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Abstract

The highest performances in part-of-speech tag-
ging have been obtained by using stochastic
methods, such as hidden Markov models. The
running parameters of a hidden Markov model
for tagging can be estimated from tagged cor-
pora. However, the current situation in the au-
tomatic processing of some languages is very
short training texts, but very large dictionaries.
These dictionaries can provide very useful infor-
mation for improving the treatment of unknown
words. In this paper we present new strate-
gies for integrating external dictionaries into a
stochastic tagging framework. Instead of the
most intuitive Adding One method, we propose
the use of the Good-Turing formulas, which pro-
duce less distortion of the model we are esti-
mating. This technique guarantees good per-
formances in the automatic processing of lan-
guages for which reference texts hardly exist.

1 Introduction

The ultimate goal of research on Natural Lan-
guage Processing is to parse and understand hu-
man languages. Currently, we are still far from
achieving this goal. For this reason, much re-
search in computational linguistics has focussed
on intermediate tasks that make sense of some
of the structure inherent in language without re-
quiring complete understanding. One such task
is part-of-speech tagging, or simply tagging.
Elimination of lexical ambiguities is a crucial
task during the process of tagging a text in natu-
ral language. If we take in isolation, for instance,
the word time, we can see that it has several
possible tags in English: noun, adjective or verb.
However, if we examine the context in which the
word appears, on most occasions only one of the
tags is possible. In addition, we are also inter-
ested in being able to give a tag to all the words
that appear in a text, but are not present in our
dictionary, and to guarantee somehow that this
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tag is the correct one. A good performance at
this stage improves the viability of syntactic and
semantic analysis.

Traditionally, the starting point for tagging is
linguistic resources like dictionaries and written
texts, previously tagged or not. This research line
is called corpus-based linguistics. These corpora
are used to tune the running parameters of the
taggers. This tuning process is called training.
The highest performances have been obtained by
using stochastic methods, such as hidden Markov
models (Brants 2000), and taking tagged corpora
as training data.

Many other non-quantitative methods have
been applied to tagging. One of them is ENGCG
(English Constraint Grammar), which performs
better than Markov model taggers, especially if
training and application corpora are not from the
same source (Samuelsson & Voutilainen 1997).
The accuracy figures for ENGCG in that paper
are better than 99% with a set of 1,000 constraint
rules vs. better than 95% for a Markov model
tagger, but comparison is difficult since some am-
biguities are not resolved by EngCG. EngCG re-
turns a set of more than one tag in some cases.
Moreover, the following aspects must be consid-
ered:

e The success of this approach is partly due
to integrating a large dictionary with the
tagger, which is precisely the theme of the
present work.

e There are many cases where using this kind
of rule-based tagger is not possible.

e This methodology amounts to writing a small
expert system for tagging. The claim has
been made that for somebody who is fa-
miliar with the methodology, writing this
type of tagger takes no more effort than
building a Markov model tagger (Chanod &
Tapanainen 1995), thought it could be ar-



gued that the methodology for Markov model
tagging is more easily accessible.

For all these reasons, the discussion has focussed
on integrating external dictionaries into a stochas-
tic tagging framework.

A hidden Markov model for tagging needs two
sets of running parameters: the n-grams proba-
bilities for the transitions between tags, and the
emission probabilities for words. Both can be es-
timated from a tagged corpus.
times we have to deal with languages with very
few available linguistic resources, such as Span-
ish. Currently, the typical situation in Spanish
processing is very short training texts, since they
are not common resources, but very large dictio-
naries, since the morphology of the language is
well-known and the effort made to formalize it
has been much greater.

The standard approach to improve the model in
these cases consists of applying on raw data unsu-
pervised learning techniques, such as the Baum-
Welch algorithm (Baum 1972; Dempster et al.
1977). Due to the difficulties to control these tech-
niques, the alternative method addressed in this
paper is to base the improvement on the use of
dictionaries. External dictionaries should not be
ignored anyway, because they provide very useful
information for improving the treatment of un-
known words. Therefore, the goal of the present
work is to implement new strategies for integrat-
ing external dictionaries into a stochastic tagging
framework, and to verify the way in which the use
of these dictionaries can help to increase the per-
formance of the tagging process, especially when
the training corpus is small.

However, some-

The most intuitive way to perform this integra-
tion is the Adding One method (Church 1988),
which consists of using the dictionary as an addi-
tional tagged corpus where a frequency of 1 is
assigned to each word-tag pair. However, this
integration does not produce a coherent repre-
sentation of the model we are estimating, and it
can produce important alterations in the work-
ing parameters. This leads us to consider an-
other method based on the Good-Turing formu-
las (Church & Gale 1991; Jelinek 1997). Every
word-tag pair present only in the external dictio-
nary can be seen as an event with null frequency
in the training corpus, and the Good-Turing for-
mulas are themselves a method able to assign
probabilities greater than 0 to these rare but ex-

isting events. In addition, this technique produces
less distortion of the model.

2 Architecture of the tagger

Our system uses a second order Markov model
for part-of-speech tagging. In this section, we de-
scribe in detail the elements of the model and the
procedures to estimate its working parameters.

2.1 The underlying model

The states of the model represent pairs of tags,
and outputs represent the words. Transition
probabilities depend on the states, thus pairs of
tags. Output probabilities only depend on the
most recent category. To be explicit, we calculate

n
arg max H[P(wi|ti) x P(tilti—2,ti—1)]
b 3

for a given sentence of words wy ... w, of length
n, where ¢ ..., are elements of the tagset.

Transition and output probabilities are esti-
mated from a tagged corpus. As a first step, we
use the maximum likelihood probabilities P which
are derived from the relative frequencies:

Unigrams : P(t ) = )
Bigrams : P(t3|t2) é(? ,tgs)
Trigrams : P(t3|t1,t2) - %ti;t)s)
Lexical : P(wslts) = C5pe)

for all ¢1, to, t3 in the tagset and ws in the train-
ing corpus. C(z) is the number of times the event
z occurs in the training corpus, and N is the to-
tal number of tokens in the training corpus. We
define a maximum likelihood probability to be
zero if the corresponding nominator is null. As a
second step, contextual frequencies are smoothed
and lexical frequencies are completed by handling
words that do not appear in the training corpus
but are present in external dictionaries of the cor-
responding language.

Note that the lexical probabilities, which we
will call output or emission probabilities, do not
come from more intuitive percentages such as:
70% of the occurrences of the word time are as
noun, 20% are as adjective and the remaining
10% are as verb. The corresponding probabili-
ties (0.7, 0.2 and 0.1) would be P(t|w) (note that

P(t|lw) = 1), but the model uses precisely the
opposite ones, i.e. P(wl|t).



To understand these later probabilities in a nat-
ural way, we resort to the simulation of a hidden
Markov model by an urn-and-ball system (Ra-
biner & Juang 1993). In this system, we have
a different urn for each tag ¢ in the tagset. For
each pair (w,t) in the training corpus, the word w
is added to the urn ¢ in a such a way that the same
word could be in different urns (due to the ambi-
guities) and it also could be in the same urn more
than once (allowing the words in the same urn
to have different emission probabilities). There-
fore, P(w|t) is the probability of extracting the
word w from the urn that contains all the words
that have been seen with the tag ¢ (in this case,
S P(wlt) = 1).

Other taggers also use the second-order hypoth-
esis for emission probabilities (Thede & Harper
1999), by considering each word in the training
corpus as an output symbol of the state (¢;,t;),
where t; is the tag of the word and ¢; the tag
of the previous word. This technique reports a
slight improvement in the handling of unknown
words. However, as we will see later, the integra-
tion of external dictionaries into this model would
be particularly difficult, since each word in a dic-
tionary is attached to individual tags, not to pairs
of tags.

2.2 Smoothing

Trigram probabilities generated from a corpus
cannot be used directly because of the sparse-data
problem, which means that there are insufficient
instances for each trigram to reliably estimate the
probability. Furthermore, setting a probability to
zero because the corresponding trigram never oc-
curred in the corpus has an undesired effect. It
causes the probability of a complete sequence to
be set to zero if its use is necessary for a new
text sequence, thus making it impossible to rank
different sequences containing a zero probability.

The smoothing paradigm that delivers the best
results is linear interpolation of unigrams, bi-
grams and trigrams. Therefore, we estimate a
trigram probability as follows:

P(t3|t1, tg) = A3 p(t3|t1, t2)-|-)\2 P(t3|t2)+)\1 P(tg)

where A1 + A2 + A3 = 1, so P again represents
probability distributions.

We use the context-independent variant of lin-
ear interpolation, i.e. the values of the As do not
depend on the particular trigram. Contrary to in-

tuition, this yields better results than the context-
dependent variant, because, due again to sparse-
data problems, one usually cannot estimate an
adequate different set of As for each trigram.

The values of Ay, Ao and A3 are estimated
by deleted interpolation. This technique suc-
cessively removes each trigram from the train-
ing corpus and estimates best values for the As
from all other n-grams in the corpus. Given the
frequency counts for unigrams, bigrams and tri-
grams, the weights can be very efficiently deter-
mined with a processing time which is linear in
relation to the number of different trigrams. The
algorithm (Brants 2000) is:

1. SetA1=A2=A3:O

2. For each trigram 1 to t3 with C(t1, ta,t3) > 0,
locate the maximum of the following three
values and perform the corresponding action:

\ Cltatots)—1
C(tl,tz)—l
C(ta,t3)—1
C(tz)—l
C(t3)—1

® N

: increment A3 by C(t1,t2,t3)
: increment Ao by C(t1,1%2,1t3)
: increment A\; by C(t1,to,t3)

3. Normalize A1, Ao and A3

If the denominator in one of the expressions is
0, we define the result of that expression to be
0. Note that subtracting 1 means taking unseen
data into account. Without this subtraction the
model would overfit the training data, generating
A3 = 1 and A\; = Ay = 0, and would yield worse
results.

2.3 Handling of unknown words

Currently, the method of handling unknown
words that seems to work best for inflected lan-
guages is suffix analysis. Given an unknown word,
its candidate tags and their probabilities are set
according to the ending of the word in question.

The probability distribution of a particular suf-
fix is generated from all words in the training
set that share the same suffix of some predefined
maximum length. The term suffix as used here
means “final sequence of characters of a word”
which is not necessarily a linguistically meaning-
ful suffix.

Probabilities are smoothed by successive ab-
straction (Samuelsson 1993). This calculates the
probability of a tag ¢ given the last m letters [;
of an n letter word: P(t|lp—m+1,---,ln). The
sequence of increasingly more general contexts



omits more and more characters of the suffix, so
that P(t|ln—m+2:---50n), P(t|ln—m+t3s---50n), -+,
P(t) are used for smoothing. The recursion for-
mula is

P(t|ln—i—|—17 R 7ln) =

p(t|ln_i+1, - ,ln) + 6; P(t|ln_i+2, ce
1+6;

)

for i = m,...,1, using the maximum likelihood
for a suffix of length ¢ derived from corpus fre-
quencies by

C(t’ ln—i+17 s 7l’n)

Pty i1, ..
(t|ln i+1 C(ln7i+1, ERE) ln)

aln) =

also using weights 6;, and the initialization P(t) =
P(t). Of course, as parameters for the Markov
model, we need the inverse conditional probabili-
ties P(lp—it1,- - - ,ln|t) which are obtained by sim-
ple Bayesian inversion.

As it can be seen, the definition of this method
is not entirely exact and leaves room for interpre-
tation:

e One has to identify an appropriate value for
m, the longest suffix used. We use the longest
suffix that we can find in the training set, but
at most 10 characters.

e Following (Brants 2000), we use a context-
independent approach for 0; (as we did for
the contextual weights );), i.e. we set all §; to
the standard deviation of the unconditioned
maximum likelihood probabilities of the tags
in the training corpus:

Ly pw) - by

=1

6, =

for all i = m,... .1 where s is the cardinal
of the tagset and P the average

S

-1 n
P=-% P
Sj;()

e Another freedom concerns the choice of the
words in the lexicon that should be used
for suffix handling. Accepting that unknown
words are most probably infrequent, one can
argue that using suffixes of infrequent words
in the lexicon is a better approximation for

unknown words than using suffixes of fre-
quent words. Therefore, we restrict the pro-
cedure of suffix handling to words with a fre-
quency lower than or equal to some thresh-
old value (empirically, 10 seems to be a good
choice).

In conclusion, this method obtains a proper prob-
ability distribution for each tag and for each suffix
length, as needed by the hidden Markov model.
The guesser can be implemented as a tree of let-
ters containing the final characters of the words.
Then, an unknown word is processed letter by
letter from right to left going as deep in the tree
as possible. The node in which the process stops
will determine the list of candidate tags and their
probabilities.

Other approaches to guessing combine the
probabilities of the words in the lexicon with the
probabilities of unknown words, i.e. given a tag t,
they allow >, P(w|t) = S < 1, where 1—S would
be the amount of probability devoted to unknown
words, if ¢ is known. The estimation of an appro-
priate value for S is precisely the weakest point
of these methods. Fortunately, in our tagger, the
sets of probabilities for suffix are separated from
the emission probabilities of the words in the lex-
icon, which also constitutes an advantage when
integrating external dictionaries, as we will see in
the following section.

3 Integrating external dictionaries

A problem similar to the sparse-data phenomenon
for states arises for words as well. Initially, we
could assume that the emission probabilities are
the only thing that can be perfectly estimated
from a tagged corpus. However, in practice, we
can find words that are not present in training
texts, but that appear in a dictionary', i.e. they
are words for which the corresponding tags are
known, but they do not have emission probabili-
ties, since they have not been seen during train-
ing. Once more, it is not convenient to leave these
probabilities as zero.

Therefore, it is necessary to use methods to in-
tegrate the information provided by the external
dictionary within the stochastic tagging frame-
work. To perform this task, instead of the more

'In this context, a dictionary is simply a list of words,
each word being attached to the enumeration of its possible

tags. Contrary to what could be expected, no semantic
information is stored in this kind of dictionaries.



general Adding One method, we propose the use
of the Good-Turing formulas, as we justify below.

3.1 Adding One method

The most intuitive way to perform integration
of dictionaries is the Adding One method, which
consists of using the dictionary as an additional
tagged corpus where a frequency of 1 is assigned
to each word-tag pair. Of course, this new cor-
pus is used to estimate only emission probabili-
ties of words, but not n-grams probabilities, since
the order of words and tags in the dictionary has
nothing to do with the order of words and tags in
real sentences.

Then, for each pair (w;,t;) in the dictionary,
the emission probability is estimated by

POl =50+ K,

where K is the number of words tagged with ¢; in
the dictionary. For the rest of the word-tag pairs
appearing in the training corpus but not in the
dictionary, the estimation is performed with the
same formula but without adding 1 in the nomi-
nator. Intuitively, taking the urn-and-ball system
again, this method operates as if all the “balls”
or words in the dictionary were put in their corre-
sponding “urns” or tags only once, previously to
the estimation of the emission probabilities. With
this, the desired effect of having output probabil-
ities for the words in the dictionary other than
zero is achieved, even if they do not appear in the
training corpus.

At this point, it is important to remember that
the success of a tagger on a new application text
will be greater if its style is close to the style of
the training corpus. The set of words in a gen-
eral dictionary must be still considered, because it
can increase the tagger’s coverage. But the style
of the training text is defined by the words that
appear in it, and these words should have more
importance than other external words.

With the Adding One integration, given two
words with the same tag, w; and w;, the first
one present only in the dictionary, and the second
one present only once in the training corpus, we
find that both have the same frequency and then
the same emission probability, which does not
produce a coherent representation of the model
we are estimating. That is, an external set of
words always produce an important alteration in
the model parameters, especially when this set is

great. This leads us to consider another kind of
methods.

3.2 Good-Turing formulas

Every word-tag pair present only in the external
dictionary can be seen as a unobserved event, that
is, a rare event with frequency 0 (unobserved zero
event), while a non-possible event is any word-tag
pair that is present neither in the dictionary nor in
the training corpus (real zero event)?. The Good-
Turing formulas constitute an estimation method
that is not completely based on relative frequen-
cies, but which is able to assign probabilities other
than 0 to the unobserved events.

In addition, in cases like the above-mentioned
one, this technique guarantees that the emission
probability for w; will always be less than that for
w;, and this produces less distortion of the model.

For a collection of events x in the training cor-
pus, we are interested in determining our esti-
mates P(z) of the probabilities P(z) with the fol-
lowing structure (Jelinek 1997):

gi for all z for which C(z) =1,
Ply) — and:=0,1,..., M,
() = af(z) for all z for which C(z) > M,

where f(z) = %,

where N is the size of the training set. The basic
intuition under this structure is that all events ob-
served the same number of times s € {0,1,..., M}
should have the same probability. In the sec-
ond case, i.e. when C(z) is greater than a cer-
tain threshold M, we rely on the corresponding
smoothing of the relative frequencies.

The Good-Turing formulas, which can be de-
rived by a variety of methods (Nadas 1991; Ney
et al. 1995), uses the training set to find the opti-
mal values of the parameters ¢;, @ and M. Being
n; the number of different symbols z for which
C(z) = i, we have:

ni+1%+ 1
qi = )
n; N

i=0,1,...,M (1)

We obtain the value of a by normalization
> P(z) = 1, that is setting

M i
in; + o —n; =1
qu (3 Z N (3
1=0 i>M
*For example, unknown words are considered real ze-

ros, and, as we have seen before, these null probabilities
are solved by the guesser, which obtains the corresponding
emission probabilities related to morphology of words.



Integration Training Corpus Size (in sentences)
Method 1,000 2,000 3,000 4,000 5,000
no external dictionary | 94.14 95.91 96.67 97.22 97.56
Adding One 94.76 (+0.62) 96.26 (+0.35) 96.90 (+0.23) 97.36 (+0.14) 97.66 (+0.10)
Good-Turing 95.26 (+1.12) 96.57 (+0.66) 97.03 (+0.36) 97.44 (+0.22) 97.74 (+0.18)

Table 1: Adding One vs. Good-Turing with the GALENA dictionary on the ITU corpus

Using (1) we obtain

S in

_i>M41

> in

i>M

(2)

We have thus in (1) and (2) the well-known Good-
Turing formulas, and the natural monotonicity
constraint ¢; 1 < ¢; now requires the choice of
M to satisfy

, i+1
(n’t) < i T—1T441, 1= 1727 - aMa
and
S in
Npm+1 i>M+1
>M

It should be noted that although the occurrence
numbers n; for s = 1,2,..., M 4+ 1 are those actu-
ally observed in the training data, ng is different.
It is an inferred number equal to the size of the
total lexicon minus the size of the sublexicon ac-
tually observed in the training corpus.

It is also interesting to note from (1) that the
total probability mass ggno assigned by the for-
mulas to all the unobserved events is equal to
n1/N, i.e. the total probability that would have
been assigned to singleton events by a relative fre-
quency formula.

With the use of the Good-Turing integration,
we have observed improvements in performance.
However, it is important to remember that, in
our case, this kind of integration has been per-
formed considering isolated sets of words over
each different tag (Grania 2000), and only when
ng > ny > ng, that is, when there are many un-
observed events and the data is really sparse (typ-
ically, for the most populated categories in the ex-
ternal dictionary: nouns, adjectives, verbs, ...).
When this situation does not apply (typically, for
the least populated categories in the external dic-
tionary: articles, prepositions, conjunctions, ... ),

the method is not always applicable and there is
the danger of using it incorrectly. In those cases,
the Adding One integration should be used.

4 Evaluation

The evaluation experiments have been performed
with:

e The ITU? corpus, a free available Spanish cor-
pus which has 14,919 sentences and 486,073
tokens. The dictionary formed by the words
that appear in the corpus has 17,138 different
words, with 18,917 possible taggings.

e The GALENA* dictionary, a Spanish dictio-
nary which has 291,604 words with 354,007
possible taggings.

The intersection between both dictionaries in-
volves 6,594 words, which represent 78.73% of the
tokens that appear in the ITU corpus. In this
case, the contribution of the external dictionary
is clear, but its integration must be performed
carefully because its great size in comparison with
that of the dictionary extracted from the training
corpus could lead to important distortions in the
model.

The steps of the strategy to perform the exper-
iments are: to build a training corpus formed by
sentences randomly taken from the ITU corpus, to
train the tagger, to retag the remaining portion
of the corpus, and to compare it with the original
one. Obviously, this must be done with different
sizes of training corpus (we have chosen five dif-
ferent sizes from 1,000 to 5,000 sentences), and in
all the possible situations regarding the external
dictionary (with no external dictionary, with the
GALENA dictionary integrated by the Adding One
method, and with the same dictionary integrated
by the Good-Turing method).

3 International ~Telecommunications Union CCITT
Handbook (CRATER 1993).

4 Generation of Natural Language Analyzers.  See
http://coleweb.dc.fi.udc.es for more information

about this project.



Table 1 shows the percentages of words cor-
rectly tagged, and the improvement produced by
the GALENA dictionary (when it is integrated by
the methods under consideration). We observed
much better performances in the Good-Turing in-
tegration, especially when the training corpus is
small.

The only negative aspect, which is due to the
greater complexity in the calculus of the Good-
Turing method, is a slight increase in training
times. Nevertheless, tagging times remain un-
changed.

5 Conclusion

Our contribution, the integration of external dic-
tionaries into a stochastic tagger by the use of
the Good-Turing formulas, instead of the Adding
One method, produces improvements in perfor-
mance, especially when dictionaries are great and
training texts are small. This kind of situation
defines the state-of-the-art in automatic process-
ing of Spanish. As an important conclusion, this
technique will guarantee a good performance not
only in the automatic processing of this language,
but also that of others for which reference texts
hardly exist.
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