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Abstract

Robustness, the ability to analyze any input regardless of its grammaticality, is a desirable
property for any system dealing with unrestricted natural language text. Error-repair
parsing approaches achieve robustness by considering ungrammatical sentences as cor-
rupted versions of valid sentences. In this article we present a deductive formalism,
based on Sikkel’s parsing schemata, that can be used to define and relate error-repair
parsers and study their formal properties, such as correctness. This formalism allows us
to define a general transformation technique to automatically obtain robust, error-repair
parsers from standard non-robust parsers. If our method is applied to a correct parsing
schema verifying certain conditions, the resulting error-repair parsing schema is guaran-
teed to be correct. The required conditions are weak enough to be fulfilled by a wide
variety of popular parsers used in natural language processing, such as CYK, Earley and
Left-Corner.
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1. Introduction

When using grammar-driven parsers to process natural language texts in real-life
domains, it is common to find sentences that cannot be parsed by the grammar. This
may be due to several reasons, including insufficient coverage (the input is well-formed,
but the grammar cannot recognize it) and ill-formedness of the input (errors in the
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sentence or errors caused by input methods). A standard parser will fail to return an
analysis in these cases. A robust parser is one that can provide useful results for such
extragrammatical sentences.

The methods that have been proposed to achieve robustness in parsing fall mainly
into two broad categories: those that try to parse well-formed fragments of the input
when a parse for the complete sentence cannot be found (partial parsers, such as that
described in [1]) and those which try to assign a complete parse to the input sentence
by relaxing grammatical constraints. In this article we will focus on error-repair parsers,
which fall into the second category. An error-repair parser is a kind of robust parser that
can find a complete parse tree for sentences not covered by the grammar, by supposing
that ungrammatical strings are corrupted versions of valid strings.

In the field of compiler design for programming languages, the problem of repairing
and recovering from syntax errors during parsing has received a great deal of attention
in the past (see for example the list of references provided in the annotated bibliography
of [2, section 18.2.7]) and also in recent years (see for example [3, 4, 5, 6]). In the
field of natural language parsing, some error-repair parsers have also been described, for
example, in [7, 8], or more recently in [9, 10].

However, no formalism has been proposed to uniformly describe error-repair parsers,
compare them and prove their correctness. In this article we propose such a framework,
and we use it to define a transformation for automatically obtaining error-repair parsers,
in the form of error-repair parsing schemata, from standard parsers defined as parsing
schemata.

This article may be outlined as follows. In Sect. 2, the framework of parsing schemata
for standard parsers is introduced. It is then extended to define error-repair parsing
schemata in Sect. 3. A general method to transform standard parsing schemata into
error-repair ones is presented in Sect. 4. The formal properties of this transformation
are analyzed in Sect. 5, and the proof of correctness is given in Sect. 6. Some techniques
to optimize the error-repair parsing schemata resulting from this transformation are
presented in Sect. 7, and final conclusions are presented in Sect. 8.

2. Parsing schemata

Parsing schemata [11] provide a formal, simple and uniform way to describe, analyze
and compare different parsing algorithms.

The notion of a parsing schema comes from considering parsing as a deduction process
which generates intermediate results called items. An initial set of items is obtained
directly from the input sentence, and the parsing process consists of the application of
inference rules (deduction steps) which produce new items from existing ones. Each item
contains a piece of information about the sentence’s structure, and a successful parsing
process will produce at least one final item containing a full parse tree for the sentence
or guaranteeing its existence.

Let G = (N,Σ, P, S) be a context-free grammar.1 The set of valid trees for G, denoted
Trees(G), is defined by Sikkel [11] as the set of finitely branching finite trees in which

1Although in this article we will focus on context-free grammars, both standard and error-repair
parsing schemata can be defined analogously for other grammatical formalisms.
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children of a node have a left-to-right ordering, every node is labelled with a symbol from
N ∪ Σ ∪ (Σ×N) ∪ {ε}, and every node u satisfies one of the following conditions:

• u is a leaf,

• u is labelled A, the children of u are labelled X1, . . . , Xn and there is a production
A → X1 . . . Xn ∈ P , 2

• u is labelled A, u has one child labelled ε and there is a production
A → ε ∈ P ,

• u is labelled a and u has a single child labelled (a, j) for some j.

The pairs (a, j) will be referred to as marked terminals, and when we deal with a
string a1 . . . an, we will usually write aj as an abbreviated notation for (aj , j) in the
remainder of this article. The natural number j is used to indicate the position of the
word a in the input, so that the input sentence a1 . . . an can be viewed as a set of trees
of the form aj(aj) rather than as a string of symbols.

Let Trees(G) be the set of trees for some context-free grammar G. An item set is
any set I such that I ⊆ Π∪ {∅}, where Π is a partition of the set Trees(G). Each of the
elements of an item set is called an item. If the item set contains ∅ as an element, we
call this element the empty item.

Valid parses for a string in the language defined by a grammar G are represented in
an item set by items containing complete marked parse trees for that string. Given a
grammar G, a marked parse tree for a string a1 . . . an is any tree τ ∈ Trees(G), whose
root is labelled S, and such that yield(τ) = a1 . . . an. An item containing such a tree
for some arbitrary string is called a final item. An item containing such a tree for a
particular string a1 . . . an is called a correct final item for that string.

Example 1. The Earley item set [12], IEarley, associated to a context-free grammar
G = (N,Σ, P, S) is defined by:

IEarley = {[A → α • β, i, j] | A → αβ ∈ P ∧ 0 ≤ i ≤ j}

where our notation for items [A → α • β, i, j] is a shorthand notation for the set of
trees rooted at A, such that the direct children of A are the symbols of the string αβ,
the combined yields of the subtrees rooted at the symbols in α form a string of marked
terminals of the form ai+1 . . . aj , and the nodes labelled with the symbols in β are leaves.

The set of final items in this case is its subset FEarley = {[S → γ•, 0, n]}. �

Example 2. The CYK item set [13, 14] for a context-free grammar G = (N,Σ, P, S) is
defined as follows:

ICY K = {[A, i, j] | A ∈ N ∧ 0 ≤ i < j}

where each item [A, i, j] is the set of all the trees in Trees(G) rooted at A whose yield is

2Throughout the article, we will use uppercase letters A, B, . . . to represent nonterminal symbols
and X, Y, . . . for arbitrary symbols, lowercase letters a, b, . . . for terminals, and Greek letters α, β, . . . for
strings of terminals and nonterminals. We will use parenthetical notation to describe trees. The yield
of a tree T , denoted yield(T ), is the string obtained by concatenating the symbols at its leaf nodes from
left to right.
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of the form ai+1 . . . aj .
3

The set of final items is the set FCY K = {[A, 0, n]}. �

Let G be a context-free grammar and a1 . . . an ∈ Σ∗ a string. An instantiated parsing
system is a triple (I,H, D) such that I is an item set, {ai(ai)} ∈ H for each ai, 1 ≤ i ≤ n,
and D ⊆ Pfin(H ∪ I) × I.4 Elements of H are called initial items or hypotheses of
the parsing system, and elements of D are called deduction steps. For convenience, we
denote each deduction step ({η1, . . . , ηk}, ξ) by η1, . . . , ηk ` ξ. Deduction steps establish
an inference relation ` between items, so that Y ` ξ if (Y ′, ξ) ∈ D for some Y ′ ⊆ Y .
We will also use `∗ as a notation for multiple-step inferences. An uninstantiated parsing
system is a triple (I,K, D) where K is a function such that (I,K(a1 . . . an), D) is an
instantiated parsing system for each a1 . . . an ∈ Σ∗.

An instantiated parsing system is said to be sound if all valid final items in it (i.e.
all final items that can be deduced from its hypotheses by using its deduction steps) are
correct for its associated string. A parsing system is said to be complete if all correct
final items are valid (i.e, if there is a marked parse tree for a particular string, then the
system can deduce it). A parsing system which is both sound and complete is said to be
correct.

A parsing schema for a class of grammars CG is a function that allows us to obtain
an uninstantiated parsing system for each grammar G ∈ CG. A parsing schema is correct
if all the parsing systems it generates for different grammars and strings are correct.

A correct parsing schema can be used to obtain a working implementation of a parser
by using deductive parsing engines such as the ones described in [15, 16] to obtain all
valid final items.

Example 3. A correct parsing schema is the Earley parsing schema, which defines the
parser described in [12]. This schema maps each context-free grammar G ∈ CFG and
string a1 . . . an ∈ Σ∗ to an instantiated parsing system (I,H, D) where:

I = IEarley (as defined before)

H = {[a, i− 1, i] | a = ai ∧ 1 ≤ i ≤ n}5

DScanner = {[A → α • xβ, i, j], [x, j, j + 1] ` [A → αx • β, i, j + 1]}

DCompleter = {[A → α •Bβ, i, j], [B → γ•, j, k] ` [A → αB • β, i, k]}

DPredictor = {[A → α •Bβ, i, j] ` [B → •γ, j, j]}

DInitter = {` [S → •γ, 0, 0]}

D = DInitter ∪DScanner ∪DCompleter ∪DPredictor. �

Example 4. A parsing schema for the CYK parsing algorithm [13, 14] maps each
context-free grammar G in Chomsky normal form (i.e. with all its rules of the form

3An item can be the empty item ∅ if it contains no trees. For example, an item [A, 0, 2] in a CYK
parser will be empty if our grammar G does not allow the construction of any trees with root labelled
A and a yield of length 2.

4We use Pfin(X) to denote the finite power set of X.
5This standard set of hypotheses will be used for all the schemata described here, including those for

error-repair parsers, so we will not make it explicit in subsequent schemata.
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A → BC or A → a) and string a1 . . . an ∈ Σ∗ to the instantiated parsing system (I,H, D)
such that:

I = ICY K (as defined before)

DCY KUnary = {[a, i, i + 1] ` [A, i, i + 1] | A → a ∈ P}

DCY KBinary = {[B, i, j], [C, j, k] ` [A, i, k] | A → BC ∈ P}

D = DCY KUnary ∪DCY KBinary. �

The proof of correctness for these two schemata can be found in [17].

3. Error-repair parsing schemata

The parsing schemata formalism introduced in the previous section does not suffice
to define error-repair parsers that can show a robust behavior in the presence of errors:
items can only contain members of Trees(G), which are trees that conform to the con-
straints imposed by the grammar, but in order to handle ungrammatical sentences we
need to be able to violate these constraints. What we need is to obtain items containing
“approximate parses” if an exact parse for the sentence does not exist. Approximate
parses need not be members of Trees(G), since they may correspond to ungrammatical
sentences, but they should be similar to a member of Trees(G). This notion of “simi-
larity” can be formalized as a distance function in order to obtain a definition of items
allowing approximate parses to be generated.

3.1. Defining error-repair parsing schemata
Given a context-free grammar G = (N,Σ, P, S), we shall denote by Trees ′(G) the set

of finitely branching finite trees in which children of a node have a left-to-right ordering
and every node is labelled with a symbol from N ∪ Σ ∪ (Σ × N) ∪ {ε}. Note that
Trees(G) ⊂ Trees ′(G).

Let d : Trees ′(G) × Trees ′(G) → N ∪ {∞} be a function verifying the axioms of
an extended pseudometric (d(x, x) = 0 for all x, plus the well-known metric axioms of
symmetry and triangle inequality)6.

We shall denote by Treese(G) the set {t ∈ Trees ′(G) | ∃t′ ∈ Trees(G) : d(t, t′) ≤ e},
i.e., Treese(G) is the set of trees that have distance e or less to some grammatically valid
tree. Note that, by construction, Trees(G) ⊆ Trees0(G).

Definition 1. (approximate trees)
We define the set of approximate trees for a grammar G and a tree distance function d
as ApTrees(G) = {(t, e) ∈ (Trees ′(G)×N) | t ∈ Treese(G)}. Therefore, an approximate
tree is the pair formed by a tree and an upper bound of its distance to some tree in
Trees(G).

6An extended pseudometric is a generalization of a metric, where the word extended refers to the fact
that we allow our distance to take the value ∞, and the prefix pseudo means that we allow the distance
between two distinct trees to be zero, while a metric imposes the additional constraint that an entity
can only be at distance 0 from itself.
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This concept of approximate trees allows us to precisely define the problems that
we want to solve with error-repair parsers. Given a grammar G, a distance function d
and a sentence a1 . . . an, the approximate recognition problem is to determine the minimal
e ∈ N such that there exists an approximate tree (t, e) ∈ ApTrees(G) where t is a marked
parse tree for the sentence. We will call such an approximate tree an approximate marked
parse tree for a1 . . . an.

Similarly, the approximate parsing problem consists of finding the minimal e ∈ N such
that there exists an approximate marked parse tree (t, e) ∈ ApTrees(G) for the sentence,
and finding all approximate marked parse trees of the form (t, e) for the sentence.

As we can see, while the problem of parsing is a problem of finding trees, the problem
of approximate parsing can be seen as a problem of finding approximate trees. In the
same way that the problem of parsing can be solved by a deduction system whose items
are sets of trees, the problem of approximate parsing can be solved by one whose items
are sets of approximate trees.

Definition 2. (approximate item set)
Given a grammar G and a distance function d, we define an approximate item set as a
set I ′ such that I ′ ⊆ ((

⋃∞
i=0 Πi) ∪ {∅}) where each Πi is a partition of the set {(t, i) ∈

ApTrees(G)}.

Each element of an approximate item set is a set of approximate trees, and will
be called an approximate item. Note that the concept is defined in such a way that
each approximate item contains approximate trees with a single value of the distance
e. Directly defining an approximate item set using any partition of ApTrees(G) would
be impractical, since we need our parsers to keep track of the degree of discrepancy of
partial parses with respect to the grammar, and that information would be lost if our
items were not associated to a single value of e. This concrete value of e is what we will
call the parsing distance of an item ι, or dist(ι):

Definition 3. (parsing distance of an item)
Let I ′ ⊆ ((

⋃∞
i=0 Πi)∪ {∅}) be an approximate item set as defined above, and ι ∈ I ′. The

parsing distance associated to the nonempty approximate item ι, dist(ι), is defined by the
(trivially unique) value i ∈ N such that ι ∈ Πi. In the case of the empty approximate
item ∅, we will say that dist(∅) = ∞.

Having defined approximate item sets that can handle robust parsing by relaxing
grammar constraints, error-repair parsers can be described by using parsing schemata
that work with these items.

Definition 4. (error-repair parsing system, error-repair parsing schema)
Let G be a context-free grammar, d a distance function, and a1 . . . an ∈ Σ∗ a string. An
error-repair instantiated parsing system is a triple (I ′,H, D) such that I ′ is an approxi-
mate item set with distance function d, H is a set of hypotheses such that {ai(ai)} ∈ H
for each ai, 1 ≤ i ≤ n, and D is a set of deduction steps such that D ⊆ Pfin(H∪I ′)×I ′.

An error-repair uninstantiated parsing system is a triple (I ′,K, D) where K is a
function such that (I ′,K(a1 . . . an), D) is an error-repair instantiated parsing system for
each a1 . . . an ∈ Σ∗ (in practice, we will always define this function as K(a1 . . . an) =
{{ai(ai)} | 1 ≤ i ≤ n}).
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Finally, an error-repair parsing schema for a class of grammars CG and a distance
function d is a function that assigns an error-repair uninstantiated parsing system to
each grammar G ∈ CG.

Definition 5. (final items, correct final items)
The set of final items for strings of length n in an approximate item set is defined by
F(I ′, n) = {ι ∈ I ′ | ∃(t, e) ∈ ι : t is a marked parse tree for some string a1 . . . an ∈ Σ?}.

The set of correct final items for a string a1 . . . an in an approximate item set is
defined by CF(I ′, a1 . . . an) = {ι ∈ I ′ | ∃(t, e) ∈ ι : t is a marked parse tree for a1 . . . an}.

Definition 6. (minimal parsing distance)
The minimal parsing distance for a string a1 . . . an in an approximate item set I ′ is
defined by MinDist(I ′, a1 . . . an) = min{e ∈ N | ∃ι ∈ CF(I ′, a1 . . . an) : dist(ι) = e}.

Definition 7. (minimal final items)
The set of minimal final items for a string a1 . . . an in an approximate item set I ′ is
defined by

MF(I ′, a1 . . . an) = {ι ∈ CF(I ′, a1 . . . an) | dist(ι) = MinDist(I ′, a1 . . . an)}

The concepts of valid items, soundness, completeness and correctness are totally
analogous to the standard parsing schemata case. Note that the approximate recognition
and approximate parsing problems that we defined earlier for any string and grammar
can be solved by obtaining the set of minimal final items in an approximate item set.
Minimal final items can be deduced by any correct error-repair parsing schema, since
they are a subset of correct final items.

3.2. A distance function for edit distance based repair
A correct error-repair parsing schema will obtain the approximate parses whose dis-

tance to an exact parse is minimal. Therefore, a suitable distance function should be
chosen depending on the kind of errors that are more likely to appear in input sentences.

Let us suppose a generic scenario where we would like to repair errors according to
edit distance. The edit distance or Levenshtein distance [18] between two strings is the
minimum number of insertions, deletions or substitutions of a single terminal needed to
transform either of the strings into the other one. Given a string a1 . . . an containing
errors, we would like our parsers to return an approximate parse based on the exact
parse tree of one of the grammatical strings whose Levenshtein distance to a1 . . . an is
minimal.

A suitable distance function d̂ for this case is given by ignoring the indexes in marked
terminals (i.e. two trees differing only in the integer values associated to their marked
terminals are considered equal for this definition) and defining the distance as the number
of elementary tree transformations that we need to transform one tree into another, if the
elementary transformations that we allow are inserting, deleting or changing the label of
a marked terminal node in the frontier.

More formally, for each t ∈ Trees ′(G), we define Insertion(t), Deletion(t) and Substitution(t)
as the set of trees obtained by inserting a marked terminal node in the frontier, deleting
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a marked terminal node and changing its associated symbol, respectively. With this, we
can define sets of transformations of a given tree t as follows:

Trans0(t) = {t}

Trans1(t) = Insertion(t) ∪Deletion(t) ∪ Substitution(t)

Transi(t) = {t′ ∈ Trees ′(G) | ∃u ∈ Transi−1(t) : t′ ∈ Trans1(u)}, for i > 1

and our distance function d̂ as follows:

d̂ : Trees ′(G)× Trees ′(G) → N ∪ {∞}

d̂(t1, t2) = min{i ∈ N | t2 ∈ Transi(t1)}, if ∃i ∈ N : t2 ∈ Transi(t1)

d̂(t1, t2) = ∞ otherwise

Note that our distance function is symmetrical, since for every
t1, t2 ∈ Trees ′(G), t1 ∈ Transi(t2) if and only if t2 ∈ Transi(t1). This is easy to verify if
we take into account that t1 ∈ Deletion(t2) ⇔ t2 ∈ Insertion(t1), t1 ∈ Insertion(t2) ⇔
t2 ∈ Deletion(t1), and t1 ∈ Substitution(t2) ⇔ t2 ∈ Substitution(t1). It is trivial to verify
that the function d̂ also satisfies the other pseudometric axioms.

If we call the string edit distance ded, then it is easy to see that for any tree t1 such
that yield(t1) = α, and for any string β, there exists a tree t2 with yield β such that
d̂(t1, t2) = ded(α, β).

As we only allow transformations dealing with marked terminal nodes, trees that
differ in nodes labelled with other symbols will be considered to be at infinite distance.
Therefore, when we define a parser using this distance, the parses (t2) obtained for an
ungrammatical input sentence (β) will be identical, except for marked terminals, to the
valid parses (t1) corresponding to the grammatical sentences (α) whose distance to the
input is minimal.

3.3. Lyon’s global error-repair parser
The formalism of error-repair parsing schemata allows us to represent error-repair

parsers in a simple, declarative way, making it easy to explore their formal properties
and obtain efficient implementations of them. As an example, we will see how this
formalism can be used to describe one of the most influential error-repair parsers in the
literature: the one described by Lyon [7].

The schema for Lyon’s error-repair parser maps each grammar G ∈ CFG to a triple
(I ′,K, D), where K has the standard definition explained in section 3.1, and I ′ and D
are defined as follows:

I ′Lyon = {[A → α • β, i, j, e]|A → αβ ∈ P ∧ i, j, e ∈ N ∧ i ≤ j}

where we use [A → α • β, i, j, e] as a shorthand notation for the set of approximate trees
(t, e) such that t is a partial parse tree with root A where the direct children of A are
labelled with the symbols of the string αβ, and the frontier nodes of the subtrees rooted
at the symbols in α form the substring ai+1 . . . aj of the input string. The distance
function d used to define the approximate item set, and therefore conditioning the values
of e, is d̂ as defined in section 3.2.
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The set of deduction steps, D, for Lyon’s parser is defined as the union of the following:

DInitter = {` [S → •γ, 0, 0, 0]}

DScanner = {[A → α • xβ, i, j, e], [x, j, j + 1] ` [A → αx • β, i, j + 1, e]}

DCompleter = {[A → α •Bβ, i, j, e1], [B → γ•, j, k, e2] ` [A → αB • β, i, k, e1 + e2]}

DPredictor = {[A → α •Bβ, i, j, e1] ` [B → •γ, j, j, 0]}

DScanSubstituted = {[A → α • xβ, i, j, e], [b, j, j + 1] ` [A → αx • β, i, j + 1, e + 1]}

DScanDeleted = {[A → α • xβ, i, j, e] ` [A → αx • β, i, j, e + 1]}

DScanInserted = {[A → α • β, i, j, e], [b, j, j + 1] ` [A → α • β, i, j + 1, e + 1]}

The Initter, Scanner, Completer and Predictor steps are similar to those in Earley’s
algorithm, with the difference that we have to keep track of the distance associated to
the approximate trees in our items.

The ScanSubstituted, ScanDeleted and ScanInserted steps are error-repair steps,
and they allow us to read unexpected symbols from the string while incrementing the dis-
tance. ScanSubstituted allows us to repair a substitution error in the string, ScanDeleted
repairs a deletion error, and ScanInserted an insertion error.

Note that the ScanInserted step is defined slightly differently from the one in the
original Lyon’s algorithm, which is:

DScanInsertedLyon = {[A → α • xβ, i, j, e], [b, j, j + 1] ` [A → α • xβ, i, j + 1, e + 1]}

This alternative version of ScanInserted cannot be used to repair an insertion error
at the end of the input, since a repair is only attempted if we are expecting a terminal a
and we find another terminal b instead, but not if we are expecting the end of the string.
Lyon avoids this problem by extending the grammars used by the schema by changing
the initial symbol S to S′ and adding the additional rule S′ → S$, where the character $
acts as an end-of-sentence marker. However, we choose to keep our more general version
of the step, and not to extend the grammar with this additional rule.

The set of final items and the subset of correct final items are:

F = {[S → γ•, 0, n, e]}

CF = {ι = [S → γ•, 0, n, e] | ∃(t, e) ∈ ι : t is a marked parse tree for a1 . . . an}

Once we have defined a parser by means of an error-repair parsing schema, as we have
done with Lyon’s error-repair parser, we can use the formalism to prove its correctness.
However, instead of showing a correctness proof for a particular case, we will describe
something more interesting, namely how any standard parsing schema meeting a certain
set of conditions can be systematically transformed to an error-repair parser, in such
a way that the correctness of the standard parser implies that the error-repair parser
obtained by applying the transformation is also correct.

4. An error-repair transformation

The error-repair parsing schemata formalism allows us to define a transformation
to map correct parsing schemata to correct error-repair parsing schemata that can suc-
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cessfully obtain approximate parses minimizing the Levenshtein distance. We will first
provide an informal description of the transformation and how it is applied, and then we
will define it formally in Sect. 5, in order to be able to prove its correctness in Sect. 6.

4.1. From standard parsers to error-repair parsers
Most standard, non-robust parsers work by using grammar rules to build trees and

link them together to form larger trees, until a complete parse can be found. Our
transformation will be based on generalising parser deduction steps to enable them to
link approximate trees and still obtain correct results, and adding some standard steps
that introduce error hypotheses into the item set, which will be elegantly integrated into
parse trees by the generalized steps.

The particular strategy used by parsers to build and link trees obviously varies be-
tween algorithms but, in spite of this, we can usually find two kinds of deduction steps
in parsing schemata: those which introduce a new tree into the parse from scratch, and
those which link a set of trees to form a larger tree. We will call the former predictive
steps and the latter yield union steps.

Predictive steps can be identified because the yield of the trees in their consequent
item does not contain any marked terminal symbol, that is, they generate trees which
are not linked to the input string. Examples of predictive steps are the Earley Initter
and Predictor steps. Yield union steps can be identified because the sequence of marked
terminals in the yield of the trees of their consequent item (which we call the marked
yield of these items)7 is the concatenation of the marked yields of one or more of their
antecedents,8 and the trees in the consequent item are formed by linking trees in an-
tecedent items. Examples of yield union steps are Earley Completer and Scanner, and
all the steps in the CYK parsing schema [11, 13, 14].

If all the steps in a parsing schema are predictive steps or yield union steps, we
will call it a prediction-completion parsing schema. Most of the parsing schemata which
can be found in the literature for widely-used parsers are prediction-completion parsing
schemata, which allows us to obtain error-repair parsers from them.

4.2. The transformation
The error-repair transformation of a prediction-completion parsing system S is the

error-repair parsing system R(S) obtained by applying the following changes to it:

1. Transform the item set into the corresponding approximate item set by introducing
a field which will store the corresponding parsing distance.

2. Add the following steps to the schema:

7In the sequel, we will use the notation yieldm(t) to refer to the marked yield of a tree t, and yieldm(ι)
to refer to the common marked yield of the trees in an item ι, which we will call the marked yield of the
item.

8Actually, predictive steps can also be seen as yield union steps where the marked yield of the conse-
quent item is the concatenation of the marked yield of zero of their antecedents. From this perspective
it is not necessary to define predictive steps, but the concept has been introduced for clarity.
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(a) D′SubstitutionHypothesis = {[a, i, i + 1] ` [b, i, i + 1, 1] | b ∈ Σ}
The consequent of this step contains the tree b → ai+1, for each symbol ai+1 in
the input string (input symbol) and each b ∈ Σ (expected symbol). Generating
this item corresponds to the error hypothesis that the symbol ai+1 that we
find in the input string is the product of a substitution error, and should be b
instead.

(b) D′DeletionHypothesis = {` [b, i, i, 1] | b ∈ Σ}
The consequent item contains the tree b → ε, for each position i in the input
string. This corresponds to the error hypothesis that the symbol b, which
should be the i+1th symbol in the input, has been deleted. The item [b, i, i, 1]
allows us to use this symbol during parsing even if it is not there.

(c) D′InsertionHypothesis = {[a, i, i + 1] ` [ε, i, i + 1, 1]}
The consequent of this step contains the tree ε → ai+1, for each input symbol
ai+1 in the input string, which corresponds to the hypothesis that the symbol
ai+1 in the input is the product of an insertion error, and therefore should not
be taken into account in the parse.

(d) D′BeginningInsertionCombiner = {[ε, 0, j, e1], [(a|ε), j, k, e2] ` [(a|ε), 0, k, e1+e2]}

D′OtherInsertionCombiner = {[(a|ε), i, j, e1], [ε, j, k, e2] ` [(a|ε), i, k, e1 + e2]}

These steps produce trees of the form a2(ε(a1)a2(a2)) and
ai+1(ai+1ε(ai+2)), respectively, when used to combine a single insertion hy-
pothesis. Larger trees can be obtained by successive applications. If the
first symbol in the input is an inserted character, its insertion hypothesis is
combined with the hypothesis immediately to its right. Insertion hypotheses
corresponding to symbols other than the first one are combined with the hy-
pothesis immediately to their left. This is done so that the items generated by
these steps will always contain trees rooted at a terminal symbol, rather than
at ε: while any correct parsing schema must have steps to handle hypotheses
of the form [a, i, i + 1], which can be straightforwardly transformed to handle
these extended insertion hypotheses; some schemata (such as CYK) do not
possess steps to handle subtrees rooted at ε, so their conversion to handle
epsilon-rooted trees would be more complex.

(e) D′CorrectHypothesis = {[a, i, i + 1] ` [a, i, i + 1, 0]}
The consequent of this item contains the tree a → ai+1, for each input symbol
ai+1 in the input string. Therefore, it is equivalent to the hypothesis [a, i, i+1].
This item corresponds to the hypothesis that there is no error in the symbol
ai+1 in the input, hence the distance value 0.

3. For every predictive step in the schema (steps producing an item with an empty
yield), change the step to its generalization obtained (in practice) by setting the
distance associated with each antecedent item Ai to an unbound variable ei, and
set the distance for the consequent item to zero. For example, the Earley step

DPredictor = {[A → α •Bβ, i, j] ` [B → •γ, j, j] | B → γ ∈ P}

produces the step

D′Predictor = {[A → α •Bβ, i, j, e] ` [B → •γ, j, j, 0] | B → γ ∈ P}.
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4. For every yield union step in the schema (steps using items with yield limits (i0, i1),
(i1, i2), . . ., (ia−1, ia) to produce an item with yield (i0 . . . ia)):

• If the step requires a hypothesis [a, i, i + 1], then change all appearances of
the index i + 1 to a new unbound index j.9

• Set the distance for each antecedent item Ak with yield (ik−1, ik) to an un-
bound variable ek, and set the distance for the consequent to e1 +e2 + . . .+ea.

• Set the distance for the rest of antecedent items, if there is any, to unbound
variables e′j .

Example 5. The Earley step

DCompleter = {[A → α •Bβ, i, j], [B → γ•, j, k] ` [A → αB • β, i, k]}

produces the step

D′Completer = {[A → α•Bβ, i, j, e1], [B → γ•, j, k, e2] ` [A → αB •β, i, k, e1 +e2]}.

The Earley step

DScanner = {[A → α • aβ, i, j], [a, j, j + 1] ` [A → αa • β, i, j + 1]}

produces the step

D′Scanner = {[A → α • aβ, i, j, e1], [a, j, k, e2] ` [A → αa • β, i, k, e1 + e2]}.

The CYK step

DCY KUnary = {[a, i, i + 1] ` [A, i, i + 1] | A → a ∈ P}

produces

D′CY KUnary = {[a, i, j, e] ` [A, i, j, e] | A → a ∈ P}. �

5. Formal definition of the error-repair transformation

By applying these three simple transformation rules to a prediction-completion pars-
ing schema, we obtain an error-repair parsing schema which shares its underlying se-
mantics. As the transformation rules are totally systematic, they can be applied au-
tomatically, so that a system based on parsing schemata, such as the one described in
[16, 19], can generate implementations of error-repair parsers from non-error-repair pars-
ing schemata. However, in order for the transformation to be useful we need to ensure
that the error-repair parsers obtained from it are correct. In order to do this, we first
need to define some concepts that will take us to a formal definition of the transformation
that we have informally described in the previous section.

9This is done because steps including hypotheses as antecedents are not strictly yield union steps
according to the formal definition of yield union step that we will see later in Sect. 5.2. However, these
steps can always be easily transformed to yield union steps by applying this transformation. Note that
this change does not alter any of the significant properties of the original (standard) parsing schema,
since items [a, i, j] with j 6= i + 1 can never appear in the deduction process.
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5.1. Some properties of trees and items
Let t ∈ Trees(G) be a parse tree. We will say that t is an anchored tree if there is

at least one marked terminal ai in yield(t). If t does not contain any marked terminal,
then we will call it a non-anchored tree.

Note that the presence of marked terminals binds anchored trees to particular posi-
tions in the input string, while non-anchored trees are not bound to positions.

Definition 8. (yield limits)
We say that an anchored tree t is substring-anchored if its yield is of the form
α al+1 al+2 . . . ar β, where α and β contain no marked terminals, for some l, r ∈ N
(l < r). The values l and r are called the leftmost yield limit and the rightmost yield
limit of t, respectively, and we will denote them left(t) and right(t).

Definition 9. (contiguous yield tree, marked yield)
We say that a tree t is a contiguous yield tree if it is either substring-anchored or non-
anchored.

We define the marked yield of a contiguous yield tree t, denoted yieldm(t), as:

• The empty string ε, if t is non-anchored,

• The string al+1 al+2 . . . ar, if t is substring-anchored with yield limits left(t) = l,
right(t) = r.

Definition 10. (types of items according to yield)
Let I be an item set.

• We will say that an item ι ∈ I is a homogeneously anchored item if there exist l
and r ∈ N such that, for every tree t ∈ ι, t is substring-anchored and verifies that
left(t) = l and right(t) = r. In this case, we will call l the leftmost yield limit of
the item ι, denoted left(ι), and r the rightmost yield limit of ι, denoted right(ι).

• We will call ι ∈ I a non-anchored item if, for every tree t ∈ ι, t is non-anchored.

• We will call any item ι ∈ I which is in neither of these two cases a heterogeneously
anchored item.

We will say that an item set I is homogeneous if it contains no heterogenously an-
chored items.

Note that all trees contained in items in a homogeneous item set are contiguous yield
trees.

Example 6. The Earley, CYK and Left-Corner [11] parsing schemata have, by con-
struction, homogeneous item sets. Earley and Left-Corner10 items of the form ι =
[A → α • β, i, j] where i < j are homogeneously anchored items, where left(ι) = i and
right(ι) = j. Items where i = j are non-anchored items. In the case of CYK, items
of the form ι = [A, i, j] where i < j are homogeneously anchored, with left(ι) = i and
right(ι) = j. �

10The item set for a Left-Corner parser is a subset of the item set IEarley of Example 1, of the form
ILC = {[A → Xα •β, i, j] | A → Xαβ ∈ P ∧X ∈ (N ∪Σ)∧ 0 ≤ i ≤ j}∪ {[A → •, j, j] | A → ε ∈ P ∧ j ≥
0} ∪ {[S → α•, 0, 0]}.
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Definition 11. (item representation set, item representation function)
Let I be a homogeneous item set, H a set of possible hypotheses.11 An item representation
set for I is a set R = {(q, i, j) ∈ E×N×N | i ≤ j}, where E is any set such that Σ ⊆ E
and there exists a function rR : R → I ∪ H (which we will call an item representation
function) verifying that it is surjective (every item has at least one inverse image) and,
for all (q, i, j) ∈ R,

• if i < j and ι = rR(q, i, j) is nonempty, ι is a homogeneously anchored item with
left(ι) = i and right(ι) = j.

• if i = j and ι = rR(q, i, j) is nonempty, ι is a non-anchored item.

• if q ∈ Σ and j = i+1, ι = rR(q, i, j) is the hypothesis [q, i, i+1] = {q((q, i+1))} ∈ H.

• if q ∈ Σ and j 6= i + 1, ι = rR(q, i, j) is the empty item ∅.

Note that a final item for a string of length n will always be of the form rR(q, 0, n)
for some q.

Example 7. In the case of the Earley parser, we consider the representation set REarley =
{(q, i, j) ∈ (D(P ) ∪ Σ) × N × N | i ≤ j}, where the set of dotted productions D(P ) is
defined as {(A → α, k) | A → α ∈ P ∧ k ∈ N ∧ 0 ≤ k ≤ length(α)}. This allows us
to define the obvious representation function for the Earley item set, rREarley

: ((A →
γ, k), i, j) → [A → α • β, i, j], where α is the substring γ1 . . . γk of γ and β is the rest of
γ; and rREarley

: (a, i, j) → [a, i, j]. �

5.2. Some properties of deduction steps

Definition 12. (yield union step set)
Let I be a homogeneous item set, and R ⊆ E ×N×N an item representation set for I,
with representation function rR. If we write [a, b, c] as shorthand for rR(a, b, c), a yield
union step set is a set of deduction steps of the form

{[q1, i0, i1], [q2, i1, i2], . . . , [qm, im−1, im], [c1, j1, k1], [c2, j2, k2], . . . , [cn, jn, kn] `
[qc, i0, im] |

i0 ≤ i1 ≤ . . . ≤ im ∈ N ∧ j1, . . . , jn, k1, . . . , kn ∈ N ∧ ji ≤ ki∧
P (q1, q2, . . . , qm, c1, c2, . . . , cn, qc) = 1}

where P is a boolean function, P : Em+n+1 → {0, 1}.

Therefore, a yield union step set is a step set in which some of the antecedent items
have contiguous yields whose union is the consequent’s yield. If we represent the an-
tecedent and consequent items as [q, l, r], the only constraints allowed on the left and
right positions l and r are that l should always be lesser than or equal to r for all items,
and that the (l, r) intervals of some antecedents must be contiguous and their union be
the interval corresponding to the consequent. Any constraint is allowed on the entities q
and c, as denoted by P .

11Note that, in this definition, H represents the set of all the possible hypotheses of the form {a((a, i))}
with a ∈ Σ? and i ∈ N, and not only the hypotheses associated to a particular input string.
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Example 8. The set of Earley Completer steps is a yield union step set with the repre-
sentation function rREarley

, because it can be written as:

{[q1, i0, i1], [q2, i1, i2] ` [qc, i0, i2] | i0 ≤ i1 ≤ i2 ∈ N ∧ P (q1, q2, qc) = 1}

with P (x, y, z) = (∃A,B, α, β, γ such that x = A → α • Bβ, y = B → γ•, z = A →
αB • β). �

Definition 13. (predictive step set)
Let I be a homogeneous item set, and R ⊆ E × N × N an item representation set for
I, with representation function rR. If we write [a, b, c] as shorthand for rR(a, b, c), a
predictive step set is a set of deduction steps of the form

{[q1, j1, k1], [q2, j2, k2], . . . , [qn, jn, kn] `
[qc, f(j1, k1, j2, k2, . . . , jn, kn), f(j1, k1, j2, k2, . . . , jn, kn)] |

j1, . . . , jn, k1, . . . , kn ∈ N ∧ ji ≤ ki ∧ P (q1, q2, . . . , qn, qc) = 1},

where P is a boolean function, P : En+1 → {0, 1}, and f is a natural function,
f : N2n → N.

Therefore, a predictive step set is a step set in which the consequent is a non-anchored
item. If we represent the antecedent and consequent items as [q, l, r], the only constraints
allowed on the left and right positions l and r are that l should always be lesser than
or equal to r for all items, and that the (l, r) indexes of the consequent must be equal
and a function of the (l, r) indexes of the antecedents. Any constraint is allowed on the
entities q, as denoted by P .

Example 9. The set of Earley Predictor steps is a predictive step set, because it can
be written as:

{[q1, j1, k1]} ` [qc, f(j1, k1), f(j1, k1)] | ∧j1, k1 ∈ N ∧ j1 ≤ k1 ∧ P (q1, qc) = 1}

where f(x, y) = y, and P (x, y) = (∃A,B, α, β, γ such that x = A → α•Bβ, y = B → •γ)
with B → γ a production in the grammar. �

Definition 14. (prediction-completion parsing schema)
An uninstantiated parsing system (I,K, D) is a prediction-completion parsing system
if there exists a representation function rR such that D can be written as union of sets
D1 ∪D2 ∪ . . .∪Dn, where each Di is either a predictive step set or a yield union step set
with respect to that representation function.

A parsing schema S is said to be a prediction-completion parsing schema if it maps
each grammar G in a class CG to a prediction-completion parsing system.

Example 10. It is easy to check that the Earley, CYK and Left-Corner parsing schemata
are prediction-completion parsing schemata, as their sets of deduction steps can be rewrit-
ten as the union of predictive step sets and yield union step sets. For example, in the case
of Earley, the standard Initter and Predictor are predictive step sets, while Completer
and Scanner are yield union step sets. In the case of the Scanner step, we can see that
it is a yield union step set by rewriting it as DScanner = {[A → α • xβ, i, j], [x, j, k] `
[A → αx • β, i, k]} (see footnote on page 12). �
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5.3. The error-repair transformation (formal definition)
Let S = (I,K, D) be a prediction-completion parsing system.
Let D = D1∪D2∪ . . .∪Dn be an expression of D where each Di is either a predictive

step set or a yield union step set with respect to a representation function rR associated
to a representation set R ⊆ E × N × N. This expression must exist, by definition of
prediction-completion parsing system. As before, we will denote rR(q, i, j) by [q, i, j].

The error-repair transformation of S, denoted R(S), is an error-repair parsing system
(I ′,K, D′) under the distance function d̂, where I ′ and D′ are defined as follows.

5.3.1. Items of the error-repair transformation
I ′ = I ′1 ∪ I ′2, with

I ′1 = { {(t, e) ∈ ApTrees(G) | t is substring-anchored ∧
left(t) = i ∧ right(t) = j∧

∃i′, j′ ∈ N, t′ ∈ [q, i′, j′] ∪ {ε(ε)} : d(t, t′) = e} |
q ∈ E ∪ {ε}, i, j, e ∈ N }

I ′2 = { {(t, e) ∈ ApTrees(G) | t is non-anchored ∧
∃i′, j′ ∈ N, t′ ∈ [q, i′, j′] ∪ {ε(ε)} : d(t, t′) = e} |

q ∈ E ∪ {ε}, e ∈ N }

Note that I ′ verifies the definition of an approximate item set if, and only if, d(t1, t2) = ∞
for every t1 ∈ [q1, i1, j1], t2 ∈ [q2, i2, j2] such that q1 6= q2 (this can be easily proved by
the triangle inequality, and it can be seen that if this condition does not hold, there will
be trees that appear in more than one item in I ′, thus violating the definition). Known
item sets such as the Earley, CYK or Left-Corner item sets meet this condition when
using the distance function d̂; since if two items have q1 6= q2, their respective trees differ
in non-frontier nodes and therefore the distance between them is always ∞.

5.3.2. Deduction steps of the error-repair transformation
We define a set R′ = {(q, i, j, e) ∈ (E ∪ {ε})×N×N×N | i ≤ j} for I ′, and call it a

robust representation set for I ′.
We define r′R : R′ → (I ′ ∪ H) as the function that maps each tuple (q, i, j, e) to the

item:

• {(t, e) ∈ ApTrees(G) | t is substring-anchored ∧left(t) = i ∧ right(t) = j ∧ ∃i′, j′ ∈
N, t′ ∈ [q, i′, j′] ∪ {ε(ε)} : d(t, t′) = e} ∈ I ′1, if i 6= j.

• {(t, e) ∈ ApTrees(G) | t is non-anchored ∧∃i′, j′ ∈ N, t′ ∈ [q, i′, j′] ∪ {ε(ε)} :
d(t, t′) = e} ∈ I ′2, if i = j.

We call r′R a robust representation function for I ′, and we will denote r′R(q, i, j, e) by
Jq, i, j, eK. Note that the function r′R is trivially surjective by construction: the images

16



for each of the two cases of its definition are I ′1 and I ′2, respectively, and each hypothesis
[a, i, i + 1] ∈ H is the image of (a, i, i + 1, 0).

The set of deduction steps of the error-repair transformation is defined as D′ =
D′CorrectHyp∪D′SubstHyp∪D′DelHyp∪D′InsHyp∪D′BegInsComb∪D′OthInsComb∪D′DistIncr∪
D′

1 ∪D′
2 ∪ . . . ∪D′

n, where12

D′CorrectHyp = {[a, i, j] ` Ja, i, j, 0K}

D′SubstHyp = {[a, i, j] ` Jb, i, j, 1K | b ∈ Σ}

D′DelHyp = {` Jb, i, i, 1K | b ∈ Σ}

D′InsHyp = {[a, i, j] ` Jε, i, j, 1K}

D′BegInsComb = {Jε, 0, j, e1K, Jx, j, k, e2K ` Jx, 0, k, e1 + e2K | x ∈ Σ ∪ {ε}}

D′OthInsComb = {Jx, i, j, e1K, Jε, j, k, e2K ` Jx, i, k, e1 + e2K | x ∈ Σ ∪ {ε}}

D′DistIncr = {Jx, i, j, eK ` Jx, i, j, e + 1K | x ∈ (E ∪ {ε})}

For each yield union step set Di of the form

Di = {[q1, i0, i1], [q2, i1, i2], . . . , [qm, im−1, im], [c1, j1, k1], [c2, j2, k2], . . . , [cn, jn, kn] `
[qc, i0, im] | i0 ≤ i1 ≤ . . . ≤ im ∈ N ∧ j1, . . . , jn, k1, . . . , kn ∈ N ∧ ji ≤ ki∧

P (q1, q2, . . . , qm, c1, c2, . . . , cn, qc) = 1}

we obtain

D′
i = {Jq1, i0, i1, e1K, Jq2, i1, i2, e2K, . . . , Jqm, im−1, im, emK,

Jc1, j1, k1, e
′
1K, Jc2, j2, k2, e

′
2K, . . . , Jcn, jn, kn, e′nK `

Jqc, i0, im, e1 + . . . + emK | i0 ≤ i1 ≤ . . . ≤ im ∈ N ∧ j1, . . . , jn, k1, . . . , kn,

e′1, . . . , e
′
n, e1, . . . , em ∈ N ∧ ji ≤ ki ∧ P (q1, q2, . . . , qm, c1, c2, . . . , cn, qc) = 1}

For each predictive step set Di of the form

{[q1, j1, k1], [q2, j2, k2], . . . , [qn, jn, kn] `
[qc, f(j1, k1, j2, k2, . . . , jn, kn), f(j1, k1, j2, k2, . . . , jn, kn)] |

j1, . . . , jn, k1, . . . , kn ∈ N ∧ ji ≤ ki ∧ P (q1, q2, . . . , qn, qc) = 1},

we obtain

D′
i = {Jq1, j1, k1, e1K, Jq2, j2, k2, e2K, . . . , Jqn, jn, kn, enK `

Jqc, f(j1, k1, j2, k2, . . . , jn, kn), f(j1, k1, j2, k2, . . . , jn, kn), 0K |
j1, . . . , jn, k1, . . . , kn, e1, . . . , en ∈ N ∧ ji ≤ ki ∧ P (q1, q2, . . . , qn, qc) = 1}Note that we have included a step in the transformation, D′DistIncr, that is used to

12The names of deduction steps have been shortened with respect to those given in Sect. 4.2 for reasons
of space.
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increase the parsing distance of an item. This step was not mentioned in the informal
description of Section 4.2. The reason is that this step is not necessary in practice, since
in a practical implementation of an error-repair parser we are not interested in strict
completeness (finding all possible approximate parses) as we only need the minimal-
distance parses. However, if we are able to prove that a parser that includes D′DistIncr

is correct, it immediately follows that a version of the same parser that removes that
step generates all minimal final items, as any sequence of deductions made with an item
Jx, i, j, e + 1K obtained from D′DistIncr can also be made directly with its antecedent
Jx, i, j, eK, avoiding the use of this step.

Example 11. Consider the Earley parsing schema, with the Scanner step rewritten in
order to be a yield union step, as explained in Example 10. Its robust transformation is
given by (I ′,K, D′), where:

I ′ = I ′11 ∪ I ′12 ∪ I ′13 ∪ I ′21 ∪ I ′22

I ′11 = JA → α • β, i, j, eK with i 6= j, representing the set of substring-anchored
approximate trees (t′, e) such that left(t′) = i, right(t′) = j, and d(t′, t) = e for some t
in an Earley item of the form [A → α • β, i′, j′] for some i′, j′ ∈ N

I ′12 = Ja, i, j, eK with i 6= j, representing the set of substring-anchored approximate
trees (t′, e) such that left(t′) = i, right(t′) = j, and d(t′, t) = e for some t in a hypothesis
of the form [a, i′, j′] for some i′, j′ ∈ N

I ′13 = Jε, i, j, eK with i 6= j, representing the set of substring-anchored approximate
trees (t′, e) such that left(t′) = i, right(t′) = j, and d(t′, t) = e for t = ε(ε)

I ′21 = JA → α • β, i, i, eK, representing the set of non-anchored approximate trees
(t′, e) such that d(t′, t) = e for some t in an Earley item of the form [A → α • β, i′, j′] for
some i′, j′

I ′22 = Jε, i, i, eK, representing the set of non-anchored approximate trees (t′, e) such
that d(t′, t) = e for t = ε(ε)

r′R(x, i, j, e) = Jx, i, j, eK, for all x ∈ D(P ) ∪ Σ ∪ {ε}

D′ = D′CorrectHyp∪D′SubstHyp∪D′DelHyp∪D′InsHyp∪D′BegInsComb∪D′OthInsComb∪
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D′DistIncr ∪′DistIncr2 ∪D′DistIncr3 ∪D′Initter ∪D′Scanner ∪D′Completer ∪D′Predictor

D′CorrectHyp = {[a, i, j] ` Ja, i, j, 0K}

D′SubstHyp = {[a, i, j] ` Jb, i, j, 1K | b ∈ Σ}

D′DelHyp = {` Jb, i, i, 1K | b ∈ Σ}

D′InsHyp = {[a, i, j] ` Jε, i, j, 1K}

D′BegInsComb = {Jε, 0, j, e1K, Jx, j, k, e2K ` Jx, 0, k, e1 + e2K | x ∈ Σ ∪ {ε}}

D′OthInsComb = {Jx, i, j, e1K, Jε, j, k, e2K ` Jx, i, k, e1 + e2K | x ∈ Σ ∪ {ε}}

D′DistIncr = {Jx, i, j, eK ` Jx, i, j, e + 1K}

D′DistIncr2 = {JA → α • β, i, j, eK ` JA → α • β, i, j, e + 1K}

D′DistIncr3 = {Jε, i, j, eK ` Jε, i, j, e + 1K}

D′Initter = {` JS → •γ, 0, 0, 0K}

D′Scanner = {JA → α • xβ, i, j, e1K, Jx, j, k, e2K ` JA → αx • β, i, k, e1 + e2K}

D′Completer = {JA → α •Bβ, i, j, e1K, JB → γ•, j, k, e2K ` JA → αB • β, i, k, e1 + e2K}

D′Predictor = {JA → α •Bβ, i, j, e1K ` JB → •γ, j, j, 0K} �

6. Proof of correctness of the error-repair transformation

The robust transformation function R maps prediction-completion parsing systems
to error-repair parsing systems. However, in order for this transformation to be useful,
we need it to guarantee that the robust parsers generated will be correct under certain
conditions. This will be done in the following two theorems.

Let S = (I,K, D) be a prediction-completion parsing system with representation
function rR(q, i, j) = [q, i, j], and with D = D1 ∪D2 ∪ . . .∪Dn an expression of D where
each Di is either a predictive step set or a yield union step set.

Theorem 1. (preservation of the soundness of the transformation)
If (I,K, D) is sound, every deduction step δ in a predictive step set Di ⊆ D has a
nonempty consequent, and for every deduction step δ in a yield union step set Di ⊆ D
of the form

Di = { [q1, i0, i1], [q2, i1, i2], . . . , [qm, im−1, im], [c1, j1, k1], [c2, j2, k2], . . . , [cn, jn, kn] `
[qc, i0, im] / i0 ≤ i1 ≤ . . . ≤ im ∈ N ∧ j1, . . . , jn, k1, . . . , kn ∈ N ∧ ji ≤ ki∧

P (q1, q2, . . . , qm, c1, c2, . . . , cn, qc) = 1}

there exists a function Cδ : Trees ′(G)m → Trees ′(G) (tree combination function) such
that:

• If (t1, . . . , tm) is a tuple of trees in Trees(G) such that tw ∈ [qw, iw−1, iw] (1 ≤ w ≤
m), then Cδ(t1, . . . , tm) ∈ [qc, i0, im].
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• If (t1, . . . , tm) is a tuple of trees in Trees(G) such that
tw ∈ [qw, iw−1, iw] (1 ≤ w ≤ m), and (t′1, . . . , t

′
m) is a tuple of contiguous yield trees

such that d̂(t′w, tw) = ew (1 ≤ w ≤ m), then
d̂(Cδ(t1, . . . , tm), Cδ(t′1, . . . , t

′
m)) = Σm

w=1ew, and Cδ(t′1, . . . , t
′
m) is a contiguous

yield tree with yieldm(Cδ(t′1, . . . , t
′
m)) =

yieldm(t′1)yieldm(t′2) . . . yieldm(t′m).

Then, R(I,K, D) is sound.

Theorem 2. (preservation of the completeness of the transformation)
If (I,K, D) is sound and complete, then R(I,K, D) is complete.

Note that the condition regarding the existence of tree combination functions in
Theorem 1 is usually straightforward to verify. A yield union step set normally combines
two partial parse trees in Trees(G) in some way, producing a new partial parse tree in
Trees(G) covering a bigger portion of the input string. In practice, the existence of a
tree combination function simply means that we can also combine in the same way trees
that are not in Trees(G), and that the obtained tree’s minimal distance to a tree in
Trees(G) is the sum of those of the original trees (i.e. the combined tree contains the
errors or discrepancies from all the antecedent trees). For example, in the case of the
Earley Completer step, it is easy to see that the function that maps a pair of trees of
the form A(α(...)Bβ) and B(γ(...)) to the combined tree A(α(...)B(γ(...))β) obtained
by adding the children of B in the second tree as children of B in the first tree is a
valid combination function. Combination functions for the remaining yield union steps
in CYK, Earley and Left-Corner parsers are equally obvious.

6.1. Proof of Theorem 1
Let S = (I,K, D) be a prediction-completion parsing system verifying the conditions

of Theorem 1, and R(S) = (I ′,K, D′) the error-repair transformation of S.
We define a correct item in the error-repair parsing system R(S) for a particular

input string a1 . . . an as an approximate item r′R(q, i, j, e) = Jq, i, j, eK containing an
approximate tree (t, e) such that t is a contiguous yield tree with yieldm(t) = ai+1 . . . aj

(we call such an approximate tree a correct approximate tree for that item and string).
Note that a final item containing such an approximate tree verifies the definition of a
correct final item that we gave earlier.

We will prove that R(S) is sound (all valid final items are correct) by proving the
stronger claim that all valid items are correct.

To prove this, we take into account that a valid item is either a hypothesis or the
consequent of a deduction step with valid antecedents. Therefore, in order to prove that
valid items are correct, it suffices to show that

(i) hypotheses are correct, and that
(ii) if the antecedents of a deduction step are correct, then the consequent is correct.

Proving (i) is trivial, since each hypothesis [a, i − 1, i] obtained from the function K
contains a single tree with yield ai.

To prove (ii), we will show that it holds for all the deduction step sets in D′. Let
D = D1∪D2∪ . . .∪Dn be an expression of D where each Di is either a predictive step set
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or a yield union step set (this expression must exist, since S is a prediction-completion
parsing system). Then the set of deduction steps D′, used in the error-repair parsing
system R(S), can be written as D′ = D′CorrectHyp ∪D′SubstHyp ∪D′DelHyp ∪D′InsHyp ∪
D′BegInsComb ∪D′OthInsComb ∪D′DistIncr ∪D′

1 ∪D′
2 ∪ . . . ∪D′

n, as defined above. We
will show that (ii) holds for each of the deduction step sets Di, by proving it separately
for each step set:

• For the deduction step sets D′
i, by considering two possible cases:

(1) D′
i comes from a yield union step set Di.

(2) D′
i comes from a predictive step set Di.

• For the fixed deduction step sets D′CorrectHyp, D′SubstHyp, etc., by considering each
set separately.

6.1.1. Proof for case (1)
Let us consider the first case, where D′

i comes from a yield union step set Di. Then,
by definition of the error-repair transformation, Di can be written as

Di = {[q1, i0, i1], [q2, i1, i2], . . . , [qm, im−1, im], [c1, j1, k1], [c2, j2, k2], . . . , [cn, jn, kn] `
[qc, i0, im] | i0 ≤ i1 ≤ . . . ≤ im ∈ N ∧ j1, . . . , jn, k1, . . . , kn ∈ N ∧ ji ≤ ki∧

P (q1, q2, . . . , qm, c1, c2, . . . , cn, qc) = 1}

and D′
i can be written as

D′
i = {Jq1, i0, i1, e1K, Jq2, i1, i2, e2K, . . . , Jqm, im−1, im, emK,

Jc1, j1, k1, e
′
1K, Jc2, j2, k2, e

′
2K, . . . , Jcn, jn, kn, e′nK `

Jqc, i0, im, e1 + . . . + emK | i0 ≤ i1 ≤ . . . ≤ im ∈ N ∧ j1, . . . , jn, k1, . . . , kn,

e′1, . . . , e
′
n, e1, . . . , em ∈ N ∧ ji ≤ ki ∧ P (q1, q2, . . . , qm, c1, c2, . . . , cn, qc) = 1}.

Let δ′ ∈ D′
i be a particular deduction step in this set. We will prove that, if the

antecedents of δ′ are correct, then the consequent is also correct.
Let δ ∈ Di be the deduction step in Di with the same values of

q1, . . . , qm, i0, . . . , im, c1, . . . , cn, j1, . . . , jn, k1, . . . , kn as δ′. Let Cδ be a combination
function for this step δ.

If the antecedents of δ′ are correct, then there exist m approximate trees (t′w, ew) ∈
Jqw, iw−1, iw, ewK(1 ≤ w ≤ m). By definition of r′R, we know that for each t′w there
exists a tree tw ∈ [qw, i′w, i′′w] such that d̂(t′w, tw) = ew. Taking into account that indexes
associated to marked terminals do not affect our distance d̂, it can be shown that we can
assume, without loss of generality, that tw ∈ [qw, iw−1, iw].

By the first condition that Cδ must verify, we know that Cδ(t1, . . . , tn) ∈ [qc, i0, im].
By the second condition, we know that d̂(Cδ(t′1, . . . , t

′
n), Cδ(t1, . . . , tn)) = Σm

w=1ew.
These two facts imply that (Cδ(t′1, . . . , t

′
n),Σm

w=1ew) is a member of an item
Jqc, k1, k2,Σm

w=1ewK ∈ I ′ for some k1, k2 ∈ N.
By hypothesis, the antecedents of δ′ are correct, so we know that

yield(t′w) = aiw−1+1 . . . aiw
. Therefore, by the second condition of a combination func-

tion, Cδ(t′1, . . . , t
′
n) is a contiguous yield tree with yield ai0 . . . aim

. Hence, we know
that k1 = i0, k2 = im, and (Cδ(t′1, . . . , t

′
n),Σm

w=1ew) is a correct approximate tree for
the consequent item of δ′, Jqc, i0, im,Σm

w=1ewK. This proves that the consequent of δ′ is
correct.
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6.1.2. Proof for case (2)
Let us consider the second case, where D′

i comes from a predictive step set Di. In
this case, the consequent of any deduction step δ′ ∈ D′

i is of the form Jqc, v, v, 0K for some
v. By construction of r′R, this means that the consequent is the set of non-anchored
approximate trees (t, 0) with t ∈ [qc, k1, k2] for any k1, k2 ∈ N.

Let δ ∈ Di be the deduction step in Di with the same values of q1, . . . , qn, j1, . . . , jn,
k1, . . . , kn as δ′. The consequent of this step is [qc, v, v] ∈ I. By definition of represen-
tation function, [qc, v, v] must be a non-anchored item. Therefore, any tree t ∈ [qc, v, v]
is non-anchored. By hypothesis, since [qc, v, v] is a consequent of a deduction step from
a predictive step set Di ⊆ D, we know that [qc, v, v] is nonempty, so there exists at
least one non-anchored tree t ∈ [qc, v, v]. The tree (t, 0) is a correct approximate tree in
Jqc, v, v, 0K. Therefore, the consequent of δ′ is correct.

6.1.3. Proof for fixed deduction step sets
We consider each deduction step set separately:

• A D′CorrectHyp step is of the form [a, i, j] ` Ja, i, j, 0K. The antecedent of this step
can only be correct in S if j = i+1, since otherwise it equals the empty item. If the
antecedent is correct, then there exists a hypothesis [a, j − 1, j], containing a tree
a((a, j)) ∈ Trees(G). In this case, since j = i + 1, the consequent is Ja, j − 1, j, 0K.

By definition of r′R, the consequent item Ja, j − 1, j, 0K is the set of substring-
anchored approximate trees (t, 0) ∈ ApTrees(G) such that left(t) = j−1, right(t) =
j, and d̂(t, u) = 0 for some u ∈ [a, k1, k2](k1, k2 ∈ N). One such tree is (a((a, j)), 0) ∈
ApTrees(G), which is trivially a correct tree for this item. Therefore, the conse-
quent item of D′CorrectHyp is correct.

• The consequent item of a step in D′SubstHyp, Jb, j − 1, j, 1K, is the set of substring-
anchored approximate trees (t, 1) ∈ ApTrees(G) such that left(t) = j−1, right(t) =
j, and d̂(t, u) = 1 for some u ∈ [b, k1, k2]. One such tree is (b((a, j)), 1) ∈
ApTrees(G), where b((a, j)) is at distance 1 from the tree b((b, j)) ∈ [b, j − 1, j]
by a substitution operation. This is a correct tree for the consequent, therefore the
consequent of D′SubstHyp is correct. Note that the antecedent is not used in the
proof, so the transformation would still be sound with a step ` Jb, j − 1, j, 1K. We
only use the antecedent to restrict the range of j.

• In the case of D′DelHyp, a correct tree for the consequent is (b(ε),1), where b(ε) is
at distance 1 from any b((b, j)) ∈ [b, j − 1, j].

• In the case of D′InsHyp, a correct tree for the consequent is (ε((a, j)), 1), which is
at distance 1 from ε(ε).

• A correct tree for the consequent of steps in D′BegInsComb is obtained by appending
a correct tree in the antecedent Jε, 0, j, e1K as the leftmost child of a correct tree in
the antecedent Jx, j, k, e2K.

• A correct tree for the consequent of steps in D′OthInsComb is obtained by appending
a correct tree in the antecedent Jε, j, k, e2K as the rightmost child of a correct tree
in the antecedent Jx, i, j, e1K.
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• A correct tree for the consequent of steps in D′DistIncr is (t, e+1), for any approx-
imate tree (t, e) in the antecedent Jx, i, j, eK.

6.1.4. End of the proof of Theorem 1
As a result, we have proved that, under the theorem’s hypotheses, (ii) holds for every

deduction step. This implies that all valid items are correct and, therefore, that R(S) is
sound, as we wanted to prove.

6.2. Proof of Theorem 2
Let S = (I,K, D) be a sound and complete prediction-completion parsing system,

and R(S) = (I ′,K, D′) the error-repair transformation of S. We will prove that R(S)
is complete. Proving completeness for this deduction system is proving that, given an
input string a1 . . . an, all correct final items are valid. Therefore, given a string a1 . . . an,
we have to prove that every item containing an approximate tree (t, e) such that t is a
marked parse tree for a1 . . . an can be inferred from the hypotheses.

Since the robust representation function for R(S), r′R, is surjective, we know that
every final item in this deduction system can be written as Jq, i, j, eK. Therefore, proving
completeness is equivalent to proving the following proposition:

Proposition 1. Given any string a1 . . . an, every correct final item of the form Jq, i, j, eK
is valid in the instantiated parsing system
R(S)(a1 . . . an) = (I ′,K(a1 . . . an), D′).

We will prove this proposition by induction on the distance e.

6.2.1. Base case (e=0)
Items in the item set I ′ where the distance e is 0 can be mapped to items from

the item set I (corresponding to the original non-error-repair parser) by the function
f : {Jq, i, j, 0K ∈ I ′} → I that maps ι = Jq, i, j, 0K to f(ι) = [q, i, j]. This mapping
is trivially bijective, and it is easy to see that deductions are preserved: the deduction
ι1ι2 ` ιc can be made by a step from D′

i if and only if the deduction f(ι1)f(ι2) ` f(ιc)
can be made by a step from Di. Moreover, an item f(ι) contains a tree t if and only if ι
contains the approximate tree (t, 0), so f(ι) is a final item in the standard parser if and
only if ι is a final item in the error-repair parser. Since any correct final item of the form
Jq, i, j, 0K in the error-repair parser is f−1(κ) for some correct final item κ = [q, i, j] in
the standard parser, and we know by hypothesis that the standard parser is complete, it
follows that all final items with distance 0 are valid in our error-repair parser.

6.2.2. Induction step
Supposing that the proposition holds for a distance value e, we must prove that it

also holds for e + 1.
Let Jq, 0, n, e + 1K be a correct final item for the string a1 . . . an. We will prove that

this item is valid in the deduction system (I ′,K(a1 . . . an), D′).
As this item is correct for the string a1 . . . an, we know that it contains an approximate

tree (t, e + 1) where t is a tree rooted at S with yield(t) = a1 . . . an. By definition of
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approximate tree, we know that there exists a tree u ∈ Trees(G) such that d̂(t, u) = e+1
or, equivalently, t ∈ Transe+1(u).13

By definition of Transe+1(u), this implies that there is another tree t′ such that
t′ ∈ Transe(u) and t ∈ Trans1(t′), and this implies that there exists an approximate tree
(t′, e) such that d̂(t, t′) = 1.

Since d̂(t, t′) = 1, and yield(t) = a1 . . . an, we know that t ∈ Substitution(t′) ∪
Insertion(t′) ∪ Deletion(t′), and therefore yield(t′) must be one of the following:

(1) a1 . . . aj−1 (b, j) aj+1 . . . an, if t ∈ Substitution(t′) 14

(2) a1 . . . aj−1 (aj+1, j) . . . (an, n− 1), if t ∈ Insertion(t′)
(3) a1 . . . aj−1 bj (aj , j + 1) (aj+1, j + 2) . . . (an, n + 1), if t ∈ Deletion(t′)

Induction step, case (1) (substitution error).

Suppose that yield(t′) is of the form a1 . . . aj−1 (b, j) aj+1 . . . an. Consider the deduc-
tion system (I ′,K(a1 . . . aj−1 b aj+1 . . . an), D′) obtained by applying our uninstantiated
parsing system to the string a1 . . . aj−1 b aj+1 . . . an. Consider the item in I ′ containing
the approximate tree (t′, e): this item must be of the form Jq, 0, n, eK, since d̂(t, t′) = 1 and
(t, e+1) ∈ Jq, 0, n, e+1K (under the distance function d̂, if trees in two items Jq1, i1, j1, e1K
and Jq2, i2, j2, e2K are at finite distance, then q1 must equal q2).

This item Jq, 0, n, eK is a correct final item in this system, since t′ is a marked parse
tree for the input string a1 . . . aj−1 b aj+1 . . . an. By the induction hypothesis, this item
is also valid in this system. If we prove that the validity of this item in the system
(I ′,K(a1 . . . aj−1 b aj+1 . . . an), D′) implies that the item Jq, 0, n, e + 1K is valid in the
system (I ′,K(a1 . . . an), D′), the induction step will be proved for the substitution case.

Therefore, we have reduced this case of the proof to proving the following lemma:

Lemma 1. Let R(S) = (I ′,K,D′) be the uninstantiated parsing system obtained by
applying the error-repair transformation to a sound and complete parsing system S.

Given a nonempty string a1 . . . an, and a string a1 . . . aj−1 b aj+1 . . . an(1 ≤ j ≤ n)
obtained by substituting the jth terminal in the first string.

If Jq, 0, n, eK is a valid item in the instantiated parsing system
R(S)(a1 . . . aj−1 b aj+1 . . . an) = (I ′,K(a1 . . . aj−1 b aj+1 . . . an), D′), then
Jq, 0, n, e+1K is valid in the instantiated parsing system R(S)(a1 . . . an) = (I ′,K(a1 . . . an), D′).

In order to prove this lemma, we define a function f1 : I ′ → I ′ as follows:

f1(Jq, i, k, eK) = Jq, i, k, eK if i > j − 1 or k < j

f1(Jq, i, k, eK) = Jq, i, k, e + 1K if i ≤ j − 1 and j ≤ k

We will prove that if ι1, ι2, . . . ιa ` ιc in the instantiated parsing system

13Note that, strictly speaking, the definition of approximate tree only guarantees us that d̂(t, u) ≤ e+1,
rather than strict equality. However, this is not relevant for the proof: if d(t, u) < e + 1, we would have
that Jq, 0, n, d(t, u)K is a correct final item, and thus valid by induction hypothesis, and we conclude that
[q, 0, n, e + 1] is valid by applying DDistIncr steps.

14As our definition of d̂ ignores indexes associated to marked terminals, we can safely assume that the
marked terminal inserted in the frontier has the index j. In the other cases, we follow the same principle
to reindex the marked terminals.
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(I ′,K(a1 . . . aj−1 b aj+1 . . . an), D′), thenK(a1 . . . an)∪{f1(ι1), f1(ι2), . . . f1(ιa)} `∗ f1(ιc)
in the instantiated parsing system (I ′,K(a1 . . . an), D′).
We say that ι1, ι2, . . . ιa ` ιc in some instantiated parsing system if ιc can be obtained
from ι1, ι2, . . . ιa by application of a single deduction step. Therefore, we will prove the
implication by considering all the possible deduction steps with which we can perform
such a deduction:

• D′CorrectHyp

If ι1, ι2, . . . ιa ` ιc by a D′CorrectHyp step, then a = 1, ι1 = Ja, x − 1, x, 0K and
ιc = Ja, x− 1, x, 0K. If we compute f1(ι1) and f1(ιc) depending on the values of the
indexes i, j, we obtain that:

if x 6= j, f1(ι1) = Ja, x− 1, x, 0K and f1(ιc) = Ja, x− 1, x, 0K

if x = j, f1(ι1) = Ja, x− 1, x, 1K and f1(ιc) = Ja, x− 1, x, 1K

In both cases we have that K(a1 . . . an)∪{f1(ι1)} `∗ f1(ιc), because f1(ι1) = f1(ιc).

• D′SubstHyp

By reasoning analogously to the previous case, we obtain:

if x 6= j, f1(ι1) = Ja, x− 1, x, 0K and f1(ιc) = Jb, x− 1, x, 1K

if x = j, f1(ι1) = Ja, x− 1, x, 1K and f1(ιc) = Jb, x− 1, x, 2K

In the first case, we have that we can infer f1(ιc) from f1(ι1) by a D′SubstHyp step.
In the second case, we can infer f1(ιc) from K(a1 . . . an): if we take the hypothesis
Jax, x− 1, x, 0K = [ax, x− 1, x] ∈ K(a1 . . . an), we can infer ιt = Jb, x− 1, x, 1K from
it by using a D′SubstHyp step, and then infer f(ιc) = Jb, x−1, x, 2K from ιt by using
a D′DistIncr step.

• D′DelHyp

In this case, we always have that ιc = Jb, x, x, 1K and f1(ιc) = Jb, x, x, 1K, and
therefore f1(ιc) can be inferred directly from the empty set by a D′DelHyp step.

• D′InsHyp

In this case, we have:

if x 6= j, f1(ι1) = Ja, x− 1, x, 0K and f1(ιc) = Jε, x− 1, x, 1K

if x = j, f1(ι1) = Ja, x− 1, x, 1K and f1(ιc) = Jε, x− 1, x, 2K

In the first case, we can infer f1(ιc) from f1(ι1) by a D′InsHyp step. In the second
case, we can infer f1(ιc) from K(a1 . . . an): if we take the hypothesis Jax, x −
1, x, 0K = [ax, x − 1, x] ∈ K(a1 . . . an), we can infer ιt = Jε, x − 1, x, 1K from it by
using a D′InsHyp step, and then infer f(ιc) = Jε, x − 1, x, 2K from ιt by using a
D′DistIncr step.

• D′BegInsComb

In the case of D′BegInsComb, we have:

1. if 0 < j ≤ i1, f1(ι1) = Jε, 0, i1, e1 + 1K, f1(ι2) = Jx, i1, i2, e2K and f1(ιc) =
Jx, 0, i2, e1 + e2 + 1K.
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2. if i1 < j ≤ i2, f1(ι1) = Jε, 0, i1, e1K, f1(ι2) = Jx, i1, i2, e2 + 1K, and f1(ιc) =
Jx, 0, i2, e1 + e2 + 1K.

3. otherwise, f1(ι1) = Jε, 0, i1, e1K, f1(ι2) = Jx, i1, i2, e2K and f1(ιc) = Jx, 0, i2, e1+
e2K.

In any of the three cases, f1(ιc) can be inferred from f1(ι1) and f1(ι2) by a
D′BegInsComb step.

• D′OthInsComb

Analogous to the previous case.

• D′DistIncr

Reasoning as in the previous cases, we obtain that either ι1 = Jx, i, j, eK and ιc =
Jx, i, j, e + 1K, or ι1 = Jx, i, j, e + 1K and ιc = Jx, i, j, e + 2K. In both cases, the
resulting deduction can be performed by a D′DistIncr step.

• D′
i coming from a predictive step set Di

Let us consider the case of a step D′
i which comes from a predictive step set Di.

Then D′
i can be written as

D′
i = {Jq1, j1, k1, e1K, Jq2, j2, k2, e2K, . . . , Jqn, jn, kn, enK `

Jqc, f(j1, k1, j2, k2, . . . , jn, kn), f(j1, k1, j2, k2, . . . , jn, kn), 0K
| j1, . . . , jn, k1, . . . , kn, e1, . . . , en ∈ N ∧ ji ≤ ki ∧ P (q1, q2, . . . , qn, qc) = 1}

In this case, we have that

f1(ι1) = Jq1, j1, k1, e1 + b1K

f1(ι2) = Jq2, j2, k2, e2 + b2K
...

f1(ιn) = Jqn, jn, kn, en + bnK

where bi can be either 0 or 1, and
f1(ιc) = Jqc, f(j1, k1, j2, k2, . . . , jn, kn), f(j1, k1, j2, k2, . . . , jn, kn), 0K.

Clearly, f1(ιc) can be inferred from f1(ι1) . . . f1(ιn) by a D′
i step.

• D′
i coming from a yield union step set Di

In the case of a step D′
i coming from a yield union step set Di in the non-error-repair

schema, we can write D′
i as

D′
i = {Jq1, i0, i1, e1K, Jq2, i1, i2, e2K, . . . , Jqm, im−1, im, emK,

Jc1, j1, k1, e
′
1K, Jc2, j2, k2, e

′
2K, . . . , Jcn, jn, kn, e′nK} `

Jqc, i0, im, e1 + . . . + emK | i0 ≤ i1 ≤ . . . ≤ im ∈ N ∧ j1, . . . , jn, k1, . . . , kn,
e′1, . . . , e

′
n, e1, . . . , em ∈ N ∧ ji ≤ ki ∧ P (q1, q2, . . . , qm, c1, c2, . . . , cn, qc) = 1}

In this case, we have

f(ι1) = Jq1, i0, i1, e1 + bj(i0, i1)K

f(ι2) = Jq2, i1, i2, e2 + bj(i1, i2)K
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...

f(ιm) = Jqm, im−1, im, em + bj(im−1, im)K

f(ιm+1) = Jc1, j1, k1, e
′
1 + bj(j1, k1)K

...

f(ιm+n) = Jcn, jn, kn, e′n + bj(jn, kn)K,

where bj(n1, n2) is the function returning 1 if n1 < j ≤ n2 and 0 otherwise.

For the consequent, we have that f(ιc) = Jqc, i0, im, e1 + . . . + em + bj(i0, im)K.

We have that bj(i0, im) = bj(i0, i1)+ . . .+ bj(im−1, im), since position j can belong
at most to one of the intervals (iw−1, iw]. If it does belong to one of the intervals,
it also belongs to (i0, im], so both members of the expression equal one. On the
other hand, if it does not belong to any of the intervals (iw−1, iw], nor can it belong
to (i0, im], so both members equal zero.

Therefore, f(ιc) can be deduced from f(ι1) . . . f(ιm+n) directly by applying the D′
i

step.

With this we have proved that, for any deduction ι1, ι2, . . . ιa ` ιc made in the in-
stantiated parsing system (I ′,K(a1 . . . aj−1 b aj+1 . . . an), D′), we have K(a1 . . . an) ∪
{f1(ι1), f1(ι2), . . . f1(ιa)} `∗ f1(ιc) in the instantiated parsing system (I ′,K(a1 . . . an), D′).

This implies that, if K(a1 . . . aj−1 b aj+1 . . . an) ∪ {ι1, ι2, . . . ιa} `∗ ιc in
(I ′,K(a1 . . . aj−1 b aj+1 . . . an), D′), thenK(a1 . . . an)∪{f1(ι1), f1(ι2), . . . f1(ιa)} `∗ f1(ιc)
in (I ′,K(a1 . . . an), D′). In the particular case where a = 0 and ιc = Jq, 0, n, eK, we have
that f1(ιc) = Jq, 0, n, e+1K is valid, and therefore this proposition for that particular case
is equivalent to Lemma 1. Thus, we have proved the substitution case of the induction
step.

Induction step, case (2) (insertion error).

In this case, we have that yield(t′) = a1 . . . aj−1(aj+1, j) . . . (an, n − 1). Following a
similar reasoning to that in the previous case, we can reduce this to proving the following
lemma.

Lemma 2. Let R(S) = (I ′,K,D′) be the uninstantiated parsing system obtained by
applying the error-repair transformation to a sound and complete parsing system S.

Given a nonempty string a1 . . . an, and a string a1 . . . aj−1aj+1 . . . an (1 ≤ j ≤ n)
obtained by deleting the jth terminal in the first string.

If Jq, 0, n − 1, eK is a valid item in the instantiated parsing system
(I ′,K(a1 . . . aj−1aj+1 . . . an), D′), then Jq, 0, n, e + 1K is valid in the instantiated pars-
ing system (I ′,K(a1 . . . an), D′).

The proof, which we shall not detail, is also analogous to that of the previous case. In
this case, the function that we use to map items and deductions in
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(I ′,K(a1 . . . aj−1aj+1 . . . an), D′) to those in (I ′,K(a1 . . . an), D′) is the function f2 de-
fined by:

f2(Jq, i, k, eK) = Jq, i, k, eK if j > k

f2(Jq, i, k, eK) = Jq, i, k + 1, e + 1K if j > i and j ≤ k

f2(Jq, i, k, eK) = Jq, i + 1, k + 1, eK if j ≤ i

Induction step, case (3) (deletion error).

Reasoning as in the previous cases, we can reduce this case to the following lemma.

Lemma 3. Let R(S) = (I ′,K,D′) be the uninstantiated parsing system obtained by
applying the error-repair transformation to a sound and complete parsing system S.

Given a string a1 . . . an, and a string a1 . . . aj−1 b ajaj+1 . . . an (1 ≤ j ≤ n) obtained
by inserting a terminal b in position j of the first string.

If Jq, 0, n + 1, eK is a valid item in the instantiated parsing system
(I ′,K(a1 . . . aj−1 b ajaj+1 . . . an), D′), then Jq, 0, n, e + 1K is valid in the instantiated
parsing system (I ′,K(a1 . . . an), D′).

This lemma can be proved by using the same principles as in the previous ones, and
the following function f3:

f3(Jq, i, k, eK) = Jq, i, k, eK if j > k

f3(Jq, i, k, eK) = Jq, i, k − 1, e + 1K if j > i and j ≤ k

f3(Jq, i, k, eK) = Jq, i− 1, k − 1, eK if j ≤ i

6.2.3. End of the proof of Theorem 2
This concludes the proof of the induction step for Proposition 1 and, therefore, it is

proved that our error-repair transformation preserves completeness (Theorem 2).

7. Optimization techniques

The error-repair transformation that we have defined allows us to obtain error-repair
parsers from non-error-repair ones; and we have formally shown that the error-repair
parsers obtained by the transformation are always correct if the starting parser satisfies
certain conditions, which are easy to verify for widely known parsers such as CYK, Earley
or Left-Corner.

However, as we can see in the example obtained by transforming the Earley parser, the
extra steps generated by our transformation make the semantics of the resulting parser
somewhat hard to understand, and the SubstHyp and DelHyp steps would negatively
affect performance if implemented directly in a deductive engine. Once we have used our
transformation to obtain a correct error-repair parser, we can apply some simplifications
to it in order to obtain a simpler, more efficient one which will generate the same items
except for the modified hypotheses. That is, we can bypass items of the form [a, i, j, e].
In order to do this:
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• We remove the steps that generate items of this kind.

• For each step requiring an item of the form [a, i, j, e] as an antecedent, we change
this requirement to the set of hypotheses of the form [b, i1, i2] needed to generate
such an item from the error hypothesis steps.

Example 12. Given the D′Scanner step obtained by transforming an Earley Scanner
step

D′Scanner = {[A → α • aβ, i, j, e1], [a, j, k, e2] ` [A → αa • β, i, k, e1 + e2]}

we can make the following observations:

• The item [a, j, k, e2] can only be generated from error hypothesis steps if e2 = k−j,
e2 = k− j− 1 or e2 = k− j + 1. It is trivial to see that the hypothesis steps added
by the transformation always preserve this property. Therefore, we can separately
consider each of these three cases.

• The item [a, j, k, k − j] is valid if and only if k > j. This item can be obtained by
combining a substitution hypothesis [b, j, j+1, 1] with k−j−1 insertion hypotheses
[ε, j +1, j +2, 1], . . . , [ε, j +(k− j−1), j +(k− j), 1] via OtherInsertionCombiner
steps.

• The item [a, j, k, k−j+1] is valid if and only if k ≥ j. This item can be obtained by
combining a deletion hypothesis [b, j, j, 1] with k − j insertion hypotheses [ε, j, j +
1, 1], . . . , [ε, j + (k − j − 1), j + (k − j), 1] via OtherInsertionCombiner steps.

• The item [a, j, k, k − j − 1] is valid if and only if one of the following holds:

1. j = 0 (therefore our item is [a, 0, k, k − 1], and thus k > 0), and we have the
hypothesis [a,w− 1, w] for w ≤ k. In this case, the item [a, 0, k, k − 1] can be
obtained by applying the Combiner steps to a correct hypothesis and k − 1
insertion hypotheses: [ε, 0, 1, 1], [ε, 1, 2, 1], . . ., [a,w − 1, w, 0], [ε, w, w + 1, 1],
. . ., [ε, k − 1, k, 1].

2. j > 0 and we have the hypothesis [a, j, j +1]. In this case, the item [a, j, k, k−
j−1] (obviously, k must be ≥ j+1) can be obtained by applying the Combiner
steps to a correct hypothesis and k − 1 insertion hypotheses: [a, j, j + 1, 0],
[ε, j + 1, j + 2, 1], . . ., [ε, k − 1, k, 1].

Therefore, we can change the D′Scanner step to the following set of steps:

• For e2 = k − j:

D′GeneralSubsScan = {[A → α • aβ, i, j, e] ` [A → αa • β, i, k, e + k − j] / k ≥ j + 1}

• For e2 = k − j + 1:

D′GeneralDeleScan = {[A → α • aβ, i, j, e] ` [A → αa • β, i, k, e + k − j + 1] / k ≥ j}

• For e2 = k − j − 1 and j = 0:

D′GeneralScan1 = {[A → α • aβ, 0, 0, e][a, w − 1, w] ` [A → αa • β, 0, k, e + k − 1] / 0 <

w ≤ k}
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• For e2 = k − j − 1 and j > 0:

D′GeneralScan2 = {[A → α • aβ, i, j, e], [a, j, j + 1] ` [A → αa • β, i, k, e + k + j − 1] / k ≥
j + 1}

Note that GeneralSubsScan is equivalent to Lyon’s ScanSubstituted in the particular
case that k = j + 1. Similarly, GeneralDeleScan is equivalent to Lyon’s ScanDeleted
when k = j, and the GeneralScans are equivalent to Lyon’s Scanner when k = 1 and
k = j + 1 respectively.

Insertions are repaired for greater values of k: for example, if k = j + 3 in
GeneralSubsScan, we are supposing that we scan over a substituted symbol and two
inserted symbols. The order of these is irrelevant, since the same consequent item would
be obtained in any of the possible cases.

In the case of the last two steps, we are scanning over a correct symbol and k−(j +1)
inserted symbols. In this case order matters, so we get two different steps: GeneralScan1
is used to scan any symbols inserted before the first symbol, to scan the first symbol,
and to scan any symbols inserted between the first and the second symbol of the string.
GeneralScan2 is used to scan any symbol in the input string and the symbols inserted
between it and the next one. �

Additionally, as mentioned above, the D′DistIncr can be removed from the transfor-
mation in practice. This step is needed if we are interested in completeness with respect
to the full set of correct final items, but, since it increases the distance measure with-
out modifying any tree, it is unnecessary if we are only interested in minimal-distance
parses, as is usually the case in practice. A similar reasoning can be applied to constrain
D′GeneralDeleScan to the case where k = j.

Example 13. With these simplifications, the parser obtained from transforming the
Earley parsing schemata has the following deduction steps:

D′Initter = {` [S → •γ, 0, 0, 0] / S → γ ∈ P}

D′Completer = {[A → α •Bβ, i, j, e1], [B → γ•, j, k, e2] ` [A → αB • β, i, k, e1 + e2]}

D′Predictor = {[A → α •Bβ, i, j, e] ` [B → •γ, j, j, 0] / B → γ ∈ P}

D′GeneralSubsScan = {[A → α • aβ, i, j, e] ` [A → αa • β, i, k, e + k − j] / k ≥ j + 1}

D′GeneralDeleScan = {[A → α • aβ, i, j, e] ` [A → αa • β, i, j, e + 1]}

D′GeneralScan1 = {[A → α • aβ, 0, 0, e][a, w − 1, w] ` [A → αa • β, 0, k, e + k − 1] / 0 < w ≤ k}

D′GeneralScan2 = {[A → α • aβ, i, j, e], [a, j, j + 1] ` [A → αa • β, i, k, e + k + j − 1] / k ≥ j + 1}

This algorithm is a variant of Lyon’s parser that generates the same set of valid items,
although inference sequences are contracted because a single GeneralScan step can deal
with several inserted characters. �

Example 14. If we apply the same ideas to a CYK bottom-up parser, we obtain an
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error-repair parser with the following deduction steps:

D′Binary = {[B, i, j, e1], [C, j, k, e2] ` [A, i, k, e1 + e2] / A → BC ∈ P}

D′SubsUnary = {` [A, j, k, k − j] / A → a ∈ P ∧ k ≥ j + 1}

D′DeleUnary = {` [A, j, j, 1] / A → a ∈ P}

D′GenUnary1 = {[a,w − 1, w] ` [A, 0, k, k − 1] / A → a ∈ P ∧ 0 < w ≤ k}

D′GenUnary2 = {[a, j, j + 1] ` [A, j, k, k − j − 1] / A → a ∈ P ∧ k ≥ j + 1} �

8. Conclusions

In this article, we have presented a deductive formalism, based on Sikkel’s parsing
schemata, that can be used to describe, analyze and compare robust parsers based on
the error-repair paradigm.

By using this formalism, we have defined a transformation that can be applied to
standard parsers in order to obtain robust, error-repair parsers. We have formally proved
that the parsing algorithms obtained are correct if the original algorithm satisfies certain
conditions. These conditions are weak enough to hold for well-known parsing schemata
such as those for Earley, CYK or Left-Corner parsers.

The transformation is completely systematic, enabling it to be applied automatically
by a parsing schemata compiler (as the one described in [16, 19]). This means that,
by providing such a system with a description of a standard parsing schema, we can
automatically obtain a working implementation of an error-repair parser.

In this sense, note that parsing schemata are abstract descriptions of the semantics of
parsing algorithms, and the same parsing schema can often be implemented in different
ways. If we execute the schemata in this article with a simple deductive engine as
described in [15], what we obtain are global error-repair parsers: algorithms that find
all the minimal final items, but require us to suppose that errors may be located at any
position in the input. This causes these parsers to execute many instances of error-repair
steps, leading to inefficiency. However, when implementing the schemata, we can modify
the deductive engine to implement heuristic searches that greatly increase efficiency at
the cost of not always obtaining all the solutions. This leads to regional and local
error-repair strategies [9], which execute error-repair steps only when needed and have
only a small performance penalty when compared to non-error-repair parsers. As these
strategies can be obtained from generic modifications of a deductive parsing engine, our
transformation allows a parsing schemata compiler [16, 19] to generate global, regional or
local error-repair parsers from the same standard parsing schema. Empirical performance
results comparing the performance of global and regional implementations of error-repair
parsing schemata obtained by compilation, using ungrammatical sentences taken from
natural language corpora, can be found in [20] and [21, section 6.5].

This makes our transformation a useful tool for prototyping and testing different
robust parsers for practical applications.

Although the focus of this article has been on context-free grammar parsers, the ideas
behind the transformation are generic enough to be applied to other constituency-based
formalisms, such as tree adjoining grammars.
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de Corpus.)

References

[1] W. Kasper, B. Kiefer, H. U. Krieger, C. J. Rupp, K. L. Worm, Charting the depths of robust
speech parsing, in: Proceedings of the 37th annual meeting of the Association for Computational
Linguistics on Computational Linguistics, Association for Computational Linguistics, Morristown,
NJ, USA, 1999, pp. 405–412. doi:http://dx.doi.org/10.3115/1034678.1034741.

[2] D. Grune, C. J. Jacobs, Parsing Techniques. A Practical Guide — Second edition, Springer Sci-
ence+Business Media, 2008.

[3] P. van der Spek, N. Plat, C. Pronk, Syntax error repair for a Java-based parser generator, ACM
SIGPLAN Notices 40 (4) (2005) 47–50.
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