Eudex15 for threshold values 0 (i.e., perfect matching), 5, 10, and 15, respectively. In these
cases, the results for the general and specialized lookup procedures were obtained.11

Regarding the original Phonix algorithm in particular, three different sets of results
were distinguished based on the likelihood of the candidates indicated by the lookup
procedure: (1) one set containing the most likely candidates (Phonixmost), (2) one including
the most and less likely candidates (Phonixless), and (3) one which also adds the least likely
candidates (Phonixleast). Moreover, results obtained using the alternative interpretation of
this algorithm are also included (Phonix Comm).

Precision, recall, and F1 metrics, over a list of words from a particular evaluation dataset,
are used to measure the performance of the phonetic algorithms. In the present application
context, precision (P) is defined as the mean of the ratio of correct candidates12 over the
total number of candidates retrieved for each word w, over the total number of words:

P =

∑
w∈words

|hitsw|
|candidatesw|

|words|
(A.1)

In the case of recall (R), it is calculated as the number of times when the correct candidate
was among the set of normalization candidates retrieved for each word over the total
number of words:

R =
|hits|
|words|

(A.2)

Finally, F1 score (F1) is defined in the usual way by aggregating precision and recall, as
already shown in Equation 4.1 in Section 4.2.

A.3. EVALUATION 171

Algorithm |hits| avg |cands| P R F1
Eudex 1,376 5.6 11.7 34.6 17.5
MRA 1,498 9.2 11.3 37.6 17.4
Metaphone 2,071 26.2 7.8 52.1 13.7
Beider-Morse 1,636 25.5 8.0 41.1 13.4
StatCan 2,225 21.4 7.0 55.9 12.4
Ref. Soundex 1,569 15.4 7.3 39.4 12.3
Eudex5 1,800 94.1 4.7 45.2 8.5
Rev. NYSIIS 1,416 27.4 4.7 35.6 8.3
Phonixmost 1,681 36.5 4.4 42.2 8.0
F. Soundex 2,160 41.8 4.3 54.3 8.0
NYSIIS 1,410 17.6 4.3 35.4 7.8
Caverphone 2 2,039 69.0 3.9 51.3 7.3
Caverphone 1 2,246 98.2 3.1 56.5 6.0
Eudex10 2,076 310.5 2.5 52.2 4.8
D-M Soundex 2,154 96.1 2.4 54.2 4.6
Alpha SIS 2,359 241.8 2.2 59.3 4.2
Phonixless 2,191 141.6 2.0 55.1 4.0
Eudex15 2,199 551.7 1.6 55.3 3.2
Roger Root 2,516 133.6 1.6 63.3 3.2
Soundex 2,469 80.6 1.5 62.1 3.0
D. Metaphone 2,395 84.4 1.4 60.2 2.8
Lein 2,471 101.6 1.3 62.1 2.6
Phonix Comm 2,453 195.0 1.1 61.7 2.3
Onca 2,396 109.2 1.0 60.2 2.0
Phonex 2,656 266.4 0.9 66.8 1.9
Phonixleast 2,332 611.1 0.6 58.6 1.3
MRAcustom 3,695 15,270.3 0.0 92.9 0.0

Table A.4: Results for the utdallas dictionary, ranked by F1.

A.3.3 Results and discussion

Tables A.4 and A.5 show the results obtained for each algorithm, sorting them by their
corresponding F1 scores. For each entry, the second column (|hits|) indicates the number of
instances from the corpora for which the algorithm could provide the correct answer. The
third column (avg |cands|) shows the average number of normalization candidates returned
for each OOV. The rest of the columns contain the values obtained for the evaluation metrics
used; from left to right: precision, recall, and F1 score. As it can be seen, the figures
obtained are quite low, mainly due to the low precision achieved in most of the cases.

11For the MRA and Eudex algorithms, it is worth mentioning the relatively high computational cost of their
particular lookup procedures. Under their current implementations, they may be suitable for quick checks
between pairs of words but not for the extensive dictionary-wide checks required in the current context.

12In this case, the number of correct candidates will be either 1 or 0.

172 APPENDIX A. PHONETIC ALGORITHMS

Algorithm |hits| avg |cands| P R F1
MRA 17,485 6.0 17.1 42.4 24.4
Eudex 16,150 3.7 17.4 39.2 24.1
Metaphone 22,448 16.6 13.6 54.5 21.8
Ref. Soundex 18,693 10.5 12.6 45.3 19.7
Beider-Morse 18,307 13.8 12.3 44.4 19.3
Rev. NYSIIS 17,844 16.2 9.1 43.3 15.0
F. Soundex 23,694 28.4 8.3 57.5 14.5
Eudex5 18,498 42.2 8.5 44.9 14.3
StatCan 28,632 29.9 7.6 69.5 13.8
Phonixmost 19,039 23.4 8.1 46.2 13.7
Caverphone 2 21,580 43.4 7.5 52.4 13.2
NYSIIS 21,094 17.0 6.6 51.2 11.8
Caverphone 1 24,227 61.6 6.2 58.8 11.2
Eudex10 19,988 151.0 5.4 48.5 9.7
Alpha SIS 26,064 145.9 4.8 63.2 8.9
D-M Soundex 24,470 64.7 4.5 59.4 8.4
Phonixless 23,093 83.4 4.1 56.0 7.7
Eudex15 20,892 290.4 3.8 50.7 7.1
Roger Root 28,928 98.1 2.8 70.2 5.4
Phonex 28,048 200.5 2.0 68.1 4.0
D. Metaphone 26,253 90.0 2.0 63.7 3.9
Soundex 29,557 95.0 1.8 71.7 3.5
Phonix Comm 26,937 134.8 1.8 65.4 3.5
Phonixleast 24,434 387.9 1.7 59.3 3.4
Onca 28,601 109.2 1.4 69.4 2.8
Lein 29,633 134.9 1.2 71.9 2.5
MRAcustom 38,768 20,767.4 0.0 94.1 0.0

Table A.5: Results for the unimelb dictionary, ranked by F1.

Accordingly, those algorithms with the highest precision scores end up at the top of this
ranking, with Eudex, MRA, and Metaphone outperforming the rest of them.

It is interesting to note that the performance of the MRA algorithm decreases ostensibly
when used with its particular lookup procedure (MRAcustom). This procedure tries to enlarge
the matching window of its otherwise high-precision codes. Thus, it is reasonable to assume
that using a large canonical dictionary, as in this case, renders this procedure of little use, as
it was designed to work with much smaller lists. Moreover, Phonixleast, that is, Phonix using
least-likely matches, suffers from the same problem.

At this point, it should be noted that, when developing a microtext normalization system,
it may be interesting to gain some recall while sacrificing some precision in exchange. This is
due to the fact that a low recall tends to impose an upper limit on the overall performance of
the system: there is no way of selecting the right IV unless it appears among the generated

A.3. EVALUATION 173

Algorithm |hits| avg |cands| P R F1
MRAcustom 3,695 15,270.3 0.0 92.9 0.0
Phonex 2,656 266.4 0.9 66.8 1.9
Roger Root 2,516 133.6 1.6 63.3 3.2
Lein 2,471 101.6 1.3 62.1 2.6
Soundex 2,469 80.6 1.5 62.1 3.0
Phonix Comm 2,453 195.0 1.1 61.7 2.3
Onca 2,396 109.2 1.0 60.2 2.0
D. Metaphone 2,395 84.4 1.4 60.2 2.8
Alpha SIS 2,359 241.8 2.2 59.3 4.2
Phonixleast 2,332 611.1 0.6 58.6 1.3
Caverphone 1 2,246 98.2 3.1 56.5 6.0
StatCan 2,225 21.4 7.0 55.9 12.4
Eudex15 2,199 551.7 1.6 55.3 3.2
Phonixless 2,191 141.6 2.0 55.1 4.0
F. Soundex 2,160 41.8 4.3 54.3 8.0
D-M Soundex 2,154 96.1 2.4 54.2 4.6
Eudex10 2,076 310.5 2.5 52.2 4.8
Metaphone 2,071 26.2 7.8 52.1 13.7
Caverphone 2 2,039 69.0 3.9 51.3 7.3
Eudex5 1,800 94.1 4.7 45.2 8.5
Phonixmost 1,681 36.5 4.4 42.2 8.0
Beider-Morse 1,636 25.5 8.0 41.1 13.4
Ref. Soundex 1,569 15.4 7.3 39.4 12.3
MRA 1,498 9.2 11.3 37.6 17.4
Rev. NYSIIS 1,416 27.4 4.7 35.6 8.3
NYSIIS 1,410 17.6 4.3 35.4 7.8
Eudex 1,376 5.6 11.7 34.6 17.5

Table A.6: Results for the utdallas dictionary, this time ranked by recall.

candidates. Moreover, it is also reasonable to assume that the candidate generation step
will be connected to a capable candidate selection step afterwards. Taking this into account,
Tables A.6 and A.7 show again the results obtained in our experiments, but this time ranked
by their recall figures. The resulting rankings are now very different, providing us with new
insights about the performance of the analyzed phonetic algorithms.

Overall, these results indicate that the StatCan, Metaphone, Soundex or Roger Root
algorithms would be good choices for candidate generation in a microtext normalization
system, depending on the level of compromise sought between precision and recall. This
way, the Metaphone algorithm shines when precision is needed, as it is among the top-three
algorithms in the F1 classification (see Tables A.4 and A.5) while it does not fall to the
bottom of the recall rankings (Tables A.6 and A.7) as in the case of MRA or Eudex, the other
two algorithms with the highest F1. On the other hand, Soundex and Roger Root stand

174 APPENDIX A. PHONETIC ALGORITHMS

Algorithm |hits| avg |cands| P R F1
MRAcustom 38,768 20,767.4 0.0 94.1 0.0
Lein 29,633 134.9 1.2 71.9 2.5
Soundex 29,557 95.0 1.8 71.7 3.5
Roger Root 28,928 98.1 2.8 70.2 5.4
StatCan 28,632 29.9 7.6 69.5 13.8
Onca 28,601 109.2 1.4 69.4 2.8
Phonex 28,048 200.5 2.0 68.1 4.0
Phonix Comm 26,937 134.8 1.8 65.4 3.5
D. Metaphone 26,253 90.0 2.0 63.7 3.9
Alpha SIS 26,064 145.9 4.8 63.2 8.9
D-M Soundex 24,470 64.7 4.5 59.4 8.4
Phonixleast 24,434 387.9 1.7 59.3 3.4
Caverphone 1 24,227 61.6 6.2 58.8 11.2
F. Soundex 23,694 28.4 8.3 57.5 14.5
Phonixless 23,093 83.4 4.1 56.0 7.7
Metaphone 22,448 16.6 13.6 54.5 21.8
Caverphone 2 21,580 43.4 7.5 52.4 13.2
NYSIIS 21,094 17.0 6.6 51.2 11.8
Eudex15 20,892 290.4 3.8 50.7 7.1
Eudex10 19,988 151.0 5.4 48.5 9.7
Phonixmost 19,039 23.4 8.1 46.2 13.7
Ref. Soundex 18,693 10.5 12.6 45.3 19.7
Eudex5 18,498 42.2 8.5 44.9 14.3
Beider-Morse 18,307 13.8 12.3 44.4 19.3
Rev. NYSIIS 17,844 16.2 9.1 43.3 15.0
MRA 17,485 6.0 17.1 42.4 24.4
Eudex 16,150 3.7 17.4 39.2 24.1

Table A.7: Results for the unimelb dictionary, this time ranked by recall.

as good choices if we want to maximize recall while not hurting precision in excess, as in
the case of the Lein algorithm, and after having dismissed MRAcustom for the reasons given
above. Finally, Statcan strikes the best balance in precision and recall, as we can see in the
good overall positions obtained in both rankings.

It is interesting to note that a phonetic algorithm can also be considered as a locality-
sensitive hashing algorithm. These are algorithms that maximize the probability of a collision
for similar items; this is, that the output for slightly different input elements is the same.
In terms of phonetic algorithms, this is equivalent to maximizing the probability of two
similar-sounding words having the same phonetic code. From this perspective, the average
number of candidates retrieved by a phonetic algorithm is in fact directly proportional to
the compression ratio of the locality-sensitive hashing it is performing.

During the error analysis, particular attention was paid to those instances from the

A.3. EVALUATION 175

corpora where none or just a few of the algorithms were able to provide the correct answer
(in our context, a hit). In the case of the zero-hits list, this is, instances for which no algorithm
provided a correct answer, it contains examples such as “baddest”-“worst” or “5ayin”-
“saying”, variations which do not correspond to phonetic phenomena and are thus outside
the scope of this work. A few OOV words such as “thankyou” or “sheesh” also appear in this
list. However, other interesting examples not directly supported by any phonetic algorithm
can also be found, as is the case of the so-called number homophones (Thurlow and Brown,
2003) such as “2morrow”-“tomorrow” or “4got”-“forgot”. This is to be expected since this
texting phenomenon, while also being a phonetic substitution, plays with the pronunciation
of digits, and phonetic algorithms usually work only with letters. Furthermore, these
examples would be easily supported in a microtext normalization system by preprocessing
the input and spelling such numbers before applying the phonetic algorithm.

On the remaining lists, it is interesting to note the presence of instances where some
phonetic algorithms gave a correct answer despite them not being designed to deal with
that particular case. We can mention here those algorithms whose generated codes are
shortened to a specific maximum length. Because of this shortening, such algorithms are
able to cope with any misspellings occurring in those parts of the original word which are
not finally translated into the phonetic code. For example, the MRA algorithm gives the
correct answer “performance” for the input word “perfomence” as the second “r” is not
encoded in PRFMNC.

Finally, considering the listing of non-standard orthographic forms from (Thurlow and
Brown, 2003) and the lists of errors obtained in these experiments, we can conclude the
following:13

• Shortenings (e.g., “dec”-“december”, “epi”-“episode”) are difficult to account for as
they usually remove whole chunks of characters from the original standard word,
including consonants. The difficulty here is that consonants are the main building
blocks for most phonetic codes and, consequently, important information for the
algorithms has been stripped from the term to be normalized. This may be solved by
adding an extra step in the normalization pipeline which would make use of other
word similarity metrics such as the longest common subsequence, overlap coefficient,
or cosine distance (Okazaki and Tsujii, 2010).

• Contractions (e.g., “frm”-“from”, “lov”-“love”) can be dealt with as they generally
include the most meaningful details of the standard word, which mainly consist of its
consonants.

13These lists are available at http://www.grupocole.org/software/VCS/phon

http://www.grupocole.org/software/VCS/phon

176 APPENDIX A. PHONETIC ALGORITHMS

• g-Clippings (e.g., “losin”-“losing”, “frikin”-“freaking”) are a simple but problematic
texting phenomenon for many of the algorithms studied. Most of them are able
to incidentally handle it through their trimming of the output codes. In this way,
in sufficiently long words the final “g” consonant is not taken into account for the
encoding, hence bypassing the need for specific rules for managing it. On the other
hand, it is worth noting that algorithms like Beider-Morse or Phonex, with a wide
range of encoding rules, do handle this particular scenario effectively.

• Handling other types of clippings is possible for a wide range of algorithms if they per-
form some kind of clipping themselves during encoding (e.g., “luk”-“luck”, “metalic”-
“metallic”) or when the clipping only affects vowels or non-pronounceable characters
(e.g., “ther”-“their”, “oclock”-“o’clock”).

• Acronyms and initialisms (e.g., “omg”-“oh my god”, “lol”-“laughing out loud”) are not
included in the evaluation datasets. In any case, they are considered to be outside
the scope of phonetic phenomena and, consequently, are not consistently supported
by any phonetic algorithm. Nevertheless, they may be normalized using specialized
dictionaries (see Section 4.1).

• In the case of homophony phenomena, letter homophones (e.g., “b”-“be”, “r”-“are”)
are generally supported, whereas, as noted earlier, number homophones (e.g., “4got”-
“forgot”, “in2”-“into”) are not.

• Other misspellings, typos, non-conventional spellings, and accent stylization (e.g.,
“acount”-“account”, “basterds”-“bastards”, “huni”-“honey”, “dat”-“that”) can be han-
dled by most algorithms as long as the sequence of consonants was preserved in the
resulting non-standard word. In the case of examples as “eva”-“ever” or “ova”-“over”,
they are only supported by the lowest precision algorithms or by those having specific
rules for dealing with such phenomena.

A.4 Related work

As already mentioned in the introductory section of this appendix, phonetic algorithms have
been traditionally used for personal name matching. In the literature, the design of a new
phonetic algorithm tends to be coupled with a comparative study with the contemporary
state of the art in order to highlight its strengths. However, in most cases it is not an
exhaustive study, since only a small part of the existing phonetic algorithms are considered,
and also because it focuses on the name-matching task, as in the case of (Hood, 2004),

A.5. CONCLUSIONS 177

(Beider, 2008), (Holmes and McCabe, 2002), and (Parmar and Kumbharana, 2014). Some
exceptions in which a broader comparative study was performed are the studies made
by Lynch and Arends (1977), and Lait and Randell (1996).

There are also purely comparative studies of name-matching algorithms where a wider
range of techniques were considered, including phonetic algorithms and other types of
similarity metrics. This is the case of (Christen, 2006), (Snae, 2007), (Bilenko et al., 2003),
(Branting, 2003), or (Gálvez, 2006). In their conclusions, these authors propose a series
of recommendations to select the right approach or algorithm for a particular setup or
domain, much in the same vein of the present work. However, even in these cases, they
only compare a small subset of the phonetic algorithms available and, more importantly,
they do so in the context of a different task.

Moving on from the name-matching task, the work of Pinto et al. (2012) enters the
domain of microtexts. However, the authors only provide a comparative study between
the original Soundex and their proposed improvements, which are not publicly available.
Furthermore, their case is not that of microtext normalization either.

Finally, it is worth mentioning the recent work by Fuentes et al. (2016), which compares
notably more phonetic algorithms than previous work although in a different scenario: word
recognition in Spanish microtext mining. This may be the most similar work to the present
contribution, although it focuses on precision and accuracy metrics, Spanish microtexts and,
once again, it is not tailored to the microtext normalization task.

In general, these comparative studies mostly use precision and F1 metrics for their
quantitative analysis, defining them accordingly for the task at hand. Some of them also
give qualitative insights in order to exemplify the behaviour of the phonetic algorithms in
each particular use case. On our end, we follow the common trend of using precision and
F1, while also explicitly including the recall and other interesting measures such as the
average number of normalization candidates retrieved by each algorithm. Likewise, we
perform a qualitative study based on a classification of the texting phenomena. Overall,
we present a wider comparison of phonetic algorithms than in previous work, focusing on
the task of microtext normalization, while using tried and tested methods for performance
measurements.

A.5 Conclusions

In this appendix we have evaluated a wide range of English state-of-the-art phonetic algo-
rithms within the context of generating normalization candidates in microtext normalization
tasks. This work constitutes, to the best of our knowledge, the only wide-range comparative
study of its kind. We perform both qualitative and quantitative analyzes—adapting the

178 APPENDIX A. PHONETIC ALGORITHMS

usual performance metrics to our domain—in order to identify the most salient properties
of these phonetic algorithms and their appropriateness for the task at hand. We expect that
the results obtained will be of help to both developers and researchers of this field when
building new intelligent systems for microtext information processing.

Seeking reproducibility and simplicity by using currently existing implementations and
publicly available datasets, we have measured the performance of these algorithms, and
their strengths and weaknesses were analyzed to identify the best algorithms in terms of
a compromise between precision and recall. In the end, we have found that the choice
of phonetic algorithm depends heavily on the capabilities of the subsequent candidate
selection mechanism to be applied within the microtext normalization pipeline. The faster
it can make the right selections among big enough input sets of candidates, the more we
can sacrifice in terms of the precision of the phonetic algorithm in favour of coverage. This
would be desirable since when obtaining a low number of normalization candidates, the
system would run the risk of imposing an upper limit to its overall performance at this early
stage.

Appendix B

Learning unsupervised and
semi-supervised cross-lingual word
embeddings

Despite the promising results reported in the literature, it remains unclear under which
conditions the multilingual embedding methods described in Chapter 7 succeed, including
our proposed postprocessing step called Meemi. For example, Artetxe et al. (2017) and
Conneau et al. (2018a) achieved promising results in the word translation task (i.e., bilingual
lexicon induction), but their experiments relied most of the times on the availability of
high-quality monolingual source corpora, namely Wikipedia. This is also the case for other
analyses on cross-lingual embeddings performance by Søgaard et al. (2018) and Glavaš
et al. (2019). As an exception, Artetxe et al. (2018b) used Web crawled data to test their
unsupervised framework. Moreover, models trained on social media corpora remain largely
untested, even though previous work has shown that these models help obtain better
performance in social-media-centered tasks (Tang et al., 2014; Godin et al., 2015; Yang
et al., 2018). Similarly, it is still unclear how well existing methods would perform on
language pairs with significant differences in their morphology (e.g., English-Finnish, the
latter being an agglutinative language) which has not been considered in Conneau et al.
(2018a); different word orderings, given the difficulties found by Ahmad et al. (2018) in
cross-lingual transfer; or different alphabets (e.g., Latin-Cyrillic).

In this chapter, we broaden the empirical evaluation of state-of-the-art techniques
for learning cross-lingual embeddings1 by using several types of training corpora, various
amounts of supervision, languages from different families, and different alignment strategies

1Although we focus on the bilingual case, we refer more generally to the obtained embeddings as cross-lingual.

179

180 APPENDIX B. CROSS-LINGUAL ANALYSIS

in three different tasks. The results obtained cast some doubt on the view that high-quality
cross-lingual embeddings can always be learned without much supervision. Finally, we also
outline a number of suggestions on how to train cross-lingual embeddings under different
conditions such as the amount of training data or the type of corpora.

B.1 Variables

Our main goal is to explore how the choice of corpora, supervision signals, and languages
impacts on the performance of cross-lingual word embedding models. In addition, we also
identify some other variables which were not directly studied in this chapter.

B.1.1 Monolingual corpora

It is reasonable to assume that accurate word-level alignments will be easier to obtain from
corpora from similar domains with similar vocabularies and register. Wikipedia has become
the mainstream monolingual source in cross-lingual word embedding training so far (Artetxe
et al., 2017; Conneau et al., 2018a). It provides a particularly reliable bilingual signal
because of the highly comparable nature of Wikipedia corpora from different languages. As
we will see, this makes finding high-quality alignments considerably easier.

In our analysis we use three different types of corpora: Wikipedia2 (as a prototypical
example of comparable monolingual corpora), Web corpora from different sources3 (as
a prototypical example of non-comparable but generally high-quality corpora) and social
media4 (as a prototypical example of non-comparable and noisy text). Statistics of these
corpora are provided in Table B.1.5

B.1.2 Bilingual supervision

Early approaches for learning bilingual embeddings relied on large parallel corpora (Kle-
mentiev et al., 2012; Luong et al., 2015), which limited their applicability. More recent
approaches instead rely on small bilingual dictionaries as only source of bilingual super-
vision. In fact, some methods remove the need for a user-supplied bilingual dictionary

2All Wikipedia text dumps were downloaded from the Polyglot project (Al-Rfou et al., 2013): https:

//sites.google.com/site/rmyeid/projects/polyglot
3The sources of the Web corpora were: UMBC (Han et al., 2013b), 1-billion (Cardellino, 2016), itWaC and

sdeWaC (Baroni et al., 2009), Hamshahri (AleAhmad et al., 2009), and Common Crawl downloaded from
http://www.statmt.org/wmt16/translation-task.html.

4These corpora were downloaded using a Twitter crawler, at different dates between 2015 and 2018.
5Due to some restrictions, we were not able to compile a reliable and large enough Twitter corpus for

Russian.

https://sites.google.com/site/rmyeid/projects/polyglot
https://sites.google.com/site/rmyeid/projects/polyglot
http://www.statmt.org/wmt16/translation-task.html

B.1. VARIABLES 181

Domain Corpus Language Size Words

Wikipedia

Wikien English 1.7B 12.0M
Wikies Spanish 407M 3.4M
Wikiit Italian 338M 3.3M
Wikide German 605M 7.4M
Wikifi Finnish 68M 2.8M
Wikiru Russian 313M 5.4M
Wikifa Farsi 48M 1.0M

Web corpora

UMBC English 3.5B 8.1M
1-billion Spanish 1.9B 5.5M
itWaC Italian 1.3B 4.2M
sdeWaC German 438M 1.5M
Comm-crawl Finnish 2.8B 1.8M
Comm-crawl Russian 1.1B 18.8M
Hamshahri Farsi 167M 0.8M

Social media

Twitteren English 294M 5.5M
Twitteres Spanish 144M 3.3M
Twitterit Italian 63M 1.6M
Twitterde German 114M 2.3M
Twitterfi Finnish 29M 1.7M
Twitterfa Farsi 90M 1.0M

Table B.1: Statistics of the corpora used to train monolingual word embeddings: size (total
number of tokens) and words (number of unique tokens).

altogether (Conneau et al., 2018a; Artetxe et al., 2018b), relying instead on synthetic
dictionaries that are obtained fully automatically. In our experiments we consider a wide
range of signals, including no supervision as well as automatically generated dictionaries of
identical words. In the latter case, we rely on the assumption that identical words that occur
in both of the monolingual corpora tend to have the same meaning. While this may seem
naive, this strategy has been reported in the literature to perform well in practice (Smith
et al., 2017; Søgaard et al., 2018).

B.1.3 Languages

In most previous work, the evaluation of cross-lingual embeddings has been limited to a
small set of closely-related languages. For instance, Smith et al. (2017) evaluated their
model on the English-Italian pair only, Artetxe et al. (2017) performed their evaluation on
three languages, all of which share the same alphabet. Moreover, as the considered language
pairs vary from one study to another, the relative performance of different methods for
particular types of languages remains unclear. More recently, however, Søgaard et al. (2018)
have extended the usual evaluation framework by covering additional Eastern European

182 APPENDIX B. CROSS-LINGUAL ANALYSIS

languages. Similarly, we have extended the range of covered languages by considering
Spanish (ES), Italian (IT), German (DE), Finnish (FI), Farsi (FA), and Russian (RU). In all
cases, we have used English (EN) as source language. This set of languages represents not
only Indo-European languages (Spanish, Italian, German, Farsi, and Russian), but also an
agglutinative language (Finnish and Farsi), as well as languages with non-Latin alphabets
(Farsi and Russian, with Arabic and Cyrillic alphabets, respectively).

B.1.4 Other variables

It is worth mentioning that there are several other external factors that may affect the
quality of cross-lingual embeddings, beyond the ones considered in this study. For instance,
in our experiments we use fastText (Bojanowski et al., 2016) with default values, but
the impact of other word embedding models such as word2vec (Mikolov et al., 2013) or
GloVe (Pennington et al., 2014) could also be analyzed, in the line of the work by Søgaard
et al. (2018). Likewise, all cross-lingual models and the post-processing technique we
evaluated are used as-is with their default configurations.

B.2 Evaluation

We use two standard tasks for evaluating cross-lingual word embeddings: bilingual dictio-
nary induction and cross-lingual word similarity. In addition, we also consider a downstream
application: cross-lingual natural language inference. These tasks have been already intro-
duced in Sections 7.3 and 7.4. For the sake of clarity, in this section we only include the
tables with the results for unsupervised and supervised systems using the largest dictionary
(i.e., with 8K word pairs). In the same vein, we summarize the most important findings in
Section B.3, and then leave the fully detailed result tables which cover different dictionary
sizes in the intrinsic tasks for Section B.6.

The systems we compare are two well-known cross-lingual embedding methods which
can be used in unsupervised and semi-supervised settings, namely the orthogonal version of
VecMap6 (Artetxe et al., 2018b) and MUSE7 (Conneau et al., 2018a). As seed dictionaries
we consider three samples of varying sizes, considering 8K, 1K, and 100 word pairs, to test
the robustness of the models regarding the amount of supervision available.8 Additionally,
we also consider synthetic dictionaries, consisting of identical words that are found in the

6Note that in Chapter 7 we have used the purely supervised setting, hence the differences in the results. The
codebase is still the same and can be obtained at https://github.com/artetxem/vecmap

7https://github.com/facebookresearch/MUSE
8These dictionaries were obtained by splitting the training dictionaries provided by Conneau et al. (2018a).

https://github.com/artetxem/vecmap
https://github.com/facebookresearch/MUSE

B.2. EVALUATION 183

W
ik

ip
ed

ia

M
od

el
Sp

an
is

h
It

al
ia

n
G

er
m

an
Fi

n
n

is
h

Fa
rs

i
R

u
ss

ia
n

P
@

1
P

@
5

P
@

10
P

@
1

P
@

5
P

@
10

P
@

1
P

@
5

P
@

10
P

@
1

P
@

5
P

@
10

P
@

1
P

@
5

P
@

10
P

@
1

P
@

5
P

@
1
0

un
su

p
Ve

cM
ap

39
.6

66
.1

72
.3

42
.7

65
.7

71
.6

28
.6

48
.3

54
.8

19
.6

40
.4

48
.3

20
.5

37
.0

42
.8

19
.5

45
.3

54
.5

M
U

SE
39

.3
64

.7
71

.3
41

.6
63

.2
69

.9
28

.3
46

.5
53

.3
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
14

.9
36

.0
46

.5

8K

Ve
cM

ap
39

.6
66

.2
72

.3
42

.6
65

.9
71

.8
28

.6
48

.3
54

.8
22

.4
44

.5
52

.5
22

.8
39

.7
46

.2
20

.0
46

.3
55

.6
M

U
SE

39
.1

65
.4

72
.3

41
.1

63
.3

70
.1

27
.6

45
.9

53
.2

19
.5

40
.4

49
.5

19
.7

35
.4

42
21

.3
43

.7
52

.9
M

ee
m

i(
Ve

cM
ap

)
39

.3
67

.4
73

.7
41

.6
66

.5
72

.5
28

47
.8

54
.8

23
.8

48
.7

57
.0

23
.4

41
.7

47
.7

23
.0

49
.3

58
.3

M
ee

m
i(

M
U

SE
)

39
.3

67
.4

73
.7

41
.3

66
.8

72
.8

27
.1

46
.3

53
.9

21
.7

45
.0

53
.6

20
.7

38
.6

45
.1

24
.4

50
.3

59
.3

W
eb

co
rp

or
a

M
od

el
Sp

an
is

h
It

al
ia

n
G

er
m

an
Fi

n
n

is
h

Fa
rs

i
R

u
ss

ia
n

P
@

1
P

@
5

P
@

10
P

@
1

P
@

5
P

@
10

P
@

1
P

@
5

P
@

10
P

@
1

P
@

5
P

@
10

P
@

1
P

@
5

P
@

10
P

@
1

P
@

5
P

@
1
0

un
su

p
Ve

cM
ap

34
.8

60
.6

67
.0

31
.4

53
.7

60
.7

23
.2

42
.7

50
.2

0.
0

0.
0

0.
0

19
.7

34
.6

40
.4

13
.8

30
.9

38
.6

M
U

SE
31

.4
51

.2
57

.7
31

.4
51

.2
57

.7
20

.8
38

.7
46

.6
0.

0
0.

0
0.

0
18

.1
32

.8
37

.8
0.

0
0.

0
0.

0

8K

Ve
cM

ap
34

.6
60

.6
66

.9
31

.9
54

.2
60

.4
23

.1
42

.7
50

.5
18

.9
40

.9
48

.8
19

.6
35

.8
41

.4
14

.6
31

.7
39

.6
M

U
SE

32
.5

58
.2

65
.9

32
.5

56
.0

63
.2

22
.4

40
.9

48
.9

20
.0

40
.1

48
.3

17
.4

31
.6

37
.6

15
.5

35
.6

44
.1

M
ee

m
i(

Ve
cM

ap
)

34
.5

61
.6

67
.9

33
.6

58
.3

65
.6

23
.7

45
.4

53
.2

22
.3

46
.7

55
.0

21
.7

39
.0

43
.8

18
.2

40
.0

47
.5

M
ee

m
i(

M
U

SE
)

33
.9

60
.7

68
.4

33
.8

58
.4

65
.6

23
.7

45
.3

52
.3

23
.0

46
.1

54
.0

19
.3

36
.0

41
.7

18
.7

40
.5

49
.7

So
ci

al
m

ed
ia

M
od

el
Sp

an
is

h
It

al
ia

n
G

er
m

an
Fi

n
n

is
h

Fa
rs

i
P

@
1

P
@

5
P

@
10

P
@

1
P

@
5

P
@

10
P

@
1

P
@

5
P

@
10

P
@

1
P

@
5

P
@

10
P

@
1

P
@

5
P

@
10

un
su

p
Ve

cM
ap

8.
1

16
.4

20
.4

8.
8

17
.0

22
.3

0.
1

0.
4

0.
5

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

M
U

SE
0.

0
0.

0
0.

0
7.

3
14

.5
18

.3
0.

0
0.

0
0.

0
0.

0
0.

0
0.

1
0.

0
0.

1
0.

1

8K

Ve
cM

ap
8.

7
16

.6
21

.6
8.

9
17

.3
22

.4
3.

2
6.

8
9.

5
0.

2
0.

8
1.

2
0.

4
1.

6
2.

0
M

U
SE

8.
1

17
.6

22
.7

8
16

.4
21

.1
2.

2
6.

0
8.

4
0.

6
2.

2
3.

2
1.

2
4.

5
6.

3
M

ee
m

i(
Ve

cM
ap

)
9.

8
21

.3
26

.9
10

.6
20

.0
25

.6
3.

7
9.

6
13

.2
1.

3
3.

6
5.

5
1.

8
5.

1
7.

0
M

ee
m

i(
M

U
SE

)
9.

5
20

.5
26

.3
9.

5
19

.1
24

.5
3.

0
7.

6
11

.1
1.

5
4.

3
6.

4
1.

6
5.

3
8.

1

Table B.2: Bilingual dictionary induction results using English as source language. Perfor-
mance measured by P@k.

184 APPENDIX B. CROSS-LINGUAL ANALYSIS

corpora for both languages. Lastly, using those same bilingual dictionaries, we use Meemi
to refine the cross-lingual embeddings obtained by VecMap and MUSE. We use the same
notation as in Section 7.2.3 to refer to these postprocessed vectors: Meemi (M) where M is
either VecMap or MUSE.

B.2.1 Bilingual dictionary induction

As already explained in Section 7.3.1, bilingual dictionary induction consists in automatically
obtaining the word translations in a target language for words in a source language.
We resort again to cosine similarity to select the nearest neighbors in the cross-lingual
embedding space, and to precision at k (P@k) as our performance metric. Table B.2
summarizes the results obtained by all comparison systems on the test dictionaries published
by Conneau et al. (2018a). Note that the test dictionaries do not overlap with the dictionaries
used for training.

B.2.2 Cross-lingual semantic word similarity

Another well-known intrinsic task, cross-lingual semantic word similarity consists in mea-
suring the semantic similarity between pairs of words in different languages, as explained
in Section 7.3.1. For the evaluation we make use again of the cross-lingual word similarity
datasets of the SemEval 2017 task (Camacho Collados et al., 2017), and the results are
reported in terms of Pearson and Spearman correlation. The cross-lingual word similarity
results for all the systems are displayed in Table B.3. The languages available for this dataset
are English, Spanish, Italian, German, and Farsi, hence Finnish and Russian cannot be
evaluated in this task. Also note that in this case we are not interested in measuring the
monolingual performance of our embeddings, hence we focus on the cross-lingual variant
of this task.

B.2.3 Cross-lingual natural language inference

On this occasion, we rely on natural language inference as our only extrinsic (or down-
stream) task. As we already explained in Section 7.4.2, it consists in detecting entailment,
contradiction, and neutral relations between pairs of sentences. We again train a linear
classifier9 to obtain the predicted label for each pair of sentences. Likewise, we use the full
MultiNLI English corpus (Williams et al., 2018) for training and the Spanish, German, and

9The codebase for these experiments is that of SentEval (Conneau and Kiela, 2018).

B.3. ANALYSIS 185

Wikipedia
Model EN-ES EN-IT EN-DE EN-FA

unsup
VecMap 72.1 70.6 69.3 61.3
MUSE 72.6 71.2 68.9 6.5

8K

VecMap 71.8 70.6 69.3 61.7
MUSE 72.6 70.9 68.9 58.7
Meemi (VecMap) 71.9 70.9 70.3 63.4
Meemi (MUSE) 72.9 71.9 70.1 62.0

Web corpora
Model EN-ES EN-IT EN-DE EN-FA

unsup
VecMap 70.5 68.8 70.4 33.4
MUSE 71.6 69.4 70.0 23.8

8K

VecMap 70.6 68.8 70.4 33.5
MUSE 71.9 70.4 70.2 23.9
Meemi (VecMap) 70.9 70.0 71.8 39.0
Meemi (MUSE) 72.3 71.1 72.1 33.0

Social media
Model EN-ES EN-IT EN-DE EN-FA

unsup
VecMap 46.9 51.5 31.2 2.4
MUSE 10.9 49.7 13.0 4.7

8K

VecMap 47.4 51.8 49.5 30.3
MUSE 47.6 49.3 48.6 42.2
Meemi (VecMap) 50.1 53.6 53.8 43.1
Meemi (MUSE) 50.4 52.5 52.0 46.6

Table B.3: Spearman correlation performance of various cross-lingual word embedding
models in the cross-lingual word similarity task.

Russian test sets from XNLI (Conneau et al., 2018b) for testing. Accuracy results are shown
in Table B.4.10

B.3 Analysis

Supervision signals. Unsurprisingly, the best alignments of monolingual spaces tend to
be obtained with the largest bilingual dictionaries. The unsupervised variants of VecMap
(see Figure B.1) and MUSE attain competitive performance in most cases, especially for
comparable corpora where alignments are easier to obtain. However, they struggle in the
case of noisy social media corpora and unrelated languages (e.g. both VecMap and MUSE
obtain inferior results, close to 0, on both Finnish and Farsi), which challenges conclusions
from previous work (Conneau et al., 2018a; Artetxe et al., 2018b). Overall, the results

10For this task we focused on the better performing embeddings learned from Wikipedia and Web corpora.

186 APPENDIX B. CROSS-LINGUAL ANALYSIS

Wikipedia
Model EN-ES EN-DE EN-RU

unsup
VecMap 49.6 46.3 34.1
MUSE 48.4 47.4 33.3

8K

VecMap 49.2 46.7 33.4
MUSE 47.7 47.1 33.1
Meemi (VecMap) 49.5 47.6 33.8
Meemi (MUSE) 44.2 46.7 33.3

Web corpora
Model EN-ES EN-DE EN-RU

unsup
VecMap 48.5 47.9 33.4
MUSE 47.7 47.1 33.6

8K

VecMap 48.4 47.5 33.2
MUSE 47.3 48.6 33.1
Meemi (VecMap) 47.8 48.6 33.8
Meemi (MUSE) 47.3 48.2 33.2

Table B.4: Accuracy in the cross-lingual natural language inference task (XNLI) using
different cross-lingual word embedding models.

obtained when using social media are clearly inferior, suggesting that there is still room for
improvement when it comes to dealing with noisy corpora, regardless of the supervision.

VecMap vs. MUSE. One of the main differences between these two models relates to
their robustness. The results of VecMap are largely stable across the different types of the
supervision. In fact, the best performance for Spanish and Russian on the XNLI task is
even obtained in its unsupervised mode. In contrast, MUSE does not perform well with
small dictionaries. Figure B.2 illustrates this trend. In addition, MUSE also suffers from
some stability issues, as it does not always converge to the optimal solution, which confirms
findings from previous work (Artetxe et al., 2018b; Søgaard et al., 2018). In terms of overall
results, when given a sufficiently large dictionary training data, the performance of both
methods is comparable, which is perhaps unsurprising as they both rely on the solution of
the orthogonal Procrustes problem to learn an orthogonal transformation from the given
dictionary.

Impact of corpora. As can be observed throughout all the experiments, the more compara-
ble and less noisy the monolingual data is, the better the bilingual alignments. For instance,
VecMap goes from an average of 31.2% in P@1 on Wikipedia down to 4.3% on social media,
considering all language pairs. In word similarity, we observe an analogous performance
drop, from 68.4% to 44.8% in Spearman correlation. Additionally, in Figure B.1 we can

B.3. ANALYSIS 187

Figure B.1: P@1 performance of the unsupervised version of VecMap on dictionary induction
across corpus types and language pairs.

observe the negative influence of noisy corpora and distant languages on the performance
of the unsupervised version of VecMap on dictionary induction. In terms of error analysis,
unsurprisingly we find that the low performance of the models trained on Twitter data is
largely due to the noise and the nature of the conversation topics of this domain, which in
many cases differ from the more standard language usage that we can find in Wikipedia and,
to a lesser extent, Web corpora. For instance, for the word “discover”, instead of “descubren”
(one of the correct answers obtained by the models trained on Wikipedia), the translation
given by VecMap corresponds to a misspelling of the correct translation: “descubr”. As
another example, and clearly due to the specific use of the word on Twitter, “timeline” is
not translated to “cronoloǵıa”, but to “instas”, which refers to the social network Instagram.

Distant languages. As expected, the more different the languages are, the harder it is to
obtain a reliable alignment of the monolingual spaces. This is particularly noticeable in
the case of Farsi, Russian, and Finnish (and German to a lesser extent). For instance, in
the bilingual dictionary task, while most models are over 30.0% in P@1 (excluding social
media text which causes performance drops in all languages), in the case of Finnish, Farsi,
and Russian the results are below 20% in most cases. A similar tendency can be observed
for Farsi on the word similarity task, where the differences are even more pronounced. In
addition to its idiosyncrasies (Farsi is considered agglutinative and has a noun compounding
formation similar to German), the fact that it uses a different alphabet together with

188 APPENDIX B. CROSS-LINGUAL ANALYSIS

Figure B.2: Comparison between the dictionary induction performance (P@1) of VecMap
(blue) and MUSE (red) in English-Italian on Wikipedia (left), Web corpora (middle), and
social media text (right). The figures clearly show how VecMap produces similar results
irrespective of the seed supervision, while the results of MUSE fluctuate depending on the
size of the seed dictionary (with its unsupervised variant being superior to using a small
dictionary).

the fastText models, which take word morphology into account, may explain this large
performance gap. Finally, while the poor performance could be partially explained by the
small size of the monolingual training corpora for some languages, it is interesting to see
notable performance differences in cases where a distant language has similar or even
greater amounts of training data available; e.g., Italian and Russian on Wikipedia, or Italian
and Finnish or Russian on Web data.

Distant supervision. As far as the synthetic dictionary of identical words is concerned (see
Tables B.6 and B.7), MUSE seems to have more difficulties coping with its noisy nature than
VecMap, obtaining an average of 16.9% versus 23.6% in P@1 overall in dictionary induction
in the Wikipedia and Web corpora domains. In fact, using MUSE in its unsupervised setting
or with a small dictionary generally provides better results. However, on social media,
using the dictionary of identical words appears to help MUSE considerably in the word
similarity task compared to the unsupervised setting, going from 19.6% to 44.2% on average
in Spearman correlation overall. This can be attributed to the multilinguality of social

B.3. ANALYSIS 189

100 1K 8K

VecMap

EN-ES -70.4 -2.0 +0.3
EN-IT -68.8 -1.0 +1.2
EN-DE -70.5 -0.3 +1.4
EN-FA -30.5 -32.8 +5.5

MUSE

EN-ES -71.5 -1.8 +1.7
EN-IT -65.1 -0.8 +0.7
EN-DE -68.8 -0.1 +1.9
EN-FA -7.4 -22.3 +9.1

Table B.5: Absolute improvement (in percentage points) by applying the postprocessing
(Meemi) over the two base models VecMap and MUSE on the cross-lingual word similarity
task using Web corpora.

media data, where phenomena like code-switching often occur. On the other hand, the
consistency of the VecMap semi-supervised algorithm is highlighted again, as using the
identical dictionary in this case yields similar results to using external bilingual dictionaries.

Postprocessing. There are two main conclusions regarding Meemi, the postprocessing
technique that we introduced in Chapter 7. First, a clean and relatively big bilingual
dictionary is needed in order to get improvements over the base methods VecMap and
MUSE (for instance, +1.2% P@1 and +3.1% Spearman correlation scores on social media on
average, using the 8K dictionary), with the performance otherwise ending up significantly
lower. In general, the best overall results are achieved when using this postprocessing
technique in combination with the largest dictionary (i.e., 8K pairs). Table B.5 shows the
performance gains and drops by using Meemi in the cross-lingual word similarity task,
clearly showing the need for a reasonably large dictionary. This performance variability
depending on the size of the dictionary was not addressed previously. Second, Meemi
appears to be particularly useful when the monolingual corpora are not comparable, as
shown by the larger improvements attained on Web-based data.

Evaluation tasks. The performance variability in bilingual dictionary induction, cross-
lingual word similarity, and cross-lingual inference seems to be very similar across the board,
with the main difference being the lower results variability in the XNLI task (which can be
expected given that it is a downstream task where additional factors are also involved). The
factors with the greatest impact on performance, namely monolingual corpora and language
pairs, are clearly reflected in both cases, with analogous drops when going from training
on Wikipedia to social media, and also when testing on Finnish, Farsi, or Russian. To test

190 APPENDIX B. CROSS-LINGUAL ANALYSIS

our intuition, we computed Pearson correlation values from all overlapping results between
task pairs. In this case, similarity and dictionary induction attain the highest correlation
(r = 0.78), with XNLI and dictionary induction also attaining a high correlation score
(r = 0.73). The lowest correlation score corresponds to cross-lingual similarity and NLI,
with a lower figure of r = 0.28. Despite being positive, this relatively low correlation may
suggest that dictionary induction would be a better proxy to test cross-lingual embedding
performance in downstream tasks. We should note, however, that these correlation figures
are only indicative and particular to the methods tested in our analysis and, therefore,
should not be taken as the global correlation between tasks.

B.4 Related work

Cross-lingual embeddings have become increasingly popular in the past few years (Smith
et al., 2017; Artetxe et al., 2017, 2018a; Conneau et al., 2018a). Recent efforts have focused
on reducing the need for large amounts of resources (e.g., parallel corpora), which could
be difficult to obtain for most languages and language pairs. However, the evaluation
of these approaches has tended to be somewhat limited, often using only one type of
training corpora, including only similar languages, and considering only one evaluation
task. The most similar work to ours is that of Søgaard et al. (2018), which included an
in-depth analysis of two of the factors that we have also considered, namely language family
and corpora type, but they only considered a single model; i.e., MUSE (Conneau et al.,
2018a). Moreover, they studied each factor in isolation. In our case the analysis is also
extended to more languages (covering up to 5 language pairs), systems (two unsupervised,
two supervised, and a postprocessing technique), evaluation tasks (cross-lingual word
similarity), and the impact of external bilingual dictionaries.

Another similar contribution is the analysis by Vulić and Korhonen (2016), which
studied the impact of bilingual dictionaries on cross-lingual alignments. However, they
only considered closely-related languages using the same alphabet and a single type of
corpora (i.e., Wikipedia). Also, given the publication date, this analysis does not account
for the important developments in cross-lingual embeddings from recent years, such as the
methods we have covered in this chapter. Other empirical comparisons focused mostly on
the need for different degrees of supervision, such as (Upadhyay et al., 2016), which has
been extended in a more recent survey by Ruder et al. (2017). Here, we complement those
studies by analyzing and discussing empirical findings of the most recent state-of-the-art
unsupervised and semi-supervised methods in a broader experimental setting, more in line
with the recent work by Glavaš et al. (2019). The main differences between this empirical
evaluation and the contributions of our work lie in the scope of the survey, since:

B.5. CONCLUSIONS 191

1. They only consider Wikipedia data for training.

2. They do not consider postprocessing techniques such as Meemi, which we found to
improve the performance of cross-lingual models, especially in the case of distant
languages and non-comparable corpora.

3. In our analysis we also consider additional settings with scarce training data such as
small seed dictionaries and automatically-constructed dictionaries of identical words.

4. We include a more exhaustive intrinsic evaluation, including semantic similarity.

B.5 Conclusions

We have presented an extensive evaluation of state-of-the-art cross-lingual embedding mod-
els in a wide variety of experimental settings. The variables explored in this chapter were:
monolingual training corpora, bilingual supervision signals, and language pairs. Likewise,
the evaluation procedure included two standard benchmarks for cross-lingual embedding
evaluation, namely bilingual dictionary induction and cross-lingual word similarity, as well
as cross-lingual natural language inference as an extrinsic task. The set of languages consid-
ered included not only related languages such as English, Spanish, Italian, and German, but
also languages from different families such as Finnish, Farsi, and Russian.

Our analysis shows a particularly marked variability of the performance concerning
the monolingual training corpora used (e.g., comparable corpora such as Wikipedia vs.
non-comparable or noisy user-generated corpora) and the specific language pair considered
(distant language pairs still constitute a major challenge). We also conclude that bilingual
supervision signals constitute a key component for MUSE and Meemi, whereas VecMap
obtains more consistent results independently of the case. Finally, Meemi can improve the
alignments obtained by VecMap or MUSE as long as a large dictionary is provided.

B.6 Supplementary material: detailed results

In this section we show the full range of results obtained for the dictionary induction (Table
B.6) and cross-lingual word similarity (Table B.7) tasks, using all sources of supervision:
no supervision, dictionary of identical words, and dictionaries containing 100, 1K, and 8K
translation pairs.

192 APPENDIX B. CROSS-LINGUAL ANALYSIS

Wikipedia

Model Dictionary
English-Spanish English-Italian English-German English-Finnish English-Farsi

P@1 P@5 P@10 P@1 P@5 P@10 P@1 P@5 P@10 P@1 P@5 P@10 P@1 P@5 P@10

VecMap

8K 39.6 66.2 72.3 42.6 65.9 71.8 28.6 48.3 54.8 22.4 44.5 52.5 22.8 39.7 46.2
1K 39.6 66.2 72.3 42.6 65.7 71.6 28.7 48.3 54.7 22.2 43.9 51.7 23.2 40.2 46.1
100 39.6 66.2 72.4 42.9 65.7 71.6 28.6 48.3 54.8 21.6 43.4 51.7 22.7 40.6 46.4
identical 39.5 66.0 72.4 42.7 65.8 71.7 28.6 48.3 54.7 21.6 43.7 51.6 23.4 40.3 46.1
unsupervised 39.6 66.1 72.3 42.7 65.7 71.6 28.6 48.3 54.8 19.6 40.4 48.3 20.5 37.0 42.8

MUSE

8K 39.1 65.4 72.3 41.1 63.3 70.1 27.6 45.9 53.2 19.5 40.4 49.5 19.7 35.4 42
1K 39.2 65.4 72.1 41.1 63.3 70.1 27.6 46.0 53.1 18.1 36.8 44.9 19.8 35.3 41.5
100 24.8 47.5 54.6 20.9 39.2 48.1 0.8 3.4 5.2 0.3 1.3 2.2 6.2 16.1 22.8
identical 35.9 60.6 67.3 37.8 60.4 68.5 24.8 41.9 49.5 13.4 25.5 32 6.7 16.6 21.3
unsupervised 39.3 64.7 71.3 41.6 63.2 69.9 28.3 46.5 53.3 0.0 0.0 0.0 0.0 0.0 0.0

Meemi (VecMap)

8K 39.3 67.4 73.7 41.6 66.5 72.5 28 47.8 54.8 23.8 48.7 57.0 0.0 0.0 0.0
1K 35.5 63.7 69.4 38.6 64.0 70.1 23.1 42.5 49.9 17.8 40.1 48.6 0.0 0.0 0.0
100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
identical 38.7 63.7 70.1 40.6 64.1 70.2 27.5 46.6 53.1 19.3 37.7 45.5 7.1 14.3 17.9

Meemi (MUSE)

8K 39.3 67.4 73.7 41.3 66.8 72.8 27.1 46.3 53.9 21.7 45.0 53.6 0.0 0.0 0.0
1K 35.4 63.1 69.3 38.2 63.6 70.2 22.4 40.4 47.9 14.7 33.6 41.8 0.0 0.0 0.0
100 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
identical 35.4 58.9 65.4 37.0 59.0 65.9 24.0 40.0 47.0 13.0 25.5 32.0 2.5 6.2 8.3

Web corpora

Model Dictionary
English-Spanish English-Italian English-German English-Finnish English-Farsi

P@1 P@5 P@10 P@1 P@5 P@10 P@1 P@5 P@10 P@1 P@5 P@10 P@1 P@5 P@10

VecMap

8K 34.6 60.6 66.9 31.9 54.2 60.4 23.1 42.7 50.5 18.9 40.9 48.8 19.6 35.8 41.4
1K 34.6 60.5 67.0 32.0 54.0 60.5 23.1 42.7 50.3 19.4 42.0 49.4 19.5 35.6 41.2
100 38.5 61.2 67.5 32.0 54.2 60.5 23.0 43.0 50.2 19.3 41.6 49.6 19.7 35.5 41.3
identical 34.7 60.4 67.0 31.4 54.0 60.7 23.1 42.9 50.5 18.6 41.6 49.3 20.0 35.3 40.3
unsupervised 34.8 60.6 67.0 31.4 53.7 60.7 23.2 42.7 50.2 0.0 0.0 0.0 19.7 34.6 40.4

MUSE

8K 32.5 58.2 65.9 32.5 56.0 63.2 22.4 40.9 48.9 20.0 40.1 48.3 17.4 31.6 37.6
1K 32.9 56.8 64.2 31.5 52.7 60.6 22.1 41.0 48.2 18.4 39.1 47.7 16.6 31.1 36.4
100 32.3 56.1 63.9 27.3 48.0 55.3 17.8 35.0 41.6 2.7 7.9 11.1 0.0 0.5 0.7
identical 26.1 46.7 53.8 24.7 45.1 52.4 17.4 32.8 40.5 12.6 26.0 33.8 3.0 8.3 5.8
unsupervised 31.4 51.2 57.7 31.4 51.2 57.7 20.8 38.7 46.6 0.0 0.0 0.0 18.1 32.8 37.8

Meemi (VecMap)

8K 34.5 61.6 67.9 33.6 58.3 65.6 23.7 45.4 53.2 22.3 46.7 55.0 0.0 0.0 0.0
1K 30.2 55.0 62.7 30.7 54.0 61.1 19.4 38.9 45.9 18.2 39.9 48.1 0.0 0.0 0.0
100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
identical 34.1 58.3 64.8 31.6 54.6 62.5 22.5 42.0 49.0 21.1 43.2 51.3 11.2 23.9 28.6

Meemi (MUSE)

8K 33.9 60.7 68.4 33.8 58.4 65.6 23.7 45.3 52.3 23.0 46.1 54.0 0.0 0.0 0.0
1K 29.1 54.6 62.3 29.9 52.7 60.3 18.3 37.0 44.1 17.2 37.4 45.6 0.0 0.0 0.0
100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
identical 24.3 43.0 49.8 21.8 41.1 48.9 16.4 30.7 37.3 13.1 26.1 33.9 2.0 4.2 5.8

Social media

Model Dictionary
English-Spanish English-Italian English-German English-Finnish English-Farsi

P@1 P@5 P@10 P@1 P@5 P@10 P@1 P@5 P@10 P@1 P@5 P@10 P@1 P@5 P@10

VecMap

8K 8.7 16.6 21.6 8.9 17.3 22.4 3.2 6.8 9.5 0.2 0.8 1.2 0.4 1.6 2.0
1K 8.3 17.0 21.3 8.9 17.5 22.0 2.9 6.5 9.3 0.0 0.4 1.1 0.3 1.0 1.4
100 7.9 15.9 20.2 8.8 17.6 22.3 2.8 6.0 8.6 0.0 0.0 0.1 0.1 0.3 0.4
identical 8.5 16.9 21.6 9.1 16.8 21.8 2.6 6.7 9.6 0.0 0.0 0.0 0.2 0.5 1.1
unsupervised 8.1 16.4 20.4 8.8 17.0 22.3 0.1 0.4 0.5 0.0 0.0 0.0 0.0 0.0 0.0

MUSE

8K 8.1 17.6 22.7 8.0 16.4 21.1 2.2 6.0 8.4 0.6 2.2 3.2 1.2 4.5 6.3
1K 7.2 15.9 20.5 7.3 14.6 18.4 0.9 3.0 4.5 0.6 1.5 2.1 0.9 2.1 3.4
100 0.4 1.1 1.9 0.3 1.1 1.8 0.1 0.3 0.6 0.0 0.2 0.4 0.1 0.3 0.4
identical 2.5 5.2 7.1 3.9 10.1 13.7 1.1 2.6 3.7 0.1 0.1 0.2 0.1 0.3 0.8
unsupervised 0.0 0.0 0.0 7.3 14.5 18.3 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.1 0.1

Meemi (VecMap)

8K 9.8 21.3 26.9 10.6 20.0 25.6 3.7 9.6 13.2 1.3 3.6 5.5 0.0 0.1 0.1
1K 8.3 17.7 22.6 8.6 18.2 23.6 3.0 7.5 10.6 0.5 2.4 3.7 0.0 0.0 0
100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
identical 3.8 9.1 11.8 6.6 14.2 18.2 2.0 4.1 5.9 0.0 0.1 0.2 0.1 0.3 0.5

Meemi (MUSE)

8K 9.5 20.5 26.3 9.5 19.1 24.5 3.0 7.6 11.1 1.5 4.3 6.4 0.0 0.1 0.2
1K 7.6 16.9 22.3 7.8 15.9 21 1.7 4.1 6.2 0.8 2.3 3.7 0 0.0 0.0
100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
identical 2.9 5.3 6.7 3.5 9.9 13.2 1.2 2.8 3.6 0.2 0.3 0.3 0.0 0.1 0.2

Table B.6: Bilingual dictionary induction results in the test sets of Conneau et al. (2018a).

B.6. SUPPLEMENTARY MATERIAL: DETAILED RESULTS 193

Wikipedia

Model Dictionary
English-Spanish English-Italian English-German English-Farsi

Pearson Spearman Pearson Spearman Pearson Spearman Pearson Spearman

VecMap

8K 72.1 71.8 71.2 70.6 70.0 69.3 63.7 61.7
1K 72.1 71.8 71.2 70.6 70.0 69.3 63.9 61.9
100 72.1 71.8 71.2 70.6 70.0 69.3 63.9 62.0
identical 72.1 71.8 71.2 70.6 70.0 69.3 63.8 61.9
unsupervised 72.1 71.8 71.2 70.6 70.0 69.3 63.4 61.3

MUSE

8K 72.0 72.6 70.7 70.9 68.8 68.9 59.2 58.7
1K 71.9 72.4 70.6 70.7 68.6 68.7 58.7 58.4
100 65.1 66.3 63.0 63.6 44.7 49.9 47.7 52.1
identical 71.0 71.9 69.9 70.5 68.1 68.4 47.9 51.3
unsupervised 72.2 72.6 71.0 71.2 68.7 68.9 8.0 6.5

Meemi (VecMap)

8K 72.5 71.9 71.8 70.9 70.9 70.3 65.1 63.4
1K 70.1 69.6 69.7 69.0 67.6 66.8 5.5 5.8
100 0.0 0.0 5.1 5.0 4.1 3.3 6.8 6.5
identical 71.0 70.4 69.4 68.7 69.3 68.6 56.1 54.1

Meemi (MUSE)

8K 73.1 72.9 72.4 71.9 70.7 70.1 64.1 62.0
1K 70.4 70.3 69.6 69.6 66.7 66.5 5.0 4.2
100 2.7 1.4 0.0 0.2 6.3 6.0 0.0 0.0
identical 70.6 70.9 68.7 68.8 68.0 67.7 46.6 48.2

Web corpora

Model Dictionary
English-Spanish English-Italian English-German English-Farsi

Pearson Spearman Pearson Spearman Pearson Spearman Pearson Spearman

VecMap

8K 71.0 70.6 69.2 68.8 70.9 70.4 35.9 33.5
1K 71.0 70.6 69.3 68.8 70.9 70.4 35.9 33.5
100 71.0 70.4 69.2 68.8 71.0 70.5 35.9 33.5
identical 71.0 70.6 69.3 68.8 70.9 70.4 35.9 33.0
unsupervised 71.1 70.5 69.2 68.8 70.9 70.4 35.7 33.4

MUSE

8K 71.9 71.9 70.4 70.4 70.5 70.2 29.7 23.9
1K 71.6 71.5 69.5 69.4 70.3 70.0 28.3 22.3
100 71.7 71.6 67.4 67.4 68.5 68.8 6.3 7.4
identical 69.9 70.1 67.3 67.5 70.1 69.7 17.5 14.5
unsupervised 71.7 71.6 69.4 69.4 70.3 70.0 29.6 23.8

Meemi (VecMap)

8K 71.5 70.9 70.4 70.0 72.3 71.8 40.2 39.0
1K 69.1 68.6 68.2 67.8 70.9 70.2 1.2 0.7
100 0.0 0.0 0.0 0.0 0.0 0.0 3.2 3.0
identical 70.1 69.5 69.2 68.4 71.2 70.6 31.6 28.5

Meemi (MUSE)

8K 72.5 72.3 71.5 71.1 72.5 72.1 36.4 33.0
1K 70.0 69.7 68.9 68.6 70.3 69.9 0.0 0.0
100 1.7 0.1 1.6 2.3 0.0 0.0 0.3 0.0
identical 69.2 69.1 67.4 66.9 70.1 69.4 17.3 14.5

Social media

Model Dictionary
English-Spanish English-Italian English-German English-Farsi

Pearson Spearman Pearson Spearman Pearson Spearman Pearson Spearman

VecMap

8K 48.5 47.4 53.9 51.8 51.3 49.5 31.1 30.3
1K 48.7 47.7 53.7 51.6 51.7 50.2 30.3 29.6
100 49.8 48.9 54.0 51.7 51.0 49.5 25.7 25.4
identical 48.4 47.1 54.2 51.9 51.8 50.3 27.8 26.5
unsupervised 48.0 46.9 53.8 51.5 30.1 31.2 4.2 2.4

MUSE

8K 48.8 47.6 51.0 49.3 48.5 48.6 43.3 42.2
1K 46.6 45.5 49.7 47.8 44.8 45.7 38.7 38.9
100 35.8 36.9 29.6 31.3 30.7 34.0 20.8 21.3
identical 48.1 47.7 50.1 49.8 45.6 46.8 30.5 32.4
unsupervised 9.9 10.9 50.7 49.7 12.4 13.0 6.9 4.7

Meemi (VecMap)

8K 51.2 50.1 56.1 53.6 55.0 53.8 45.2 43.1
1K 49.7 48.6 55.4 52.8 52.8 51.3 3.8 3.8
100 2.4 2.0 2.1 2.8 0.0 0.0 5.6 5.1
identical 51.7 50.1 56.2 53.4 52.7 51.3 29.9 28.6

Meemi (MUSE)

8K 51.8 50.4 54.8 52.5 53.1 52.0 48.9 46.6
1K 49.5 47.9 53.1 50.7 48.4 47.2 0.0 0.0
100 5.2 5.4 0.0 0.0 6.2 6.8 0.0 0.0
identical 49.6 48.2 53.1 51.4 48.4 47.7 30.5 30.6

Table B.7: Cross-lingual word similarity results in the SemEval-17 dataset (Camacho Co-
llados et al., 2017).

194 APPENDIX B. CROSS-LINGUAL ANALYSIS

Appendix C

Resumen largo en español Long
summary in Spanish

En este trabajo de tesis estudiamos dos enfoques para abordar los desaf́ıos en el proce-
samiento de contenidos textuales no estándar y multilingües generados por los usuarios tal
y como se pueden encontrar en la Web a d́ıa de hoy. Este tipo de textos son denominados a
menudo textos cortos o microtextos.

En primer lugar, presentamos un enfoque tradicional basado en pipelines discretos en
el que el texto de entrada es preprocesado para facilitar su ulterior tratamiento por otros
sistemas. Esto implica abordar el problema del multilingüismo, primero, identificando el
idioma de la entrada para, seguidamente, tratar los fenómenos de escritura no estándar
espećıficos de dicho idioma presentes en la entrada. Para ello se aplicarán técnicas de
normalización del texto y (re-)segmentación de palabras.

En segundo lugar, analizamos las limitaciones inherentes a este tipo de modelos discretos,
lo cual nos conduce a un enfoque centrado en el empleo de modelos continuos basados
en word embeddings (i.e., representaciones vectoriales). En este caso, el preprocesamiento
expĺıcito de la entrada es sustituido por la codificación de las caracteŕısticas lingǘısticas y
demás matices propios de los textos no estándar en el propio espacio de embedding (un
espacio vectorial). Nuestro objetivo es obtener modelos continuos que no sólo superen las
limitaciones de los modelos discretos, sino que también se alineen con el estado del arte
actual del Procesamiento de Lenguaje Natural (PLN), dominado por sistemas basados en
redes neuronales.

195

196 APPENDIX C. RESUMEN LARGO EN ESPAÑOL

C.1 Motivación

Los usuarios de Internet producen y comparten todo tipo de contenido escrito en una
amplia variedad de servicios y plataformas: páginas Web, correos electrónicos, mensajes de
chat, publicaciones en redes sociales, etc. El tipo de textos empleado, sobre todo, en estos
últimos casos, tiene dos rasgos espećıficos que lo diferencian de la mayoŕıa de los textos
escritos a mano, a la vez que lo acercan al lenguaje hablado (también referidos como textos
ruidosos): la espontaneidad y la informalidad. Esto da como resultado un estilo de escritura
fuertemente influenciado por hábitos de habla como, por ejemplo, sonidos prolongados
para dar énfasis (p. ej., “nooo”), uso frecuente de preguntas coletilla (p. ej., terminando
frases con “¿verdad?”) o el uso general de lenguaje descuidado o inapropiado (p. ej., “k
aces” en lugar de “¿qué haces?”), entre otros. Es decir, los usuarios de Internet tienden a
escribir como hablan.

Asimismo, aún cuando el inglés es el idioma predominante de Internet, este demuestra
un claro y creciente multilingüismo al acomodar contenidos en prácticamente cualquier
idioma. Para ilustrar esto, debeŕıamos mencionar que las plataformas de redes sociales más
populares, como Facebook o Twitter, son utilizadas por una gran cantidad de usuarios en
todo el mundo que publican contenidos textuales en su idioma o idiomas particulares de
elección. No solo eso, es también habitual el uso del code-switching, o la combinación de
palabras en distintos idiomas en una misma frase u oración (p. ej., “esta es mi house” en
lugar de “esta es mi casa”).

C.2 PLN para textos generados por el usuario: adaptación al
dominio

Una de las principales preocupaciones del presente trabajo radica en que, por lo general,
los sistemas de PLN están pensados para operar sobre textos estándar; por ejemplo, los
etiquetadores morfosintácticos, los analizadores sintácticos o los sistemas de clasificación
de texto, casi siempre se entrenan y evalúan con textos bien escritos. Por lo tanto, no tienen
en cuenta las caracteŕısticas lingǘısticas del tipo de textos empleados en la Web y en redes
sociales que describimos anteriormente, lo que conlleva una penalización en su rendimiento
a la hora de operar sobre textos generados por el usuario.

Llegados a este punto, existen dos enfoques generales para abordar este problema (Eisen-
stein, 2013):

C.3. ENFOQUE DISCRETO 197

Adaptación del sistema Reimplementar o rediseñar un modelo en particular para que
sea compatible con este tipo de textos propios de las redes sociales. La principal ventaja
de este enfoque es su alta integración, evitando aśı la necesidad de cualquier forma de
normalización o estandarización de la entrada en un módulo separado y, por lo tanto,
evitando posibles fuentes de errores que se propagaŕıan por nuestro sistema. Por contra, su
mayor desventaja es que seŕıa necesario adaptar todos los sistemas a los textos de las redes
sociales, lo que puede no resultar trivial, ya que estaremos exigiéndole a un sistema ya de
por śı complejo dar soporte a una gama mucho más amplia de entradas. Ejemplos de este
tipo de enfoque son el etiquetador morfosintáctico (Owoputi et al., 2013) y el analizador
sintáctico basado en dependencias (Kong et al., 2014) del framework TweetNLP.1

Adaptación de la entrada Mantener la implementación existente de un modelo que solo
acepta textos estándar como entrada e incluir un paso de preprocesamiento en el que
adaptamos la entrada para cumplir con los estándares de escritura correspondientes. La
ventaja en este caso es la de tener modelos separados para diferentes cometidos, reduciendo
aśı la complejidad de cada uno de ellos y aumentando la modularidad de nuestra solución.
Esta forma de disposición secuencial de pasos se denomina generalmente pipeline y es muy
común en PLN. Por otro lado, su principal desventaja es un bajo nivel de integración, lo
que facilita la propagación de errores de un paso al siguiente, a menudo con un efecto
acumulativo. Si bien existen métodos para mitigar este problema y que se basan en una
reorganización no lineal de los pasos en el pipeline o en grafos.

En este trabajo, hemos pasado de una implementación estricta del segundo enfoque
a una solución intermedia entre ambos: en lugar de adaptar la entrada, adaptamos la
representación interna en los modelos del sistema. El objetivo es mantener la modularidad
del segundo enfoque a la vez que la integración del primero; es decir, reducir la posibilidad
de propagación de errores y mejorar la integración.

C.3 Enfoque discreto: tareas para la adaptación de la entrada

En primer lugar, hemos considerado un enfoque basado en un pipeline discreto de preproce-
samiento en el que se tengan en cuenta la mayor cantidad posible de fenómenos de escritura
no estándar propios de este tipo de textos.

1http://www.cs.cmu.edu/~ark/TweetNLP/

http://www.cs.cmu.edu/~ark/TweetNLP/

198 APPENDIX C. RESUMEN LARGO EN ESPAÑOL

C.3.1 Identificación del idioma

Esta tarea consiste en determinar el idioma en el que está escrito un texto como primer paso
de cara a tratar los fenómenos multilingües de los textos de entrada. Aunque generalmente
se asume un escenario monolingüe en el que se usa un solo idioma en un texto dado, en
nuestro trabajo pasamos a soportar un escenario donde se puede dar el code-switching. Por la
misma razón, también consideraremos frases más cortas de lo habitual, ya que nos estamos
centrando mayormente en los textos de redes sociales y plataformas que imponen un ĺımite
máximo de longitud en caracteres, como en el caso de Twitter. La información sobre el
idioma obtenida en este paso nos permitirá elegir los módulos monolingües apropiados
posteriormente en nuestro pipeline de preprocesamiento sin tener ya que preocuparnos
por el posible multilingüismo de estos textos. Con esto pretendemos obtener el soporte
requerido para los textos multilingües generados por los usuarios Web.

Nuestra solución propuesta pasa por adaptar y reentrenar las herramientas de identifi-
cación automática del idioma existentes utilizando varios corpus de nuestra elección, para
que aśı todos compartan el mismo punto de partida. Con este desarrollo participamos en la
tarea competitiva TweetLID (Zubiaga et al., 2014, 2016), donde el dominio de aplicación
propuesto era el de tuits escritos tanto en inglés como en los idiomas de uso en la Peńınsula
Ibérica: español, portugués, gallego, vasco y catalán.

Con respecto a los resultados obtenidos, debemos mencionar cómo las herramientas
existentes que muestran un buen rendimiento en otros dominios más tradicionales, o incluso
textos reducidos, no son tan precisas en nuestro caso de uso. Podemos pues concluir que el
problema de la identificación del idioma no es aún un problema resuelto en PLN, dadas las
dificultades mostradas por las herramientas existentes para abordar las particularidades de
nuestro entorno experimental. Esta situación se pone especialmente de manifiesto cuando
se trata de discernir entre idiomas similares que se usan conjuntamente en un contexto en
el que uno de ellos está subrepresentado en comparación con el resto, como es el caso del
gallego y el español.

C.3.2 Normalización de microtexto

Este es el paso central que se ocupa de los fenómenos monolingües en nuestro pipeline
de preprocesamiento.2 Idealmente tendremos tantos módulos de normalización como
idiomas considerados, y elegiremos entre ellos de acuerdo con la salida del paso anterior de
identificación del idioma. El objetivo de esta tarea es obtener una versión más estándar del
texto de entrada normalizando cada una de sus palabras. Para ello, entre otros procesos, se

2Se supone que nuestro pipeline de preprocesamiento es parte de otro más grande que incluiŕıa una tarea
principal para la cual realizamos la adaptación de la entrada.

C.3. ENFOQUE DISCRETO 199

expanden las abreviaturas (p. ej., “q” se normalizaŕıa como “que” o “qué”), se corrigen las
variaciones ortográficas (p. ej., “aber” se reemplazaŕıa por “a ver” o “haber”) y se elimina el
énfasis (p. ej., “siiii” se normalizaŕıa como “śı”).

Nuestro enfoque para abordar esta tarea se basa en el marco tradicional de dos pasos
consistente en: (1) la generación de candidatos de normalización, para el cual utilizamos
un corrector ortográfico y un diccionario de normalización, seguida por (2) la selección
de candidatos, implementada a través de un modelo de lenguaje a nivel de palabra y un
algoritmo de búsqueda. Nuestro sistema depende de este modelo de lenguaje en la última
etapa del proceso en un intento de poner menos énfasis en la señal de supervisión humana,
y aśı hacer que el sistema pueda adaptarse más fácilmente a los cambios en un ámbito tan
dinámico como el de los textos generados por los usuarios (Bertaglia and Nunes, 2016;
Eisenstein, 2013; Han et al., 2013a). Sin embargo, hemos podido también comprobar que
un modelo de lenguaje entrenado con grandes cantidades de texto estándar o con una
pequeña cantidad de tuits normalizados no es capaz de elegir los candidatos adecuados,
aun cuando estos hab́ıan sido generados en pasos anteriores.

Asimismo, hemos procurado llegar a una solución modular y adaptable, haciendo para
ello uso de los patrones de diseño adecuados, que a la vez nos permitiese iterar fácilmente
para su mejora continua aśı como para su adaptación a diferentes escenarios. En esta ĺınea,
en un primer momento desarrollamos una versión para el español que luego fue portada al
inglés para participar en la tarea competitiva no 2 del W-NUT 2015 (Baldwin et al., 2015).

C.3.3 Segmentación de palabras

Esta puede considerarse una subtarea de la anterior que, de hecho, debeŕıa situarse antes
de ella en el pipeline. Puesto que estamos considerando la tarea de normalización a nivel
de palabra, seŕıa deseable poder partir de un texto de entrada correctamente segmentado
donde las palabras están claramente delimitadas. Sin embargo, este no siempre es el caso
en los textos generados por el usuario ya que, por ejemplo, las segmentaciones no estándar
de palabras se pueden usar para aportar énfasis (p. ej., “im posible” en lugar de “imposible”)
o, simplemente, pueden ser el resultado de errores ortográficos (p. ej., “aver” por “a ver”).
Si bien la normalización de la segmentación de palabras se podŕıa integrar propiamente en
el módulo principal de normalización, hemos optado por implementar este proceso aparte
en su propio paso del pipeline, antes del de normalización, para aśı preservar una mayor
modularidad.

Nuestra solución para abordar el problema de la segmentación de palabras consta de
dos componentes: un algoritmo de beam search, que genera y elige entre los posibles
candidatos de segmentación de forma incremental; y un modelo de lenguaje a nivel de

200 APPENDIX C. RESUMEN LARGO EN ESPAÑOL

byte o carácter, que permite que el algoritmo pueda clasificar los candidatos, implementado
como una red neuronal recurrente o modelo de n-gramas. En la parte experimental hemos
comparado el rendimiento de diferentes configuraciones de nuestro sistema, WordSeg-
ment (Jenks, 2017) y Microsoft Word Breaker (Wang et al., 2011) sobre textos escritos en
español, inglés (tanto textos estándar como microtextos), alemán, turco y finlandés. En
general, los mejores modelos neuronales obtienen las mejores cifras de precisión aunque,
sorprendentemente, el rendimiento de los modelos más simples de n-gramas es cercano
al de sus contrapartidas neuronales siendo notablemente más rápidos. En comparación
con otros sistemas disponibles públicamente, como WordSegment y Word Breaker, nuestro
enfoque obtuvo, en general, mejores resultados.

C.4 Limitaciones del enfoque discreto y transición a un modelo
continuo

Los módulos que resuelven cada una de las tareas de preprocesamiento anteriormente
descritas se organizaron en un pipeline, una estructura de amplio uso en PLN. Si bien esto
nos permite preservar la modularidad deseada, lo hace a cambio de una baja integración
entre los módulos en los pasos secuenciales, ya que la información fluye solo hacia adelante.
Sin embargo, las dependencias entre tareas en un pipeline podŕıan no ser enteramente 1:1
y unidireccionales; p. ej., el resultado del paso final podŕıa usarse para obtener un mejor
resultado en el primer paso, lo que a su vez ayudaŕıa al segundo, y aśı sucesivamente. Para
resolver este problema, Valls-Vargas et al. (2015) propusieron utilizar pipelines no lineales
y Roth and Yih (2004) fueron más allá al reemplazar esta estructura con grafos de tareas
interconectadas. En ambos casos, la integración mejora con respecto al pipeline lineal pero
no permitiŕıan resolver los problemas particulares presentados por nuestro caso de uso,
donde el orden entre el preprocesamiento y las tareas principales debe ser preservado si
queremos que dicho preprocesamiento sea de alguna utilidad.

A continuación analizaremos en detalle los problemas que presenta nuestro enfoque
discreto actual junto con otras posibles soluciones, también discretas, que no resultan del
todo apropiadas o no acaban de resolver estos problemas. Posteriormente, y en vista de tales
circunstancias, propondremos la transición hacia un enfoque basado en modelos continuos
que śı resulta apropiado para resolver los desaf́ıos encontrados.

C.4.1 Propagación de errores

Esta es una consecuencia inmediata de cualquier proceso en forma de cascada que se base
en encadenar las mejores soluciones de cada una de las etapas que lo componen. De este

C.4. LIMITACIONES Y TRANSICIÓN 201

modo, dado un pipeline de varios pasos, el error en el último paso no es simplemente la suma
de los errores en los anteriores, sino un múltiplo de esa suma. En los pasos intermedios,
hay dos fuentes de errores de salida que interactúan entre śı: (1) entradas incorrectas, que
probablemente derivarán a su vez en respuestas incorrectas; y (2) las imprecisiones del
modelo utilizado en ese paso, ya que es realista asumir que ningún modelo obtiene una
precisión del 100% en ninguna tarea de PLN.

Tomemos, a modo de ejemplo, la oración no estándar en gallego “o meu móbil é
bnito” (en español “mi móvil es bonito”). Si el módulo de identificación del idioma lo
catalogase erróneamente como texto en español, un posible resultado incorrecto del módulo
de normalización posterior seŕıa “o mejor móvil e Benito”, una oración sin sentido pero
formada por palabras estándar en español. En este caso, la identificación errónea inicial del
idioma provoca la normalización incorrecta de las primeras cuatro palabras, mientras que
el error en la última es ya propio del módulo de normalización, siendo la respuesta correcta
“bonito” en lugar de “Benito”.

Este problema ha sido estudiado en la literatura y existen varias técnicas y diferentes
arquitecturas para minimizar la propagación de errores pero que, sin embargo, no resuelven
el problema en nuestro caso:

1. Una alternativa común es considerar un k-best pipeline (Wellner et al., 2004; Sutton
and McCallum, 2005), donde cada paso genera una clasificación de sus k mejores
predicciones en lugar de un único resultado. Este esquema nos permite abordar el
problema de la propagación de errores hasta cierto punto, puesto que ya no estamos
limitados a un proceso en cascada de una sola predicción donde todas las decisiones
son locales para cada paso. Sin embargo, elegir el valor correcto de k podŕıa no ser
trivial. Para resolver este problema, Finkel et al. (2006) propone, a su vez, modelar los
pipelines como redes bayesianas. En conjunto, si bien estas soluciones pueden reducir
la propagación de errores, siguen siendo construcciones unidireccionales, por lo que
no acaban de resolver el problema que nos ocupa.

2. Por contra, los pipelines no lineales śı permiten que la información fluya también hacia
atrás y afecte los resultados de los pasos anteriores, haciendo uso para ello de bucles
de retroalimentación y un proceso iterativo de refinamiento de los resultados. En
general, el diseño de estas estructuras depende de las tareas involucradas, conectando
entre śı pasos espećıficos a través de bucles de retroalimentación donde la información
de una etapa puede usarse o integrarse efectivamente en otra anterior, generalmente
como entrada complementaria. Aún aśı, sigue habiendo una linealidad estricta dentro
de estos bucles, lo que todav́ıa podŕıa contribuir a la propagación de errores. Otro
problema es que agregar o reemplazar módulos en el pipeline ya no es tan sencillo

202 APPENDIX C. RESUMEN LARGO EN ESPAÑOL

(p. ej., en qué paso deben ubicarse), al igual que establecer los propios bucles de
retroalimentación.

3. Yendo más allá del diseño en forma de pipeline, algunos autores han explorado el uso
de grafos para eliminar por completo las restricciones de ordenamiento secuencial de
las tareas y, de este modo, eliminar el problema de propagación de errores. El resultado
es similar a una combinación entre un pipeline no lineal y uno basado en k predicciones
donde todos los pasos están conectados entre śı mediante enlaces bidireccionales y
donde las mejores soluciones locales se eligen en función de restricciones globales.
Desafortunadamente, este enfoque no es válido cuando se considera una configuración
de preprocesamiento, dado que en este caso śı se requiere un ordenamiento secuencial
entre las tareas de preprocesamiento y las principales.

C.4.2 Fragmentación del contexto

La fragmentación del contexto ocurre cuando tenemos datos de entrada heterogéneos para
una tarea espećıfica pero donde, a la vez, cada parte homogénea debe ser procesada por
un modelo especializado diferente. Este es precisamente nuestro caso cuando diferentes
partes de la entrada están escritas en diferentes idiomas (el denominado code-switching).
En ese caso, la entrada debe dividirse en los segmentos monolingües que la constituyen
para que, seguidamente, cada uno de ellos sea procesado de forma aislada empleando su
modelo monolingüe correspondiente. Claramente, cuando se procesa una parte del texto
escrito en un idioma determinado, el modelo encargado de ello no tiene acceso a las partes
adyacentes escritas en otros idiomas, lo que reduce la cantidad de información contextual
disponible. Como ejemplo, considérese la oración “let’s go to my ksa” (que podemos traducir
directamente como “vamos a mi ksa”). Aqúı, no tenemos contexto disponible suficiente
para normalizar la palabra “ksa” (“casa”), ya que las palabras circundantes están escritas en
un idioma diferente y, por lo tanto, son procesadas aparte por otro modelo. Dos posibles
soluciones para evitar este problema seŕıan:

1. Usando solo modelos multilingües en nuestros sistemas y eliminando el paso de
identificación del idioma, algo que va frontalmente en contra de la modularidad.

2. Homogeneizando la entrada al traducir todas las partes a un idioma común, lo que
permite centrarnos en un solo idioma en los pasos restantes. Su principal desven-
taja es que estaŕıamos introduciendo en nuestro pipeline las complejidades de la
traducción automática, además de una tarea adicional. Sin embargo, una solución
derivada podŕıa ser reemplazar las palabras, sea cual sea el idioma, con sus representa-

C.4. LIMITACIONES Y TRANSICIÓN 203

ciones vectoriales correspondientes (embeddings), lo que serviŕıa como un lenguaje
intermedio que homogeiniza el contexto (como se explicará a continuación).

En cualquier caso, y con respecto a las alternativas al pipeline lineal vistas anteriormente, es
importante resaltar que ninguna de ellas considera siquiera el problema de fragmentación
del contexto.

C.4.3 Hacia una aproximación continua

Los sistemas de PLN de última generación basan su funcionamiento principalmente en
técnicas de aprendizaje automático que operan sobre vectores de features (de valores reales)
que describen los elementos de entrada discretos sobre un dominio multidimensional
continuo. Como consecuencia, y suponiendo que usemos este tipo de modelos de apren-
dizaje automático para implementar los diferentes pasos que conforman nuestro pipeline,
en cada uno de ellos seŕıa necesario realizar a la entrada una transformación discreta a
continua (codificación) y luego una transformación continua a discreta (decodificación).
Estas continuas codificaciones y decodificaciones conllevaŕıan una pérdida de información
que se encuentra en la ráız del problema de propagación de errores. Obsérvese aqúı que
el procesamiento efectivo de la entrada no se realiza sobre su forma discreta, sino sobre
su representación continua, y que una salida (o predicción) discreta solo será realmente
útil al final del pipeline ya que es el usuario quien requiere un resultado fácilmente inter-
pretable. Si además consideramos que las tareas de preprocesamiento están, por definición,
ubicadas antes de las tareas principales en las que está interesado el usuario, debeŕıamos
cuestionarnos si de verdad vale la pena obtener resultados discretos intermedios en cada
paso del pipeline.

Más allá de las estructuras vistas hasta ahora, los sistemas modernos de PLN dependen
cada vez más de enfoques basados en redes neuronales (Plank et al., 2016; Eshel et al.,
2017; Devlin et al., 2019). Durante la última década este tipo de modelos de aprendizaje
automático han estado obteniendo un rendimiento de estado del arte gracias a la mayor
abundancia de datos de entrenamiento, recursos computacionales y nuevos algoritmos de
entrenamiento. Dada su gran potencia y flexibilidad, las redes neuronales tienden a ser
entrenadas como sistemas de extremo a extremo al proporcionarles solo las entradas sin
procesar para obtener las salidas deseadas correspondientes y, por lo tanto, con poco o
muy poco preprocesamiento aplicado, eliminando aśı la necesidad de las tareas propuestas
anteriormente.

Pero más interesante es el hecho de que las redes neuronales tienen el potencial de evitar
el compromiso entre modularidad e integración que hemos visto hasta ahora al facilitar la
transferencia de conocimiento a través de mecanismos generales como el pretraining y el

204 APPENDIX C. RESUMEN LARGO EN ESPAÑOL

fine tuning (Erhan et al., 2010; Howard and Ruder, 2018). Básicamente, esto nos permite
entrenar un modelo en una tarea espećıfica, extraer la información codificada en la red al
final del proceso (es decir, las embeddings) y usarla para entrenar otro modelo para una
tarea diferente, que puede hacer uso de esa información para mejorar su rendimiento. De
hecho, este proceso puede repetirse sobre más modelos y más tareas codificando más y más
conocimiento en las redes resultantes, lo que nos permite obtener sistemas con un grado de
integración alto.

En nuestro caso, reemplazamos las tareas de preprocesamiento consideradas anterior-
mente con el pretraining de embeddings que codifican información sobre fenómenos propios
de los microtextos.3 Estas embeddings se utilizaŕıan al entrenar otros modelos enfocados a
tareas espećıficas de PLN como pueden ser el etiquetado morfosintáctico, el análisis de sen-
timientos o el análisis sintáctico basado en dependencias. Dichos modelos se beneficiaŕıan
del conocimiento codificado en las embeddings. En particular, reemplazamos el intercambio
de información entre tareas por medio de śımbolos discretos (p. ej., palabras, etiquetas,
oraciones, etc.) que constituyen las entradas y salidas de las diferentes etapas del pipeline,
con construcciones matemáticas continuas (es decir, las embeddings).

Con respecto a los problemas de propagación de errores y fragmentación del contexto,
los cuales analizamos en los apartados anteriores, el primero puede abordarse mediante una
integración mejorada del sistema, mientras que el segundo puede resolverse traduciendo
o transformando las palabras de entrada en word embeddings multilingües (Artetxe et al.,
2018a; Conneau et al., 2018a; Ammar et al., 2016; Mikolov et al., 2013a) que constituyen
de este modo un lenguaje intermedio común. En este caso, las traducciones de palabras (p.
ej., “casa” - “house”, “gato”-“cat”, etc.) pasaŕıan a estar cercanas entre śı en el espacio de
embedding, lo que permitiŕıa emplear directamente modelos entrenados en estas representa-
ciones continuas multilingües sin requerir un paso expĺıcito de traducción automática para
homogeneizar el contexto.

Con respecto a los pasos incluidos en nuestro pipeline de preprocesamiento, las word
embeddings se pueden utilizar para codificar las particularidades derivadas de los fenómenos
propios de los textos generados por los usuarios para reemplazar su procesamiento expĺıcito.
De este modo, se podŕıan usar word embeddings multilingües en lugar del paso de iden-
tificación del idioma. Además, el paso de normalización, que se ocupa de las variantes
no estándar de palabras, también puede evitarse si consideramos que las variantes léxicas
de palabras en un idioma particular debeŕıan tener representaciones vectoriales similares
cuando se entrenan en grandes cantidades de textos estándar y no estándar (Bertaglia

3Cuando esta codificación se hace a nivel de palabra, obtenemos las denominadas word embeddings. Las
herramientas más conocidas que permiten obtenerlas son word2vec (Mikolov et al., 2013), GloVe (Pennington
et al., 2014) y fastText (Bojanowski et al., 2016)

C.5. EMBEDDINGS MULTILINGÜE 205

and Nunes, 2016; van der Goot and van Noord, 2017; Ansari et al., 2017; Sridhar, 2016).
Todo esto significa que, por ejemplo, para los términos “amigo”, “amgo”, “frnd” y “ friend”,
debeŕıan obtenerse embeddings cercanas entre śı en el espacio de embedding, lo que indica
que dichos términos debeŕıan ser tratados de manera similar por otros modelos de PLN, aún
sin dejar de ser igualmente capaces de distinguir entre ellas.

C.5 Embeddings multilingüe

Para obtener nuestras embeddings multilingüe, hemos desarrollado un método de post-
procesamiento, que hemos denominado Meemi (por “Meeting in the Middle”), que mejora
la integración de espacios monolingües inicialmente aislados y posteriormente alinea-
dos mediante herramientas del estado del arte como VecMap (Artetxe et al., 2018a) y
MUSE (Conneau et al., 2018a).

Para mejorar dicha integración, aplicamos sobre estos alineamientos una transformación
lineal no restringida que se aprende haciendo corresponder las traducciones de palabras
con sus representaciones promedio. Notablemente, hemos ido más allá de la configuración
bilingüe habitual en estas herramientas y hemos mostrado también cómo Meemi puede
extenderse naturalmente a un número arbitrario de idiomas que acaban integrados en
un único espacio vectorial compartido. En este caso, utilizamos métodos ortogonales en
el primer paso de alineación que solo transforman el espacio de embedding de uno de
los lenguajes (origen) mientras deja intacto el otro espacio (destino), que se convierte
en el espacio vectorial multilingüe. Este proceso se repite para los espacios de origen
correspondientes a cada idioma restante.

Con respecto a la evaluación, hemos considerado no solo idiomas indoeuropeos ha-
bituales, tales como inglés, español, italiano y alemán, sino también otros idiomas más
distantes, como el finlandés, el farsi o el ruso. Los resultados obtenidos muestran que Meemi
es capaz de mejorar los resultados logrados por los métodos de alineamiento básicos, con
ganancias significativas cuando se aplica sobre variantes ortogonales y también cuando se
consideran idiomas distantes. Los buenos resultados obtenidos con los modelos multilingües
son quizás los más esperanzadores de todos ellos, dado que demuestran que integrar más
de dos idiomas en un espacio vectorial compartido es altamente beneficioso en muchas
ocasiones.

206 APPENDIX C. RESUMEN LARGO EN ESPAÑOL

C.6 Embeddings robustas para microtextos

Los modelos de word embeddings como word2vec (Mikolov et al., 2013), GloVe (Pennington
et al., 2014) o fastText (Bojanowski et al., 2016) ya son capaces de por śı de agrupar
variantes estándar y no estándar de palabras (p. ej., “porque” y “pq”) cuando se les
proporciona un corpus de entrenamiento lo suficientemente grande que incluya tales
variantes (Sumbler et al., 2018). Teniendo esto en cuenta, en este trabajo de tesis se propone
ir un paso más allá con una modificación del modelo skipgram de fastText destinada a
mejorar el rendimiento de las word embeddings resultantes en textos ruidosos al tiempo que
conserva el rendimiento en los textos estándar. Para conseguirlo, introducimos un nuevo
conjunto de palabras en el proceso de entrenamiento, que denominamos bridge-words (o
palabras puente), cuyo objetivo es conectar de una forma más deliberada palabras estándar
con sus contrapartidas ruidosas. Hasta donde sabemos, este es el primer intento de tratar
expĺıcitamente este tipo de textos ruidosos a nivel de word embeddings, yendo más allá del
soporte para palabras OOV de modelos como fastText.

Hemos evaluado el rendimiento de nuestra propuesta comparándola con otros modelos
de sobra conocidos como word2vec y fastText en una amplia gama de tareas intŕınsecas y
extŕınsecas. Además de la habitual tarea de similitud de palabras, incluimos la detección
de valores at́ıpicos (Camacho-Collados and Navigli, 2016), 26 tareas del benchmark SentE-
val (Conneau and Kiela, 2018) y el análisis de sentimientos en Twitter correspondiente a
varias ediciones del taller SemEval (Nakov et al., 2013; Rosenthal et al., 2014; Nakov et al.,
2016). Los resultados muestran que, si bien el rendimiento de nuestro mejor modelo en
textos estándar se mantiene en comparación con los modelos de referencia, generalmente
los supera en textos más ruidosos con márgenes más amplios a medida que aumenta el
nivel de ruido.

Estas embeddings para textos ruidosos encuentran su más clara aplicación dentro de
modelos entrenados de extremo a extremo que eliminan la necesidad de pasos de pre-
procesamiento que modifiquen la entrada original y, que como se explicó anteriormente,
podŕıan introducir errores que luego se propagaŕıan a otras partes de nuestros sistemas.
Por otro lado, cabe destacar que van der Goot et al. (2017) también ha demostrado que la
normalización de textos ruidosos no produce una mejora clara sobre el simple uso de las
word embeddings en ciertos casos.

C.7 Conclusiones y trabajo futuro

Los resultados obtenidos después de una extensa experimentación muestran la capacidad de
las word embeddings para dar un soporte efectivo por śı mismas a los fenómenos multilingües

C.7. CONCLUSIONES Y TRABAJO FUTURO 207

y no estándar propios de los textos generados por usuarios. Además, todo esto se logra
dentro de un marco conceptual simple y modular que no necesita sacrificar la integración
de sistemas. Dichos modelos de word embeddings pueden emplearse fácilmente como
un elemento fundamental en redes neuronales de última generación que, a su vez, son
utilizadas en prácticamente cualquier tarea de PLN.

Dicho esto, cabe señalar que en esta ocasión nuestro objetivo no era obtener una mejora
en el rendimiento con respecto a los enfoques discretos tradicionales, sino mostrar que
los modelos continuos pueden superar algunas de limitaciones cruciales de aquellos que
impondŕıan un ĺımite superior a su rendimiento y utilidad.

Después de la transición de modelos discretos a continuos en el curso de esta disertación,
las futuras ĺıneas de investigación se centrarán principalmente en mejorar nuestros modelos
de word embeddings robustas y multilingüe.

210 APPENDIX C. RESUMEN LARGO EN ESPAÑOL

