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Abstract

Finding a class of structures that is rich
enough for adequate linguistic represen-
tation yet restricted enough for efficient
computational processing is an important
problem for dependency parsing. In this
paper, we present a transition system for
2-planar dependency trees – trees that can
be decomposed into at most two planar
graphs – and show that it can be used
to implement a classifier-based parser that
runs in linear time and outperforms a state-
of-the-art transition-based parser on four
data sets from the CoNLL-X shared task.
In addition, we present an efficient method
for determining whether an arbitrary tree
is 2-planar and show that 99% or more of
the trees in existing treebanks are 2-planar.

1 Introduction

Dependency-based syntactic parsing has become
a widely used technique in natural language pro-
cessing, and many different parsing models have
been proposed in recent years (Yamada and Mat-
sumoto, 2003; Nivre et al., 2004; McDonald et al.,
2005a; Titov and Henderson, 2007; Martins et al.,
2009). One of the unresolved issues in this area
is the proper treatment of non-projective depen-
dency trees, which seem to be required for an ad-
equate representation of predicate-argument struc-
ture, but which undermine the efficiency of depen-
dency parsing (Neuhaus and Bröker, 1997; Buch-
Kromann, 2006; McDonald and Satta, 2007).

Caught between the Scylla of linguistically in-
adequate projective trees and the Charybdis of
computationally intractable non-projective trees,
some researchers have sought a middle ground by
exploring classes of mildly non-projective depen-
dency structures that strike a better balance be-
tween expressivity and complexity (Nivre, 2006;

Kuhlmann and Nivre, 2006; Kuhlmann and Möhl,
2007; Havelka, 2007). Although these proposals
seem to have a very good fit with linguistic data,
in the sense that they often cover 99% or more of
the structures found in existing treebanks, the de-
velopment of efficient parsing algorithms for these
classes has met with more limited success. For
example, while both Kuhlmann and Satta (2009)
and Gómez-Rodrı́guez et al. (2009) have shown
how well-nested dependency trees with bounded
gap degree can be parsed in polynomial time, the
best time complexity for lexicalized parsing of this
class remains a prohibitive O(n7), which makes
the practical usefulness questionable.

In this paper, we explore another characteri-
zation of mildly non-projective dependency trees
based on the notion of multiplanarity. This was
originally proposed by Yli-Jyrä (2003) but has so
far played a marginal role in the dependency pars-
ing literature, because no algorithm was known
for determining whether an arbitrary tree was m-
planar, and no parsing algorithm existed for any
constant value of m. The contribution of this pa-
per is twofold. First, we present a procedure for
determining the minimal number m such that a
dependency tree is m-planar and use it to show
that the overwhelming majority of sentences in de-
pendency treebanks have a tree that is at most 2-
planar. Secondly, we present a transition-based
parsing algorithm for 2-planar dependency trees,
developed in two steps. We begin by showing how
the stack-based algorithm of Nivre (2003) can be
generalized from projective to planar structures.
We then extend the system by adding a second
stack and show that the resulting system captures
exactly the set of 2-planar structures. Although the
contributions of this paper are mainly theoretical,
we also present an empirical evaluation of the 2-
planar parser, showing that it outperforms the pro-
jective parser on four data sets from the CoNLL-X
shared task (Buchholz and Marsi, 2006).
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2 Preliminaries

2.1 Dependency Graphs
Let w = w1 . . . wn be an input string.1 An inter-
val (with endpoints i and j) of the string w is a set
of the form [i, j] = {wk | i ≤ k ≤ j}.
Definition 1. A dependency graph for w is a di-
rected graph G = (Vw, E), where Vw = [1, n] and
E ⊆ Vw × Vw.

We call an edge (wi, wj) in a dependency graph G
a dependency link2 from wi to wj . We say that wi

is the parent (or head) of wj and, conversely, that
wj is a syntactic child (or dependent) of wi. For
convenience, we write wi → wj ∈ E if the link
(wi, wj) exists; wi ↔ wj ∈ E if there is a link
from wi to wj or from wj to wi; wi →∗ wj ∈ E if
there is a (possibly empty) directed path from wi

to wj ; and wi ↔∗ wj ∈ E if there is a (possibly
empty) path between wi and wj in the undirected
graph underlying G (omitting reference to E when
clear from the context). The projection of a node
wi, denoted bwic, is the set of reflexive-transitive
dependents of wi: bwic = {wj ∈ V | wi →∗ wj}.

Most dependency representations do not allow
arbitrary dependency graphs but typically require
graphs to be acyclic and have at most one head per
node. Such a graph is called a dependency forest.

Definition 2. A dependency graph G for a string
w1 . . . wn is said to be a forest iff it satisfies:

1. Acyclicity: If wi →∗ wj , then not wj → wi.

2. Single-head: If wj → wi, then not wk → wi

(for every k 6= j).

Nodes in a forest that do not have a head are called
roots. Some frameworks require that dependency
forests have a unique root (i.e., are connected).
Such a forest is called a dependency tree.

2.2 Projectivity
For reasons of computational efficiency, many de-
pendency parsers are restricted to work with pro-
jective dependency structures, that is, forests in
which the projection of each node corresponds to
a contiguous substring of the input:

1For notational convenience, we will assume throughout
the paper that all symbols in an input string are distinct, i.e.,
i 6= j ⇔ wi 6= wj . This can be guaranteed in practice by
annotating each terminal symbol with its position in the input.

2In practice, dependency links are usually labeled, but to
simplify the presentation we will ignore labels throughout
most of the paper. However, all the results and algorithms
presented can be applied to labeled dependency graphs and
will be so applied in the experimental evaluation.

Definition 3. A dependency forest G for a string
w1 . . . wn is projective iff bwic is an interval for
every word wi ∈ [1, n].

Projective dependency trees correspond to the set
of structures that can be induced from lexicalised
context-free derivations (Kuhlmann, 2007; Gaif-
man, 1965). Like context-free grammars, projec-
tive dependency trees are not sufficient to repre-
sent all the linguistic phenomena observed in natu-
ral languages, but they have the advantage of being
efficiently parsable: their parsing problem can be
solved in cubic time with chart parsing techniques
(Eisner, 1996; Gómez-Rodrı́guez et al., 2008),
while in the case of general non-projective depen-
dency forests, it is only tractable under strong in-
dependence assumptions (McDonald et al., 2005b;
McDonald and Satta, 2007).

2.3 Planarity

The concept of planarity (Sleator and Temperley,
1993) is closely related to projectivity3 and can be
informally defined as the property of a dependency
forest whose links can be drawn above the words
without crossing.4 To define planarity more for-
mally, we first define crossing links as follows:
let (wi, wk) and (wj , wl) be dependency links in
a dependency graph G. Without loss of general-
ity, we assume that min(i, k) ≤ min(j, l). Then,
the links are said to be crossing if min(i, k) <
min(j, l) < max (i, k) < max (j, l).

Definition 4. A dependency graph is planar iff it
does not contain a pair of crossing links.

2.4 Multiplanarity

The concept of planarity on its own does not seem
to be very relevant as an extension of projectiv-
ity for practical dependency parsing. According
to the results by Kuhlmann and Nivre (2006), most
non-projective structures in dependency treebanks
are also non-planar, so being able to parse planar
structures will only give us a modest improvement
in coverage with respect to a projective parser.
However, our interest in planarity is motivated by
the fact that it can be generalised to multipla-
narity (Yli-Jyrä, 2003):

3For dependency forests that are extended with a unique
artificial root located at position 0, as is commonly done, the
two notions are equivalent.

4Planarity in the context of dependency structures is not to
be confused with the homonymous concept in graph theory,
which does not restrict links to be drawn above the nodes.
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Figure 1: A 2-planar dependency structure with
two different ways of distributing its links into two
planes (represented by solid and dotted lines).

Definition 5. A dependency graph G = (V,E)
is m-planar iff there exist planar dependency
graphs G1 = (V,E1), . . . , Gm = (V,Em) (called
planes) such that E = E1 ∪ · · · ∪ Em.

Intuitively, we can associate planes with colours
and say that a dependency graph G is m-planar if it
is possible to assign one of m colours to each of its
links in such a way that links with the same colour
do not cross. Note that there may be multiple
ways of dividing an m-planar graph into planes,
as shown in the example of Figure 1.

3 Determining Multiplanarity

Several constraints on non-projective dependency
structures have been proposed recently that seek a
good balance between parsing efficiency and cov-
erage of non-projective phenomena present in nat-
ural language treebanks. For example, Kuhlmann
and Nivre (2006) and Havelka (2007) have shown
that the vast majority of structures present in exist-
ing treebanks are well-nested and have a small gap
degree (Bodirsky et al., 2005), leading to an inter-
est in parsers for these kinds of structures (Gómez-
Rodrı́guez et al., 2009). No similar analysis has
been performed for m-planar structures, although
Yli-Jyrä (2003) provides evidence that all except
two structures in the Danish dependency treebank
are at most 3-planar. However, his analysis is
based on constraints that restrict the possible ways
of assigning planes to dependency links, and he is
not guaranteed to find the minimal number m for
which a given structure is m-planar.

In this section, we provide a procedure for find-
ing the minimal number m such that a dependency
graph is m-planar and use it to show that the vast
majority of sentences in dependency treebanks are

Figure 2: The crossings graph corresponding to
the dependency structure of Figure 1.

at most 2-planar, with a coverage comparable to
that of well-nestedness. The idea is to reduce
the problem of determining whether a dependency
graph G = (V,E) is m-planar, for a given value
of m, to a standard graph colouring problem. Con-
sider first the following undirected graph:

U(G) = (E,C) where
C = {{ei, ej} | ei, ej are crossing links in G}

This graph, which we call the crossings graph of
G, has one node corresponding to each link in the
dependency graph G, with an undirected link be-
tween two nodes if they correspond to crossing
links in G. Figure 2 shows the crossings graph
of the 2-planar structure in Figure 1.

As noted in Section 2.4, a dependency graph G
is m-planar if each of its links can be assigned
one of m colours in such a way that links with the
same colours do not cross. In terms of the cross-
ings graph, this means that G is m-planar if each
of the nodes of U(G) can be assigned one of m
colours such that no two neighbours have the same
colour. This amounts to solving the well-known k-
colouring problem for U(G), where k = m.

For k = 1 the problem is trivial: a graph is 1-
colourable only if it has no edges. For k = 2, the
problem can be solved in time linear in the size of
the graph by simple breadth-first search. Given a
graph U = (V,E), we pick an arbitrary node v
and give it one of two colours. This forces us to
give the other colour to all its neighbours, the first
colour to the neighbours’ neighbours, and so on.
This process continues until we have processed all
the nodes in the connected component of v. If this
has resulted in assigning two different colours to
the same node, the graph is not 2-colourable. Oth-
erwise, we have obtained a 2-colouring of the con-
nected component of U that contains v. If there
are still unprocessed nodes, we repeat the process
by arbitrarily selecting one of them, continue with
the rest of the connected components, and in this
way obtain a 2-colouring of the whole graph if it

1494



Language Structures Non-Projective Not Planar Not 2-Planar Not 3-Pl. Not 4-pl. Ill-nested
Arabic 2995 205 ( 6.84%) 158 ( 5.28%) 0 (0.00%) 0 (0.00%) 0 (0.00%) 1 (0.03%)
Czech 87889 20353 (23.16%) 16660 (18.96%) 82 (0.09%) 0 (0.00%) 0 (0.00%) 96 (0.11%)

Danish 5512 853 (15.48%) 827 (15.00%) 1 (0.02%) 1 (0.02%) 0 (0.00%) 6 (0.11%)
Dutch 13349 4865 (36.44%) 4115 (30.83%) 162 (1.21%) 1 (0.01%) 0 (0.00%) 15 (0.11%)

German 39573 10927 (27.61%) 10908 (27.56%) 671 (1.70%) 0 (0.00%) 0 (0.00%) 419 (1.06%)
Portuguese 9071 1718 (18.94%) 1713 (18.88%) 8 (0.09%) 0 (0.00%) 0 (0.00%) 7 (0.08%)

Swedish 6159 293 ( 4.76%) 280 ( 4.55%) 5 (0.08%) 0 (0.00%) 0 (0.00%) 14 (0.23%)
Turkish 5510 657 (11.92%) 657 (11.92%) 10 (0.18%) 0 (0.00%) 0 (0.00%) 20 (0.36%)

Table 1: Proportion of dependency trees classified by projectivity, planarity, m-planarity and ill-
nestedness in treebanks for Arabic (Hajič et al., 2004), Czech (Hajič et al., 2006), Danish (Kromann,
2003), Dutch (van der Beek et al., 2002), German (Brants et al., 2002), Portuguese (Afonso et al., 2002),
Swedish (Nilsson et al., 2005) and Turkish (Oflazer et al., 2003; Atalay et al., 2003).

exists. Since this process can be completed by vis-
iting each node and edge of the graph U once, its
complexity is O(V + E). The crossings graph of
a dependency graph with n nodes can trivially be
built in time O(n2) by checking each pair of de-
pendency links to determine if they cross, and can-
not contain more than n2 edges, which means that
we can check if the dependency graph for a sen-
tence of length n is 2-planar in O(n2) time.

For k > 2, the k-colouring problem is known
to be NP-complete (Karp, 1972). However, we
have found this not to be a problem when measur-
ing multiplanarity in natural language treebanks,
since the effective problem size can be reduced
by noting that each connected component of the
crossings graph can be treated separately, and that
nodes that are not part of a cycle need not be
considered.5 Given that non-projective sentences
in natural language tend to have a small propor-
tion of non-projective links (Nivre and Nilsson,
2005), the connected components of their cross-
ings graphs are very small, and k-colourings for
them can quickly be found by brute-force search.

By applying these techniques to dependency
treebanks of several languages, we obtain the data
shown in Table 1. As we can see, the coverage
provided by the 2-planarity constraint is compa-
rable to that of well-nestedness. In most of the
treebanks, well over 99% of the sentences are 2-
planar, and 3-planarity has almost total coverage.
As we will see below, the class of 2-planar depen-
dency structures not only has good coverage of lin-
guistic phenomena in existing treebanks but is also
efficiently parsable with transition-based parsing
methods, making it a practically interesting sub-
class of non-projective dependency structures.

5If we have a valid colouring for all the cycles in the
graph, the rest of the nodes can be safely coloured by breadth-
first search as in the k = 2 case.

4 Parsing 1-Planar Structures

In this section, we present a deterministic linear-
time parser for planar dependency structures. The
parser is a variant of Nivre’s arc-eager projec-
tive parser (Nivre, 2003), modified so that it can
also handle graphs that are planar but not projec-
tive. As seen in Table 1, this only gives a modest
improvement in coverage compared to projective
parsing, so the main interest of this algorithm lies
in the fact that it can be generalised to deal with
2-planar structures, as shown in the next section.

4.1 Transition Systems
In the transition-based framework of Nivre (2008),
a deterministic dependency parser is defined by a
non-deterministic transition system, specifying a
set of elementary operations that can be executed
during the parsing process, and an oracle that de-
terministically selects a single transition at each
choice point of the parsing process.

Definition 6. A transition system for dependency
parsing is a quadruple S = (C, T, cs, Ct) where

1. C is a set of possible parser configurations,
2. T is a set of transitions, each of which is a

partial function t : C → C,
3. cs is a function that maps each input sentence

w to an initial configuration cs(w) ∈ C,
4. Ct ⊆ C is a set of terminal configurations.

Definition 7. An oracle for a transition system
S = (C, T, cs, Ct) is a function o : C → T .

An input sentence w can be parsed using a tran-
sition system S = (C, T, cs, Ct) and an oracle o
by starting in the initial configuration cs(w), call-
ing the oracle function on the current configuration
c, and updating the configuration by applying the
transition o(c) returned by the oracle. This pro-
cess is repeated until a terminal configuration is
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Initial configuration: cs(w1 . . . wn) = 〈[], [w1 . . . wn], ∅〉

Terminal configurations: Cf = {〈Σ, [], A〉 ∈ C}

Transitions: SHIFT 〈Σ, wi|B, A〉 ⇒ 〈Σ|wi, B,A〉
REDUCE 〈Σ|wi, B,A〉 ⇒ 〈Σ, B,A〉
LEFT-ARC 〈Σ|wi, wj |B, A〉 ⇒ 〈Σ|wi, wj |B, A ∪ {(wj , wi)}〉

only if 6 ∃k|(wk, wi) ∈ A (single-head) and not wi ↔∗ wj ∈ A (acyclicity).

RIGHT-ARC 〈Σ|wi, wj |B, A〉 ⇒ 〈Σ|wi, wj |B, A ∪ {(wi, wj)}〉
only if 6 ∃k|(wk, wj) ∈ A (single-head) and not wi ↔∗ wj ∈ A (acyclicity).

Figure 3: Transition system for planar dependency parsing.

reached, and the dependency analysis of the sen-
tence is defined by the terminal configuration.

Each sequence of configurations that the parser
can traverse from an initial configuration to a ter-
minal configuration for some input w is called a
transition sequence. If we associate each config-
uration c of a transition system S = (C, T, cs, Ct)
with a dependency graph g(c), we can say that
S is sound for a class of dependency graphs G
if, for every sentence w and transition sequence
(cs(w), c1, . . . , cf ) of S, g(cf ) is in G, and that S
is complete for G if, for every sentence w and de-
pendency graph G ∈ G for w, there is a transition
sequence (cs(w), c1, . . . , cf ) such that g(cf ) = G.
A transition system that is sound and complete for
G is said to be correct for G.

Note that, apart from a correct transition system,
a practical parser needs a good oracle to achieve
the desired results, since a transition system only
specifies how to reach all the possible dependency
graphs that could be associated to a sentence, but
not how to select the correct one. Oracles for prac-
tical parsers can be obtained by training classifiers
on treebank data (Nivre et al., 2004).

4.2 A Transition System for Planar
Structures

A correct transition system for the class of planar
dependency forests can be obtained as a variant of
the arc-eager projective system by Nivre (2003).
As in that system, the set of configurations of the
planar transition system is the set of all triples
c = 〈Σ, B,A〉 such that Σ and B are disjoint lists
of words from Vw (for some input w), and A is a
set of dependency links over Vw. The list B, called
the buffer, is initialised to the input string and is
used to hold the words that are still to be read from
the input. The list Σ, called the stack, is initially
empty and holds words that have dependency links

pending to be created. The system is shown in Fig-
ure 3, where we use the notation Σ|wi for a stack
with top wi and tail Σ, and we invert the notation
for the buffer for clarity (i.e., wi|B is a buffer with
top wi and tail B).

The system reads the input from left to right and
creates links in a left-to-right order by executing
its four transitions:

1. SHIFT: pops the first (leftmost) word in the
buffer, and pushes it to the stack.

2. LEFT-ARC: adds a link from the first word in
the buffer to the top of the stack.

3. RIGHT-ARC: adds a link from the top of the
stack to the first word in the buffer.

4. REDUCE: pops the top word from the stack,
implying that we have finished building links
to or from it.

Note that the planar parser’s transitions are more
fine-grained than those of the arc-eager projective
parser by Nivre (2003), which pops the stack as
part of its LEFT-ARC transition and shifts a word
as part of its RIGHT-ARC transition. Forcing these
actions after creating dependency links rules out
structures whose root is covered by a dependency
link, which are planar but not projective. In order
to support these structures, we therefore simplify
the ARC transitions (LEFT-ARC and RIGHT-ARC)
so that they only create an arc. For the same rea-
son, we remove the constraint in Nivre’s parser by
which words without a head cannot be reduced.
This has the side effect of making the parser able
to output cyclic graphs. Since we are interested
in planar dependency forests, which do not con-
tain cycles, we only apply ARC transitions after
checking that there is no undirected path between
the nodes to be linked. This check can be done
without affecting the linear-time complexity of the
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parser by storing the weakly connected component
of each node in g(c).

The fine-grained transitions used by this parser
have also been used by Sagae and Tsujii (2008)
to parse DAGs. However, the latter parser differs
from ours in the constraints, since it does not allow
the reduction of words without a head (disallowing
forests with covered roots) and does not enforce
the acyclicity constraint (which is guaranteed by
post-processing the graphs to break cycles).

4.3 Correctness and Complexity
For reasons of space, we can only give a sketch
of the correctness proof. We wish to prove that
the planar transition system is sound and com-
plete for the set Fp of all planar dependency
forests. To prove soundness, we have to show
that, for every sentence w and transition sequence
(cs(w), c1, . . . , cf ), the graph g(cf ) associated
with cf is in Fp. We take the graph associated
with a configuration c = (Σ, B,A) to be g(c) =
(Vw, A). With this, we prove the stronger claim
that g(c) ∈ Fp for every configuration c that be-
longs to some transition sequence starting with
cs(w). This amounts to showing that in every con-
figuration c reachable from cs(w), g(c) meets the
following three conditions that characterise a pla-
nar dependency forest: (1) g(c) does not contain
nodes with more than one head; (2) g(c) is acyclic;
and (3) g(c) contains no crossing links. (1) is triv-
ially guaranteed by the single-head constraint; (2)
follows from (1) and the acyclicity constraint; and
(3) can be established by proving that there is no
transition sequence that will invoke two ARC tran-
sitions on node pairs that would create crossing
links. At the point when a link from wi to wj is
created, we know that all the words strictly located
between wi and wj are not in the stack or in the
buffer, so no links can be created to or from them.

To prove completeness, we show that every
planar dependency forest G = (V,E) ∈ Fp

for a sentence w can be produced by apply-
ing the oracle function that maps a configuration
〈Σ|wi, wj |B, A〉 to:

1. LEFT-ARC if wj → wi ∈ (E \A),
2. RIGHT-ARC if wi → wj ∈ (E \A),
3. REDUCE if ∃x[x<i][wx ↔ wj ∈ (E \A)],
4. SHIFT otherwise.

We show completeness by setting the following in-
variants on transitions traversed by the application
of the oracle:

1. ∀a, b[a,b<j][wa↔wb∈E ⇒ wa↔wb∈A]
2. [wi↔wj∈A⇒
∀k[i<k<j][wk↔wj∈E ⇒ wk↔wj∈A]]

3. ∀k[k<j][wk 6∈Σ⇒
∀l[l>k][wk↔wl∈E ⇒ wk↔wl∈A]]

We can show that each branch of the oracle func-
tion keeps these invariants true. When we reach a
terminal configuration (which always happens af-
ter a finite number of transitions, since every tran-
sition generating a configuration c = 〈Σ, B,A〉
decreases the value of the variant function |E| +
|Σ| + 2|B| − |A|), it can be deduced from the in-
variant that A = E, which proves completeness.

The worst-case complexity of a deterministic
transition-based parser is given by an upper bound
on transition sequence length (Nivre, 2008). For
the planar system, like its projective counterpart,
the length is clearly O(n) (where n is the number
of input words), since there can be no more than
n SHIFT transitions, n REDUCE transitions, and n
ARC transitions in a transition sequence.

5 Parsing 2-Planar Structures

The planar parser introduced in the previous sec-
tion can be extended to parse all 2-planar depen-
dency structures by adding a second stack to the
system and making REDUCE and ARC transitions
apply to only one of the stacks at a time. This
means that the set of links created in the context
of each individual stack will be planar, but pairs
of links created in different stacks are allowed to
cross. In this way, the parser will build a 2-planar
dependency forest by using each of the stacks to
construct one of its two planes.

The 2-planar transition system, shown in Figure
4, has configurations of the form 〈Σ0, Σ1, B,A〉,
where we call Σ0 the active stack and Σ1 the in-
active stack, and the following transitions:

1. SHIFT: pops the first (leftmost) word in the
buffer, and pushes it to both stacks.

2. LEFT-ARC: adds a link from the first word in
the buffer to the top of the active stack.

3. RIGHT-ARC: adds a link from the top of the
active stack to the first word in the buffer.

4. REDUCE: pops the top word from the active
stack, implying that we have added all links
to or from it on the plane tied to that stack.

5. SWITCH: makes the active stack inactive and
vice versa, changing the plane the parser is
working with.
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Initial configuration: cs(w1 . . . wn) = 〈[], [], [w1 . . . wn], ∅〉

Terminal configurations: Cf = {〈Σ0, Σ1, [], A〉 ∈ C}

Transitions: SHIFT 〈Σ0, Σ1, wi|B, A〉 ⇒ 〈Σ0|wi, Σ1|wi, B,A〉
REDUCE 〈Σ0|wi, Σ1, B,A〉 ⇒ 〈Σ0, Σ1, B,A〉
LEFT-ARC 〈Σ0|wi, Σ1, wj |B, A〉 ⇒ 〈Σ0|wi, Σ1, wj |B, A ∪ {(wj , wi)}〉

only if 6 ∃k | (wk, wi) ∈ A (single-head) and not wi ↔∗ wj ∈ A (acyclicity).

RIGHT-ARC 〈Σ0|wi, Σ1, wj |B, A〉 ⇒ 〈Σ0|wi, Σ1, wj |B, A ∪ {(wi, wj)}〉
only if 6 ∃k|(wk, wj) ∈ A (single-head) and not wi ↔∗ wj ∈ A (acyclicity).

SWITCH 〈Σ0, Σ1, B,A〉 ⇒ 〈Σ1, Σ0, B,A〉

Figure 4: Transition system for 2-planar dependency parsing.

5.1 Correctness and Complexity

As in the planar case, we provide a brief sketch
of the proof that the transition system in Figure 4
is correct for the set F2p of 2-planar dependency
forests. Soundness follows from a reasoning anal-
ogous to the planar case, but applying the proof
of planarity separately to each stack. In this way,
we prove that the sets of dependency links cre-
ated by linking to or from the top of each of the
two stacks are always planar graphs, and thus their
union (which is the dependency graph stored in A)
is 2-planar. This, together with the single-head and
acyclicity constraints, guarantees that the depen-
dency graphs associated with reachable configura-
tions are always 2-planar dependency forests.

For completeness, we assume an extended form
of the transition system where transitions take the
form 〈Σ0, Σ1, B,A, p〉, where p is a flag taking
values in {0, 1} which equals 0 for initial config-
urations and gets flipped by each application of a
SWITCH transition. Then we show that every 2-
planar dependency forest G ∈ F2p, with planes
G0 = (V,E0) and G1 = (V,E1), can be produced
by this system by applying the oracle function that
maps a configuration 〈Σ0|wi, Σ1, wj |B, A, p〉 to:

1. LEFT-ARC if wj→wi∈(Ep \A),

2. RIGHT-ARC if wi→wj ∈(Ep \A),

3. REDUCE if ∃x[x<i][wx↔wj ∈(Ep \A)∧
¬∃y[x<y≤i][wy↔wj ∈(Ep \A)]],

4. SWITCH if ∃x<j : (wx, wj) or (wj , wx) ∈ (Ep\A),

5. SHIFT otherwise.

This can be shown by employing invariants analo-
gous to the planar case, with the difference that the
third invariant applies to each stack and its corre-
sponding plane: if Σy is associated with the plane

Ex,6 we have:

3. ∀k[k<j][wk 6∈ Σy]⇒
∀l[l>k][wk↔wl∈Ex]⇒ [wk↔wl∈A]

Since the presence of the flag p in configurations
does not affect the set of dependency graphs gen-
erated by the system, the completeness of the sys-
tem extended with the flag p implies that of the
system in Figure 4.

We can show that the complexity of the 2-planar
system is O(n) by the same kind of reasoning as
for the 1-planar system, with the added complica-
tion that we must constrain the system to prevent
two adjacent SWITCH transitions. In fact, without
this restriction, the parser is not even guaranteed
to terminate.

5.2 Implementation
In practical settings, oracles for transition-based
parsers can be approximated by classifiers trained
on treebank data (Nivre, 2008). To do this, we
need an oracle that will generate transition se-
quences for gold-standard dependency graphs. In
the case of the planar parser of Section 4.2, the or-
acle of 4.3 is suitable for this purpose. However,
in the case of the 2-planar parser, the oracle used
for the completeness proof in Section 5.1 cannot
be used directly, since it requires the gold-standard
trees to be divided into two planes in order to gen-
erate a transition sequence.

Of course, it is possible to use the algorithm
presented in Section 3 to obtain a division of sen-
tences into planes. However, for training purposes
and to obtain a robust behaviour if non-2-planar

6The plane corresponding to each stack in a configuration
changes with each SWITCH transition: Σx is associated with
Ex in configurations where p = 0, and with Ex in those
where p = 1.
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Czech Danish German Portuguese
Parser LAS UAS NPP NPR LAS UAS NPP NPR LAS UAS NPP NPR LAS UAS NPP NPR
2-planar 79.24 85.30 68.9 60.7 83.81 88.50 66.7 20.0 86.50 88.84 57.1 45.8 87.04 90.82 82.8 33.8
Malt P 78.18 84.12 – – 83.31 88.30 – – 85.36 88.06 – – 86.60 90.20 – –
Malt PP 79.80 85.70 76.7 56.1 83.67 88.52 41.7 25.0 85.76 88.66 58.1 40.7 87.08 90.66 83.3 46.2

Table 2: Parsing accuracy for 2-planar parser in comparison to MaltParser with (PP) and without (P)
pseudo-projective transformations. LAS = labeled attachment score; UAS = unlabeled attachment score;
NPP = precision on non-projective arcs; NPR = recall on non-projective arcs.

sentences are found, it is more convenient that
the oracle can distribute dependency links into the
planes incrementally, and that it produces a dis-
tribution of links that only uses SWITCH transi-
tions when it is strictly needed to account for non-
planarity. Thus we use a more complex version of
the oracle which performs a search in the crossings
graph to check if a dependency link can be built on
the plane of the active stack, and only performs a
switch when this is not possible. This has proved
to work well in practice, as will be observed in the
results in the next section.

6 Empirical Evaluation

In order to get a first estimate of the empirical ac-
curacy that can be obtained with transition-based
2-planar parsing, we have evaluated the parser
on four data sets from the CoNLL-X shared task
(Buchholz and Marsi, 2006): Czech, Danish, Ger-
man and Portuguese. As our baseline, we take
the strictly projective arc-eager transition system
proposed by Nivre (2003), as implemented in the
freely available MaltParser system (Nivre et al.,
2006a), with and without the pseudo-projective
parsing technique for recovering non-projective
dependencies (Nivre and Nilsson, 2005). For the
two baseline systems, we use the parameter set-
tings used by Nivre et al. (2006b) in the original
shared task, where the pseudo-projective version
of MaltParser was one of the two top performing
systems (Buchholz and Marsi, 2006). For our 2-
planar parser, we use the same kernelized SVM
classifiers as MaltParser, using the LIBSVM pack-
age (Chang and Lin, 2001), with feature models
that are similar to MaltParser but extended with
features defined over the second stack.7

In Table 2, we report labeled (LAS) and un-
labeled (UAS) attachment score on the four lan-
guages for all three systems. For the two systems
that are capable of recovering non-projective de-

7Complete information about experimental settings can
be found at http://stp.lingfil.uu.se/ nivre/exp/.

pendencies, we also report precision (NPP) and
recall (NPR) specifically on non-projective depen-
dency arcs. The results show that the 2-planar
parser outperforms the strictly projective variant
of MaltParser on all metrics for all languages,
and that it performs on a par with the pseudo-
projective variant with respect to both overall at-
tachment score and precision and recall on non-
projective dependencies. These results look very
promising in view of the fact that very little effort
has been spent on optimizing the training oracle
and feature model for the 2-planar parser so far.

It is worth mentioning that the 2-planar parser
has two advantages over the pseudo-projective
parser. The first is simplicity, given that it is based
on a single transition system and makes a single
pass over the input, whereas the pseudo-projective
parsing technique involves preprocessing of train-
ing data and post-processing of parser output
(Nivre and Nilsson, 2005). The second is the fact
that it parses a well-defined class of dependency
structures, with known coverage8, whereas no for-
mal characterization exists of the class of struc-
tures parsable by the pseudo-projective parser.

7 Conclusion

In this paper, we have presented an efficient algo-
rithm for deciding whether a dependency graph is
2-planar and a transition-based parsing algorithm
that is provably correct for 2-planar dependency
forests, neither of which existed in the literature
before. In addition, we have presented empirical
results showing that the class of 2-planar depen-
dency forests includes the overwhelming majority
of structures found in existing treebanks and that
a deterministic classifier-based implementation of
the 2-planar parser gives state-of-the-art accuracy
on four different languages.

8If more coverage is desired, the 2-planar parser can be
generalised to m-planar structures for larger values of m by
adding additional stacks. However, this comes at the cost of
more complex training models, making the practical interest
of increasing m beyond 2 dubious.
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