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Abstract
We describe an approach to acquiring a knowl-
edge representation applied on technical docu-
ments. We focus on corpus with a strong un-
derlying structure, which allows us to follow a
number of precise patterns of presentation. Our
goal is to provide effectiveness by reducing both
time and cost, as well as subjectivity.
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1 Introduction

A number of proposals exploit parsing in order to per-
mit semantic relations to emerge from text, by combin-
ing term extraction and term clustering facilities. The
former acquire term candidates from tagged corpora
through a shallow grammar. Term clustering groups
and classifies these candidates in a graph reflecting
the relations between them. So, some authors propose
conflating candidates that are variants of each other
through a self-indexing procedure [7], while others [5]
post-process parse trees so as to emphasize the depen-
dency relationships between the content words.
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Fig. 1: Parsing shared-forest from DyALog

In our approach, the acquisition phase is performed
from a tree-adjoining grammar (tag) [8], generated
from a source meta-grammar (mg) [4]. The clustering
phase is performed on the basis of an iterative algo-
rithm inspired by an error-mining strategy [10].

2 The running corpus

We introduce the strategy from a botanic corpus. We
concentrate on the ”Flore du Cameroun”, which is

composed of about forty volumes in French, each one
running to about 300 pages, organized as a sequence of
sections, each one dedicated to one species and follow-
ing a systematic structural schema. Sections include
a descriptive part enumerating morphological aspects
such as color, texture, size or form. This implies the
presence of nominal phrases, adjectives and also ad-
verbs to express frequency and intensity, and named
entities to denote dimensions.

3 The parsing frame

We choose to work with tags [8], a grammatical for-
malism that has given rise to a lot of interest in
the modeling of syntax in natural language processing
(nlp) by combining properties such as the principle of
extended domain of locality1 and a polynomial time
complexity, making it appropriate for practical pur-
poses. Using DyALog [3] as parsing frame, we apply
a tabular interpretation [1], which implies an efficient
treatment of non-deterministic entries.
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Fig. 2: Graph of dependencies from DyALog

The text is parsed on the basis of the mg concept [4],
which permits the introduction of a high degree of
abstraction in the design of nlp parsers by involv-
ing elementary constraints re-grouped in classes, these
themselves inserted in a hierarchy of multiple heritage.
This allows descriptions to be progressively refined,
which is of particular interest when we are describ-
ing complex linguistic behavior. DyALog [3] returns

1 it allows constraints to be defined at more than one level of
the parse as compared to context-free rules and permits the
use of atomic features.



total or partial parsing shared-forests from a possibly
non-deterministic input on the basis of a tag of large
coverage for French, as we can see in Fig. 1 for the sen-
tence ”feuille à nervure denticulée”, in future our run-
ning example. Arrows represent binary dependencies
between words through some syntactic construction.
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Fig. 3: Another parsing shared-forest from DyALog

From this shared-forest, we can extract a graph
of dependencies of the type governor/governed, as
is shown in Fig. 2 by using dotted-lines going
from the governor term to the governed one. The
probability of a dependency occurence is labeled
P(word1:c1,[label],word2:c2), being word1 the
governor word, c1 the lexical category of the word1,
label the tag of the dependence, word2 the governed
word and finally, c2 the lexical category of the word2.
Rectangular shapes represent clusters, that is, forms
that refer to a position in the input string and all
the possible lemmas with their corresponding lexical
categories. We call the latter nodes, represented by
ellipses. Lexical ambiguities correspond to clusters
containing nodes with different lemmas, or the same
lemma associated to different lexical categories.

3.1 Lexical ambiguities

The morpho-syntactic phase consists of a pipeline
named Sxpipe [9], that concatenates a number of tasks
such as chunking, entity recognition and tagging.

In spite of the strategy considered, tagging often be-
comes a non-deterministic and even incomplete task,
especially in dealing with an encyclopedic corpus with
a high degree of unknown words, as is shown in Fig. 1,
where the word ”denticulée” ("dentate") is initially
labeled as unknown word (uw) with three possible as-
sociated lexical categories: verb (v), adjective (adj)
and common noun (nc). These ambiguities cannot al-
ways be solved at lexical level and, in order to avoid
prematurely discarding useful interpretations, all the
available information should be translated to be con-
sidered at parsing time, which introduces an additional
factor of syntactic ambiguity.

It is the case of ”feuilles à limbe teintées de rose”
that we could interpret as "rose’s tinted laminar
leaves", as "rose-tinted laminar leaves" or as
"tinted laminar rose leaves". In the first case,
the word ”rose” would be a noun related to ”teintées
("tinted"), while in the other ones it is an adjective
related to ”feuilles” ("leaves"); as is shown in Fig. 3.

3.2 Syntactic ambiguities

Parsing in nlp is also an incomplete task because it
deals with shallow/partial strategies focused on iden-

tifying dependencies between terms that are close in
the text, as in the case of noun sentences involving:

1. Prepositional attachments, as in ”feuille à
nervure denticulée”, that we could locally trans-
late in two ways: "leaf with dentate vein"
or "dentate leaf with vein". It becomes here
impossible to establish if the word ”denticulée”
("dentate") relates to ”feuille” ("leaf") or to
”nervure” ("vein"), as is shown in Fig. 1.

2. Coordination structures relating properties to a
list of nouns, as [9] in ”des sépales ovales-aigus,
glabres ou éparsement hérissés” ("Sepals
oval-pointed, smooth or scattered
bristly"), where the property ”hérissés”
("bristly") could be attached to ”glabres”
("smooth") or to ”éparsement” ("scattered").

both of them causing local non-determinism.

4 Knowledge acquisition

Once we recover the graph of dependencies, we extract
the latent semantics in the document by compiling ad-
ditional information from the corpus in order to elim-
inate useless dependencies. So, the lexical ambiguity
in Fig. 3 should be decided in favor of the first al-
ternative ("rose’s tinted laminar leaves"), be-
cause we have the certainty that plants with rose col-
ored leaves do not exist. Given that we are dealing
with a corpus on botany, we should confirm that ex-
treme by exploring it in-depth. That is, to solve the
ambiguity we just need the information we are look-
ing for; which leads us to consider an iterative learning
process to attain our goal.

In similar terms we describe the syntactic disam-
biguation process for the example in Fig. 1, by se-
lecting "dentate leaf with vein" as the correct in-
terpretation. Also, we should associate ”hérissés”
("bristly") to ”éparsement” ("scattered") in
the sentence ”des sépales ovales-aigus, glabres
ou éparsement hérissés” ("Sepals oval-pointed,
smooth or scattered bristly"). So, term extrac-
tion is the starting point to formalize such a task.

4.1 Term extraction

We consider two principles. Firstly, the distributional
semantic model [6] establishing that words whose
meaning is close often appear in similar syntactic con-
texts. Also, we assume that terms shared by these
contexts are usually nouns and adjectives [2], which
means we have chosen to work with a nominal regime.

Term extraction is organized around the recognition
of generic lexical and/or syntactic patterns. On the
lexical side, we take advantage of linguistic marking in-
formation, focusing on conjunctions ”X et X” ("X and
Y"), interval definitions of type ”de X à Y” ("from X
to Y"); or relations involving more explicit physical
information such as ”en forme de X” ("in form of
X") or ”de couleur X” ("of color X"). The result
serves to acquire simple concepts such as the value for
color, form or domain properties; or to detect enu-
merations that can propagate some of these values.



1. P (feuille:uc, [à-1], nervure:uc)local(0) =

Pc(feuille:uc)local Pc(nervure:uc)local
Pdep ini(feuille:uc, [à-1], nervure:uc)

ΣX,Y Pc(feuille:X)local Pc(nervure:Y)local

2. P (feuille:uc, [à-1], nervure:uc)global(n+1) =
Σn

i=1P (feuille:uc,[à-1],nervure:uc)local(i)

#deplocal(n)

3. P (feuille:uc, [à-1], nervure:uc)local(n+1) =

P (feuille:uc, [à-1], nervure:uc)local(n)

P (feuille:uc, [à-1], nervure:uc)global(n+1)

ΣX,Y P (feuille:X, [à-1], nervure:Y)local(n)

P (feuille:X, [à-1], nervure:Y)global(n+1)

Table 1: Extraction of dependencies for ”feuille à nervure denticulée”

Syntactic patterns revolve around the following rela-
tions involving nouns and/or adjectives:

• Noun adjective: like ”feuilles elliptiques”
("elliptical leaves").

• Noun sth noun: like ”fleur avec pétale” ("flower
with petal").

• Noun sth adjective: like ”pétale avec du rouge”
("petal with red").

• Adjective adjective: like ”ovale elliptique”
("elliptical oval").

• Adjective sth adjective: like ”rugueux ou poilu”
("coarse or hairy").

while other ones, especially involving adverbs, will be
considered as future work. So, the vocabulary is con-
centrated around these terms that from now on we call
pivot terms.

4.2 Term clustering

We simplify the graph of dependencies in order to ob-
tain the most pertinent ones. We look for these, which
we baptize as strong dependencies, around pivot terms.

4.2.1 A simple syntactic constraint

We require a simple syntactic constraint establishing
that a governed word can only have one governor. So,
for example, in the sentence of Fig. 1, ”denticulée”
("dentate") is governed by ”feuille” ("leaf"), but
also by ”nervure” ("vein") and, in consequence, we
should eliminate one of these dependencies. No other
topological restrictions are considered. So, a governor
word can have more than one governed one; as in the
second interpretation of Fig. 1 ("dentate leaf with
vein"), where ”feuille” ("leaf") is the governor for
”nervure” ("vein") and ”denticulée” ("dentate").
Also, one word could be governor and governed at the
same time, as is the case of ”nervure” ("vein"), that
is the governor for ”denticulée” ("dentate"), but is
also governed by ”feuille” ("leaf").

Given that our graph of dependencies is a parse
shared-forest, we have chosen to work with a term clus-
tering technique that is inspired by an error-mining
proposal originally designed to identify missing and

erroneous information in parsing systems [10]. Intu-
itively, we focus on detecting and later eliminating
those dependencies that are found to be less proba-
ble in sentences including terms with a low frequency.

4.2.2 The iterative process

We combine two complementary iterative processes.
For a given iteration, the first one computes the prob-
ability of each dependency; taking as starting point the
statistical data provided by the original error-mining
strategy and related to the lexical category of the pivot
terms. The second process computes, from the former
one, the most probable semantic class to be assigned
to terms involved in the dependency. So, in each iter-
ation, we look for both semantic and syntactic disam-
biguation, each one profiting from the other. A fixed
point assures the convergence of the strategy [10].

We illustrate term clustering on our running exam-
ple in Fig. 2, focusing on the dependency labeled [à-1]
relating ”feuille” ("leaf") and ”nervure” ("vein");
talking without distinction about weight, probability
or preference to refer the same statistical concept. So,
from Table 1, we have that:

1. To begin with, we compute the local probability of
the dependency in each sentence, which depends
on the weight of each word, this in turn depending
on the word having the correct lexical category.
To start the process, first category assumptions,
denoted by Pc, are provided by the error-mining
algorithm [10]. We take also into account the
initial probability for the dependency considered,
Pdep ini, a simple ratio on all possible deriva-

tions involving the lexical categories concerned.
The normalization is given by the preferences for
the possible lexical categories involving each one
of the terms considered and here represented by
variables X and Y.

2. We re-introduce the local probabilities into the
whole corpus locally in the sentences, in order to
re-compute the weights of all possible dependen-
cies, estimating then globally the most probable
ones. The normalization is given by the number
of dependencies connecting the terms considered,
#dep.

3. The local value in the new iteration should take
into account both the global preferences and the



4. P (feuille:uc:org, [à-1], nervure:uc:org)local(0) =

P (feuille:uc, [à-1], nervure:uc)local(0)
P (feuille:uc:org)local(0)
P (nervure:uc:org)local(0)

ΣX,Y P (feuille:uc:X)local(0) P (nervure:uc:Y)local(0)

5.

5.1 P (feuille:uc:org, [à-1], X)global(n+1) =
ΣX P (feuille:uc:org,[à-1],X)local(n)

#deplocal(n)(feuille)

5.2 P (Y, [à-1], nervure:uc:org)global(n+1) =
ΣY P (Y,[à-1],nervure:uc:org)local(n)

#deplocal(n)(nervure)

5.3
P (feuille:uc:org, [à-1], nervure:uc:org)global(n+1) = P (feuille:uc:org, [à-1], X)global(n+1)

P (Y, [à-1], nervure:uc:org)global(n+1)

6. P (feuille:uc:org, [à-1], nervure:uc:org)local(n+1) =

P (feuille:uc:org, [à-1], nervure:uc:org)local(n)

P (feuille:uc:org, [à-1], nervure:uc:org)global(n+1)

ΣX,Y P (feuille:uc:X, [à-1], nervure:uc:Y)local(n)

P (feuille:uc:X, [à-1], nervure:uc:Y)global(n+1)

Table 2: Extraction of classes for ”feuille à nervure denticulée”

local injection of these preferences in the sen-
tences, re-inforcing the local probabilities. The
normalization is given by previous local and global
weights for the dependency involving all possible
lexical categories associated to each one of the
terms considered, and here represented by vari-
ables X and Y.

In dealing with semantic class assignment, the se-
quence of steps is shown in Table 2, illustrating the
computation of the probability that ”feuille”("leaf")
and ”nervure”("vein") are both organs, taking again
the dependency labeled [à-1] in Fig. 2:

4. In each sentence, we compute the local proba-
bility of this dependency if ”feuille” ("leaf")
and ”nervure” ("vein") are both organs (org).
We start from the local weight computed in Ta-
ble 1, and also the initial preferences the terms
involved corresponding to the classes considered2.
The normalization is given by the probabilities
for the possible classes involving each one of the
terms considered, without specifying any particu-
lar class here represented by variables X and Y.

5. We calculate this preference at global level, by re-
introducing it to the whole corpus locally in the
sentences in order to re-compute the weights of
all the possible classes in the sentence. We first
compute the probability in the whole corpus (5.1
and 5.2) for each term and semantic class, dis-
regarding the right and left context, represented
by variables X and Y respectively. The probability
(5.3) is a combination of the two previous ones.

6. After each iteration, we re-inject the previous
global weight to obtain a new local one, by re-
inforcing the local probabilities. The normaliza-
tion is done by the addition of the preferences
corresponding to the terms and classes involved
in the dependency, for all the possible semantic
classes considered.

2 this is fixed by the user, in the case of the term being in a
list associated to that class. Otherwise, this probability is
obtained as a ratio of the total number of classes considered.

5 Experimental results

We describe some preliminary tests, using the run-
ning corpus as guideline. We consider two different
quality references. The former, the number of learned
elements. Secondly, the computational efficiency on a
standard platform. Whatever is the case, these tests
are performed in function of the number of iteration
learning passes, once we have fixed three thresholds:

• First, the number of the occurrences of a term,
that is the number of the governor/governed
nodes in the graph of dependencies. This allows
us to estimate the validity of the testing frame.

• Second, the percentage for success, showing possi-
ble existing relationships between computational
loading and efficiency.

• Third, the probability of a dependency being non
deterministic, looking to illustrate the impact of
ambiguities on the learning task.

that we illustrate in Figs. 4, 5 and 6. As starting
point, we take the information compiled for 6 organs,
10 properties and 10 markers.

More in detail, Fig. 4 reflects the execution time for
the knowledge acquisition process, considering terms
that appear more than 18 times, with a success index
of over 90%. We consider here two tests, one related to
dependencies whose probability is 1, and the other one
focused on dependencies with a probability of over 0’2.
The results seem to indicate a linear behavior in the
first case and a polynomial complexity in the second
one. Intuitively, this conclusion was expected given
that knowledge acquisition should be more efficient in
dealing with dependencies that are totally guaranteed.

In the same way, the number of learned elements
seems to be greater when dealing with high confidence
dependencies, as shown in Fig. 5, than when working
with the weaker ones included in Fig. 6. Another inter-
esting point is the behavior observed for the different
classes learned in Figs. 5 and 6. So, properties, such as
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Fig. 5: Learning dependencies with high probability

form or color, are in both cases the classes on which
knowledge acquisition runs with greater certainty.

This is also the case with the classes on which term
extraction was already defined at lexical level, involv-
ing extremely precise linguistic information, as is the
case of organs. In consequence, knowledge acquisition
on these terms is relatively independent of the itera-
tive process and, in particular, of the level of proba-
bility considered for dependencies. This is underlined
by the asymptotic behavior, when the number of it-
erations grows and the process converges, showing a
similar behavior in both cases.

In the same sense, the asymptotic behavior observed
in Figs. 5 and 6 seems to indicate that organs reach a
high degree of recognition, depending on the probabil-
ity of the dependencies considered. As we have seen in
our running examples, this is justified by the fact that
term extraction on these classes cannot be defined at
lexical level, but often relies on the disambiguation of
non-deterministic syntactic structures, which concerns
the iterative knowledge acquisition process described.

Other marginal categories less involved in term ex-
traction due to the absence of relevant lexical and/or
syntactic information, show a closed behavior regard-
less of the probability considered for dependencies in
Figs. 5 and 6. This explains the poor evolution on the
number of elements learned in comparison with the re-
sults previously obtained on properties and organs.
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6 Conclusions

We have introduced knowledge acquisition with a max-
imum degree of unsupervised tasks. The identification
of semantic classes is approached from the detection of
similar syntactic contexts around pivot terms. Exist-
ing relations between semantic classes are approached
from the lexical and/or syntactic patterns connecting
them, by using an error-mining technique.
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