
1

On Theoretical and Practical

Complexity of TAG Parsers

Carlos Gómez-Rodŕıguez, Miguel A. Alonso,
Manuel Vilares

Abstract
We present a system allowing the automatic transformation of parsing

schemata to efficient executable implementations of their corresponding al-
gorithms. This system can be used to easily prototype, test and compare
different parsing algorithms. In this work, it has been used to generate sev-
eral different parsers for Context Free Grammars and Tree Adjoining Gram-
mars. By comparing their performance on different sized, artificially gener-
ated grammars, we can measure their empirical computational complexity.
This allows us to evaluate the overhead caused by using Tree Adjoining
Grammars to parse context-free languages, and the influence of string and
grammar size on Tree Adjoining Grammars parsing.

Keywords Parsing Schemata, Computational Complexity, Tree

Adjoining Grammars, Context Free Grammars

1.1 Introduction

The process of parsing, by which we obtain the structure of a sentence
as a result of the application of grammatical rules, is a highly relevant
step in the automatic analysis of natural languages. In the last decades,
various parsing algorithms have been developed to accomplish this task.
Although all of these algorithms essentially share the common goal of
generating a tree structure describing the input sentence by means
of a grammar, the approaches used to attain this result vary greatly
between algorithms, so that different parsing algorithms are best suited
to different situations.

1

FG-2006.
Organizing Committee:, Paola Monachesi, Gerald Penn, Giorgio Satta, Shuly Wintner.
Copyright c© 2006, CSLI Publications.



2 / Carlos Gómez-Rodŕıguez, Miguel A. Alonso, Manuel Vilares

Parsing schemata, introduced in (Sikkel, 1997), provide a formal,
simple and uniform way to describe, analyze and compare different
parsing algorithms. The notion of a parsing schema comes from con-
sidering parsing as a deduction process which generates intermediate
results called items. An initial set of items is directly obtained from the
input sentence, and the parsing process consists of the application of
inference rules (called deductive steps) which produce new items from
existing ones. Each item contains a piece of information about the sen-
tence’s structure, and a successful parsing process will produce at least
one final item containing a full parse tree for the sentence or guaran-
teeing its existence.

Almost all known parsing algorithms may be described by a parsing
schema (non-constructive parsers, such as those based on neural net-
works, are exceptions). This is done by identifying the kinds of items
that are used by a given algorithm, defining a set of inference rules
describing the legal ways of obtaining new items, and specifying the
set of final items.

As an example, we introduce a CYK-based algorithm (Vijay-Shanker
and Joshi 1985) for Tree Adjoining Grammars (TAG) (Joshi and Sch-
abes 1997). Given a tree adjoining grammar G = (VT , VN , S, I, A)1 and
a sentence of length n which we denote by a1 a2 . . . an

2, we denote
by P (G) the set of productions {Nγ → Nγ

1 Nγ
2 . . . Nγ

r } such that Nγ is
an inner node of a tree γ ∈ (I ∪ A), and Nγ

1 Nγ
2 . . . Nγ

r is the ordered
sequence of direct children of Nγ .

The parsing schema for the TAG CYK-based algorithm is a function
that maps such a grammar G to a deduction system whose domain is
the set of items

{[Nγ , i, j, p, q, adj]}

verifying that Nγ is a tree node in an elementary tree γ ∈ (I ∪ A),
i and j (0 ≤ i ≤ j) are string positions, p and q may be undefined
or instantiated to positions i ≤ p ≤ q ≤ j (the latter only when γ ∈
A), and adj ∈ {true, false} indicates whether an adjunction has been
performed on node Nγ .

The positions i and j indicate that a substring ai+1 . . . aj of the
string is being recognized, and positions p and q denote the substring
dominated by γ’s foot node. The final item set would be

1Where VT denotes the set of terminal symbols, VN the set of nonterminal
symbols, S the axiom, I the set of initial trees and A the set of auxiliary trees.

2From now on, we will follow the usual conventions by which nonterminal sym-
bols are represented by uppercase letters (A, B . . .), and terminals by lowercase
letters (a, b . . .). Greek letters (α, β...) will be used to represent trees, Nγ a node
in the tree γ, and Rγ the root node of the tree γ.



On Theoretical and Practical Complexity of TAG Parsers / 3

{[Rα, 0, n,−,−, adj] | α ∈ I}

for the presence of such an item would indicate that there exists a valid
parse tree with yield a1 a2 . . . an and rooted at Rα, the root of an initial
tree; and therefore there exists a complete parse tree for the sentence.

A deductive step η1...ηm

ξ
Φ allows us to infer the item specified by

its consequent ξ from those in its antecedents η1 . . . ηm. Side condi-

tions (Φ) specify the valid values for the variables appearing in the
antecedents and consequent, and may refer to grammar rules or specify
other constraints that must be verified in order to infer the consequent.
An example of one of the schema’s deductive steps would be the fol-
lowing, where the operation p ∪ p′ returns p if p is defined, and p′

otherwise:

CYK Binary:

[Oγ
1 , i, j′, p, q, adj1]

[Oγ
2 , j′, j, p′, q′, adj2]

[Mγ , i, j, p ∪ p′, q ∪ q′, false]
M

γ
→ O

γ
1
O

γ
2
∈ P (G)

This deductive step represents the bottom-up parsing operation
which joins two subtrees into one, and is analogous to one of the de-
ductive steps of the CYK parser for Context-Free Grammars (Kasami
1965, Younger 1967). The full TAG CYK parsing schema has six deduc-
tive steps (or seven, if we work with TAGs supporting the substitution
operation) and can be found at (Alonso et al., 1999). However, this
sample deductive step is an example of how parsing schemata convey
the fundamental semantics of parsing algorithms in simple, high-level
descriptions. A parsing schema defines a set of possible intermedi-
ate results and allowed operations on them, but doesn’t specify data
structures for storing the results or an order for the operations to be
executed.

1.2 Compilation of parsing schemata

Their simplicity and abstraction of low-level details makes parsing
schemata very useful, allowing us to define parsers in a simple and
straightforward way. Comparing parsers, or considering aspects such
as their correction and completeness or their computational complex-
ity, also becomes easier if we think in terms of schemata.

However, the problem with parsing schemata is that, although they
are very useful when designing and comparing parsers with pencil and
paper, they cannot be executed directly in a computer. In order to
execute the parsers and analyze their results and performance they
must be implemented in a programming language, making it necessary



4 / Carlos Gómez-Rodŕıguez, Miguel A. Alonso, Manuel Vilares

to abandon the high abstraction level and focus on the implementation
details in order to obtain a functional and efficient implementation.

In order to bridge this gap between theory and practice, we have
designed and implemented a compiler able to automatically transform
parsing schemata into efficient Java implementations of their corre-
sponding algorithms. The input to this system is a simple and declar-
ative representation of a parsing schema, which is practically equal to
the formal notation that we used previously. For example, this is the
CYK deductive step we have seen as an example in a format readable
by our compiler:

@step CYKBinary
[ Node1 , i , j’ , p , q , adj1 ]
[ Node2 , j’ , j , p’ , q’ , adj2 ]
----------------------------------------------------- Node3 -> Node1 Node2
[ Node3 , i , j , Union(p;p’) , Union(q;q’) , false ]

The parsing schemata compilation technique behind our system is
based on the following fundamental ideas:

. Each deductive step is compiled to a Java class containing code to
match and search for antecedent items and generate the correspond-
ing conclusions from the consequent.

. The generated implementation will create an instance of this class
for each possible set of values satisfying the side conditions that
refer to production rules. For example, a distinct instance of the
CYK Binary step will be created for each grammar rule of the
form Mγ → Oγ

1Oγ
2 ∈ P (G), as specified in the step’s side condition.

. The step instances are coordinated by a deductive parsing engine, as
the one described in (Shieber et al., 1995). This algorithm ensures a
sound and complete deduction process, guaranteeing that all items
that can be generated from the initial items will be obtained. It is
a generic, schema-independent algorithm, so its implementation is
the same for any parsing schema. The engine works with the set
of all items that have been generated and an agenda, implemented
as a queue, holding the items we have not yet tried to trigger new
deductions with.

. In order to attain efficiency, an automatic analysis of the schema is
performed in order to create indexes allowing fast access to items.
Two kinds of index structures are generated: existence indexes are
used by the parsing engine to check whether a given item exists in
the item set, while search indexes are used to search for all items
conforming to a given specification. As each different parsing schema
needs to perform different searches for antecedent items, the index



On Theoretical and Practical Complexity of TAG Parsers / 5

structures that we generate are schema-specific. Each deductive step
is analyzed in order to keep track of which variables will be instan-
tiated to a concrete value when a search must be performed. This
information is known at schema compilation time and allows us to
create indexes by the elements corresponding to instantiated vari-
ables. In this way, we guarantee constant-time access to items so that
the computational complexity of our generated implementations is
never above the theoretical complexity of the parsing algorithms.

. Deductive step indexes are also generated to provide efficient access
to the set of deductive step instances which can be applicable to a
given item. Step instances that are known not to match the item are
filtered out by these indexes, so less time is spent on unsuccessful
item matching.

. Since parsing schemata have an open notation, for any mathemati-
cal object can potentially appear inside items, the system includes
an extensibility mechanism which can be used to define new kinds
of objects to use in schemata. The code generator can deal with
these user-defined objects as long as some simple and well-defined
guidelines are followed in their specification.

A more detailed description of this system, including a more thor-
ough explanation of automatic index generation, can be found at
(Gómez-Rodŕıguez et al., 2006b).

1.3 Parsing natural language CFG’s

Although our main focus in this paper is on performance of TAG pars-
ing algorithms, we will briefly outline the results of some experiments on
Context-Free Grammars (CFG), described in further detail in (Gómez-
Rodŕıguez et al., 2006b), in order to be able to contrast TAG and CFG
parsing.

Our compilation technique was used to generate parsers for the
CYK (Kasami 1965, Younger 1967), Earley (Earley 1970) and Left-
Corner (Rosenkrantz and Lewis II 1970) algorithms for context-free
grammars, and these parsers were tested on automatically-generated
sentences from three different natural language grammars: Susanne
(Sampson 1994), Alvey (Carroll 1993) and Deltra (Schoorl and Belder
1990). The runtimes for all the algorithms and grammars showed an
empirical computational complexity far below the theoretical worst-
case bound of O(n3), where n denotes the length of the input string.
In the case of the Susanne grammar, the measurements were close to
being linear with string size. In the other grammars, the runtimes grew
faster, approximately O(n2), still far below the cubic worst-case bound.



6 / Carlos Gómez-Rodŕıguez, Miguel A. Alonso, Manuel Vilares

Another interesting result was that the CYK algorithm performed
better than the Earley-type algorithms in all cases, despite being gen-
erally considered slower. The reason is that these considerations are
based on time complexity relative to string length, and do not take
into account time complexity relative to grammar size, which is O(|P |)
for CYK and O(|P |)2 for the Earley-type algorithms. This factor is not
very important when working with small grammars, such as the ones
used for programming languages, but it becomes fundamental when
we work with natural language grammars, where we use thousands of
rules (more than 17,000 in the case of Susanne) to parse relatively
small sentences. When comparing the results from the three context-
free grammars, we observed that the performance gap between CYK
and Earley was bigger when working with larger grammars.

1.4 Parsing artificial TAG’s

In this section, we make a comparison of four different TAG parsing
algorithms: the CYK-based algorithm used as an example in section 1.1,
an Earley-based algorithm without the valid prefix property (described
in Alonso et al. 1999, inspired in the one in Schabes 1994), an Earley-
based algorithm with the valid prefix property (Alonso et al. 1999)
and Nederhof’s algorithm (Nederhof 1999). These parsers are compared
on artificially generated grammars, by using our schema compiler to
generate implementations and measuring their execution times with
several grammars and sentences.

Note that the advantage of using artificially generated grammars is
that we can easily see the influence of grammar size on performance. If
we test the algorithms on grammars from real-life natural language cor-
pora, as we did with the CFG parsers, we don’t get a very precise idea of
how the size of the grammar affects performance. Since our experience
with CFG’s showed this to be an important factor, and existing TAG
parser performance comparisons (e.g. Dı́az and Alonso 2000) work with
a fixed (and small) grammar, we decided to use artificial grammars in
order to be able to adjust both string size and grammar size in our
experiments and see the influence of both factors.

For this purpose, given an integer k > 0, we define the tree-adjoining
grammar Gk to be the grammar Gk = (VT , VN , S, I, A) where VT =
{aj |0 ≤ j ≤ k}, VN = {S,B}, and

I = {S(B(a0))}
3,

A = {B(B(B∗ aj))|1 ≤ j ≤ k}.

3Where trees are written in bracketed notation, and * is used to denote the foot
node.



On Theoretical and Practical Complexity of TAG Parsers / 7

Therefore, for a given k, Gk is a grammar with one initial tree and
k auxiliary trees, which parses a language over an alphabet with k + 1
terminal symbols. The actual language defined by Gk is the regular
language Lk = a0(a1|a2|..|ak)∗. 4 We shall note that although the lan-
guages Lk are trivial, the grammars Gk are built in such a way that
any of the auxiliary trees may adjoin into any other. Therefore these
grammars are suitable if we want to make an empyrical analysis of
worst-case complexity.

Table 1 shows the execution time in milliseconds5 of four TAG
parsers with the grammars Gk, for different values of string length
(n) and grammar size (k).

From this results, we can observe that both factors (string length and
grammar size) have an influence on runtime, and they interact between
themselves: the growth rates with respect to one factor are influenced
by the other factor, so it is hard to give precise estimates of empirical
computational complexity. However, we can get rough estimates by
focusing on cases where one of the factors takes high values and the
other one takes low values (since in these cases the constant factors
affecting complexity will be smaller) and test them by checking whether
the sequence T (n, k)/f(n) seems to converge to a positive constant for
each fixed k (if f(n) is an estimation of complexity with respect to
string length) or whether T (n, k)/f(k) seems to converge to a positive
constant for each fixed n (if f(k) is an estimation of complexity with
respect to grammar size).

By applying these principles, we find that the empirical time com-
plexity with respect to string length is in the range between O(n2.8)
and O(n3) for the CYK-based and Nederhof algorithms, and between
O(n2.6) and O(n3) for the Earley-based algorithms with and without
the valid prefix property (VPP). Therefore, the practical time complex-
ity we obtain is far below the theoretical worst-case bounds for these
algorithms, which are O(n6) (except for the Earley-based algorithm
with the VPP, which is O(n7)).

Although for space reasons we don’t include tables with the number
of items generated in each case, our results show that the empirical

4Also, it is easy to prove that the grammar Gk is one of the minimal tree adjoining
grammars (in terms of number of trees) whose associated language is Lk. Note that
we need at least a tree containing a0 as its only terminal in order to parse the
sentence a0, and for each 1 ≤ i ≤ k, we need at least a tree containing ai and no
other aj (j > 0) in order to parse the sentence a0ai. Therefore, any TAG for the
language Lk must have at least k + 1 elementary trees.

5The machine used for all the tests was an Intel Pentium 4 3.40 GHz, with 1
GB RAM and Sun Java Hotspot virtual machine (version 1.4.2 01-b06) running on
Windows XP.



8 / Carlos Gómez-Rodŕıguez, Miguel A. Alonso, Manuel Vilares

Runtimes in ms: Earley-based without the VPP

String Size (n)
Grammar Size (k)

1 8 64 512 4096
2 ∼0 16 15 1,156 109,843

4 ∼0 31 63 2,578 256,094

8 16 31 172 6,891 589,578

16 31 172 625 18,735 1,508,609

32 110 609 3,219 69,406

64 485 2,953 22,453 289,984

128 2,031 13,875 234,594

256 10,000 101,219

512 61,266

Runtimes in ms: CYK-based

String Size (n)
Grammar Size (k)

1 8 64 512 4096
2 ∼0 ∼0 16 1,344 125,750
4 ∼0 ∼0 63 4,109 290,187
8 16 31 234 15,891 777,968

16 15 62 782 44,188 2,247,156
32 94 312 3,781 170,609
64 266 2,063 25,094 550,016

128 1,187 14,516 269,047
256 6,781 108,297
512 52,000

Runtimes in ms: Nederhof’s Algorithm

String Size (n)
Grammar Size (k)

1 8 64 512 4096
2 ∼0 ∼0 47 1,875 151,532
4 ∼0 15 187 4,563 390,468
8 15 31 469 12,531 998,594

16 46 188 1,500 40,093 2,579,578
32 219 953 6,235 157,063
64 1,078 4,735 35,860 620,047

128 5,703 25,703 302,766
256 37,125 159,609
512 291,141

Runtimes in ms: Earley-based with the VPP

String Size (n)
Grammar Size (k)

1 8 64 512 4096
2 ∼0 ∼0 31 1,937 194,047
4 ∼0 16 78 4,078 453,203
8 15 31 234 10,922 781,141

16 31 188 875 27,125 1,787,140
32 125 750 4,141 98,829
64 578 3,547 28,640 350,218

128 2,453 20,766 264,500
256 12,187 122,797
512 74,046

TABLE 1 Execution times of four different TAG parsers for
artificially-generated grammars Gk. Best results are shown in boldface.



On Theoretical and Practical Complexity of TAG Parsers / 9

space complexity with respect to string length is approximately O(n2)
for all the algorithms, also far below the worst-case bounds (O(n4) and
O(n5)).

With respect to the size of the grammar, we obtain a time complexity
of approximately O(|I ∪ A|2) for all the algorithms. This matches the
theoretical worst-case bound, which is O(|I∪A|2) due to the adjunction
steps, which work with pairs of trees. In the case of our artificially
generated grammar, any auxiliary tree can adjoin into any other, so it’s
logical that our times grow quadratically. Note, however, that real-life
grammars such as the XTAG English grammar (XTAG Research Group
2001) have relatively few different nonterminals in relation to their
amount of trees, so many pairs of trees are susceptible of adjunction
and we can’t expect their behavior to be much better than this.

Space complexity with respect to grammar size is approximately
O(|I ∪A|) for all the algorithms. This is an expected result, since each
generated item is associated to a given tree node.

Practical applications of TAG in natural language processing usu-
ally fall in the range of values for n and k covered in our experiments
(grammars with hundreds or a few thousands of trees are used to parse
sentences of several dozens of words). Within these ranges, both string
length and grammar size take significant values and have an important
influence on execution times, as we can see from the results in the ta-
bles. This leads us to note that traditional complexity analysis based
on a single factor (string length or grammar size) can be misleading for
practical applications, since it can lead us to an incomplete idea of real
complexity. For example, if we are working with a grammar with thou-
sands of trees, the size of the grammar is the most influential factor,
and the use of filtering techniques (Schabes and Joshi 1991) to reduce
the amount of trees used in parsing is essential in order to achieve good
performance. The influence of string length in these cases, on the other
hand, is mitigated by the huge constant factors related to grammar
size. For instance, in the times shown in the tables for the grammar
G4096, we can see that parsing times are multiplied by a factor less
than 3 when the length of the input string is duplicated, although the
rest of the results have lead us to conclude that the practical asymp-
totic complexity with respect to string length is at least O(n2.6). These
interactions between both factors must be taken into account when
analyzing performance in terms of computational complexity.

Earley-based algorithms achieve better execution times than the
CYK-based algorithm for large grammars, although they are worse for
small grammars. This contrasts with the results for context-free gram-
mars, where CYK works better for large grammars: when working with



10 / Carlos Gómez-Rodŕıguez, Miguel A. Alonso, Manuel Vilares

CFG’s, CYK has a better computational complexity than Earley (lin-
ear with respect to grammar size, see section 1.3), but the TAG variant
of the CYK algorithm is quadratic with respect to grammar size and
does not have this advantage.

CYK generates fewer items than the Earley-based algorithms when
working with large grammars and short strings, and the opposite hap-
pens when working with small grammars and long strings.

The Earley-based algorithm with the VPP generates the same num-
ber of items than the one without this property, and has worse execu-
tion times. The reason is that no partial parses violating this property
are generated by any of both algorithms in the particular case of this
grammar, so guaranteeing the valid prefix property does not prevent
any items from being generated. Therefore, the fact that the variant
without the VPP works better in this particular case cannot be extrap-
olated to other grammars. However, the differences in times between
these two algorithms illustrates the overhead caused by the extra checks
needed to guarantee the valid prefix property in a particularly bad case.

Nederhof’s algorithm has slower execution times than the other Ear-
ley variants. Despite the fact that Nederhof’s algorithm is an improve-
ment over the other Earley-based algorithm with the VPP in terms of
computational complexity, the extra deductive steps it contains makes
it slower in practice.

1.5 Parsing the XTAG English grammar

In order to complement our performance comparison of the four al-
gorithms on artificial grammars, we have also studied the behavior of
the parsers when working with a real-life, large-scale TAG: the XTAG
English grammar (XTAG Research Group 2001).

The obtained execution times are in the ranges that we could expect
given the artificial grammar results, i.e. they approximately match the
times in the tables for the corresponding grammar sizes and input string
lengths. The most noticeable difference is that the Earley-like algorithm
verifying the valid prefix property generates fewer items that the variant
without the VPP in the XTAG grammar, and this causes its runtimes
to be faster. But this difference is not surprising, as explained in the
previous section.

Note that, as the XTAG English grammar has over a thousand ele-
mentary trees, execution times are very large (over 100 seconds) when
working with the full grammar, even with short sentences. However,
when a tree selection filter is applied in order to work with only a sub-
set of the grammar in function of the input string, the grammar size



On Theoretical and Practical Complexity of TAG Parsers / 11

is reduced to one or two hundred trees and our parsers process short
sentences in less than 5 seconds. Sarkar’s XTAG distribution parser
written in C6 applies further filtering techniques and has specific opti-
mizations for this grammar, obtaining better times for the XTAG than
our generic parsers.

Table 2 contains a summary of the execution times obtained by our
parsers for some sample sentences from the XTAG distribution. Note
that the generated implementations used for these executions apply the
mentioned tree filtering technique, so that the effective grammar size
is different for each sentence, hence the high variability in execution
times. More detailed information on these experiments with the XTAG
English grammar can be found at (Gómez-Rodŕıguez et al., 2006a).

Sentence
Runtimes in milliseconds

CYK
Ear. no
VPP

Ear.
VPP Neder.

He was a cow 2985 750 750 2719
He loved himself 3109 1562 1219 6421
Go to your room 4078 1547 1406 6828
He is a real man 4266 1563 1407 4703
He was a real man 4234 1921 1421 4766
Who was at the door 4485 1813 1562 7782
He loved all cows 5469 2359 2344 11469
He called up her 7828 4906 3563 15532
He wanted to go to the city 10047 4422 4016 18969

That woman in the city con-
tributed to this article 13641 6515 7172 31828

That people are not really ama-
teurs at intelectual duelling 16500 7781 15235 56265

The index is intended to measure
future economic performance 16875 17109 9985 39132

They expect him to cut costs
throughout the organization 25859 12000 20828 63641

He will continue to place a huge
burden on the city workers 54578 35829 57422 178875

He could have been simply being
a jerk 62157 113532 109062 133515

A few fast food outlets are giving
it a try 269187 3122860 3315359

TABLE 2 Runtimes obtained by applying different XTAG parsers to several
sentences. Best results for each sentence are shown in boldface.

6Downloadable at: ftp://ftp.cis.upenn.edu/pub/xtag/lem/



12 / Carlos Gómez-Rodŕıguez, Miguel A. Alonso, Manuel Vilares

1.6 Overhead of TAG parsing over CFG parsing

The languages Lk that we parsed in section 1.4 were regular languages,
so in practice we don’t need tree adjoining grammars to parse them,
although it was convenient to use them in our comparison. This can
lead us to wonder how large is the overhead caused by using the TAG
formalism to parse context-free languages.

Given the regular language Lk = a0(a1|a2|..|ak)∗, a context-free
grammar that parses it is G′

k = (N,Σ, P, S) with N = {S} and

P = {S → a0} ∪ {S → Sai|1 ≤ i ≤ k}

This grammar minimizes the number of rules needed to parse Lk

(k+1 rules), but has left recursion. If we want to eliminate left recursion,
we can use the grammar G′′

k = (N,Σ, P, S) with N = {S,A} and

P = {S → a0A} ∪ {A → aiA|1 ≤ i ≤ k} ∪ {A → ε}

which has k + 2 production rules.
The number of items generated by the Earley algorithm for context-

free grammars when parsing a sentence of length n from the language
Lk by using the grammar G′

k is (k + 2)n. In the case of the grammar

G′′
k , the same algorithm generates (k + 4)n + n(n−1)

2 + 1 items. In both
cases the amount of items generated is linear with respect to grammar
size, as in TAG parsers. With respect to string size, the amount of
items is O(n) for G′

k and O(n2) for G′′
k , and it was approximately

O(n2) for the TAG Gk. Note, however, that the constant factors behind
complexity are much greater when working with Gk than with G′′

k , and
this reflects on the actual number of items generated (for example, the
Earley algorithm generates 16,833 items when working with G′′

64 and a
string of length n = 128, while the TAG variant of Earley without the
valid prefix property generated 1,152,834 items).

The execution times for both algorithms appear in table 3. From
the obtained times, we can deduce that the empirical time complexity
is linear with respect to string length and quadratic with respect to
grammar size in the case of G′

k; and quadratic with respect to string
length and linear with respect to grammar size in the case of G′′

k . So
this example shows that, when parsing a context-free language using a
tree-adjoining grammar, we get an overhead both in constant factors
(more complex items, more deductive steps, etc.) and in asymptotic
behavior, so actual execution times can be several orders of magnitude
larger. Note that the way grammars are designed also has an influence,
but our tree adjoining grammars Gk are the simplest TAGs able to
parse the languages Lk by using adjunction (an alternative would be



On Theoretical and Practical Complexity of TAG Parsers / 13

to write a grammar using the substitution operation to combine trees).

n
Grammar Size (k), grammar G′

k

1 8 64 512 4096
2 ∼0 ∼0 ∼0 31 2,062
4 ∼0 ∼0 ∼0 62 4,110
8 ∼0 ∼0 ∼0 125 8,265

16 ∼0 ∼0 ∼0 217 15,390
32 ∼0 ∼0 15 563 29,344
64 ∼0 ∼0 31 1,062 61,875

128 ∼0 ∼0 109 2,083 122,875
256 ∼0 15 188 4,266 236,688
512 15 31 328 8,406 484,859

n
Grammar Size (k), grammar G′′

k

1 8 64 512 4096
2 ∼0 ∼0 ∼0 ∼0 47
4 ∼0 ∼0 ∼0 15 94
8 ∼0 ∼0 ∼0 16 203

16 ∼0 ∼0 ∼0 46 688
32 ∼0 ∼0 15 203 1,735
64 31 31 93 516 4,812

128 156 156 328 1,500 13,406
256 484 547 984 5,078 45,172
512 1,765 2,047 3,734 18,078

TABLE 3 Runtimes obtained by applying the Earley parser for context-free
grammars to sentences in Lk.

1.7 Conclusions

In this paper, we have presented a system that compiles parsing
schemata to executable implementations of parsers, and used it to
evaluate the performance of several TAG parsing algorithms, establish-
ing comparisons both between themselves and with CFG parsers.

The results show that both string length and grammar size can be
important factors in performance, and the interactions between them
sometimes make their influence hard to quantify. The influence of string
length in practical cases is usually below the theoretical worst-case
bounds (between O(n) and O(n2) in our tests for CFG’s, and slightly
below O(n3) for TAG’s). Grammar size becomes the dominating factor
in large TAG’s, making tree filtering techniques advisable in order to
achieve faster execution times.

Using TAG’s to parse context-free languages causes an overhead
both in constant factors and in practical computational complexity,
thus increasing execution times by several orders of magnitude with
respect to CFG parsing.



14 / Carlos Gómez-Rodŕıguez, Miguel A. Alonso, Manuel Vilares

Acknowledgements

The work reported in this article has been supported in part by Min-
isterio de Educación y Ciencia and FEDER (TIN2004-07246-C03-01,
TIN2004-07246-C03-02), Xunta de Galicia (PGIDIT05PXIC30501PN,
PGIDIT05PXIC10501PN, PGIDIT05SIN044E and PGIDIT05SIN059E),
and Programa de becas FPU (Ministerio de Educación y Ciencia).

References

Alonso, Miguel A., David Cabrero, Eric de la Clergerie, and Manuel Vilares.
1999. Tabular algorithms for TAG parsing. In Proc. of EACL’99, Ninth
Conference of the European Chapter of the Association for Computational
Linguistics, pages 150–157. ACL, Bergen, Norway.

Carroll, J. 1993. Practical unification-based parsing of natural language. PhD
thesis. Tech. Rep. 314, Computer Laboratory, University of Cambridge,
Cambridge, UK.

Dı́az, Vı́ctor J. and Miguel A. Alonso. 2000. Comparing tabular parsers
for tree adjoining grammars. In D. S. Warren, M. Vilares, L. Rodŕıguez
Liñares, and M. A. Alonso, eds., Proc. of Tabulation in Parsing and De-
duction (TAPD 2000), pages 91–100. Vigo, Spain.

Earley, J. 1970. An efficient context-free parsing algorithm. Communications
of the ACM 13(2):94–102.

Gómez-Rodŕıguez, Carlos, Miguel A. Alonso, and Manuel Vilares. 2006a.
Generating XTAG parsers from algebraic specifications. In Proc. of
TAG+8, the Eighth International Workshop on Tree Adjoining Grammar
and Related Formalisms. Sydney, Australia.

Gómez-Rodŕıguez, Carlos, Jesús Vilares, and Miguel A. Alonso. 2006b. Au-
tomatic generation of natural language parsers from declarative specifi-
cations. In Proc. of STAIRS 2006 . Riva del Garda, Italy. Long version
available at http://www.grupocole.org/GomVilAlo2006a long.pdf.

Joshi, Aravind K. and Yves Schabes. 1997. Tree-adjoining grammars. In
G. Rozenberg and A. Salomaa, eds., Handbook of Formal Languages. Vol
3: Beyond Words, chap. 2, pages 69–123. Berlin/Heidelberg/New York:
Springer-Verlag.

Kasami, T. 1965. An efficient recognition and syntax algorithm for context-
free languages. Scientific Report AFCRL-65-758, Air Force Cambridge
Research Lab., Bedford, Massachussetts.

Nederhof, Mark-Jan. 1999. The computational complexity of the correct-
prefix property for TAGs. Computational Linguistics 25(3):345–360.



References / 15

Rosenkrantz, D. J. and P. M. Lewis II. 1970. Deterministic Left Corner pars-
ing. In Conference Record of 1970 Eleventh Annual Meeting on Switching
and Automata Theory , pages 139–152. IEEE, Santa Monica, CA, USA.

Sampson, G. 1994. The Susanne corpus, release 3.

Schabes, Yves. 1994. Left to right parsing of lexicalized tree-adjoining gram-
mars. Computational Intelligence 10(4):506–515.

Schabes, Yves and Aravind K. Joshi. 1991. Parsing with lexicalized tree
adjoining grammar. In M. Tomita, ed., Current Issues in Parsing Tech-
nologies, chap. 3, pages 25–47. Norwell, MA, USA: Kluwer Academic Pub-
lishers. ISBN 0-7923-9131-4.

Schoorl, J. J. and S. Belder. 1990. Computational linguistics at Delft: A
status report, Report WTM/TT 90–09.

Shieber, Stuart M., Yves Schabes, and Fernando C. N. Pereira. 1995. Princi-
ples and implementation of deductive parsing. Journal of Logic Program-
ming 24(1–2):3–36.

Sikkel, Klaas. 1997. Parsing Schemata — A Framework for Specification and
Analysis of Parsing Algorithms. Texts in Theoretical Computer Science —
An EATCS Series. Berlin/Heidelberg/New York: Springer-Verlag. ISBN
3-540-61650-0.

Vijay-Shanker, K. and Aravind K. Joshi. 1985. Some computational proper-
ties of tree adjoining grammars. In 23rd Annual Meeting of the Association
for Computational Linguistics, pages 82–93. ACL, Chicago, IL, USA.

XTAG Research Group. 2001. A lexicalized tree adjoining grammar for En-
glish. Tech. Rep. IRCS-01-03, IRCS, University of Pennsylvania.

Younger, D. H. 1967. Recognition and parsing of context-free languages in
time n

3. Information and Control 10(2):189–208.


