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Abstract
Sentence word segmentation and Part-Of-
Speech (POS) tagging are common pre-
processing tasks for many Natural Language
Processing (NLP) applications. This paper
presents a practical application for POS
tagging and segmentation disambiguation
using an extension of the one-pass Viterbi
algorithm called Viterbi-N. We introduce the
internals of the developed system, which is
based on lattices and a stochastic model built
using second order Hidden Markov Models
(HMMs). Also, we present the results of
an evaluation process and the analysis of the
error cases. The results achieved suggest
that the Viterbi-N algorithm applied on
lattices allows POS tagging and segmentation
disambiguation to be accomplished in a
common process. Although the tests were
done for the Galician language, the solution
proposed could be easily exported to other
languages.
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1 Introduction

Current Part-Of-Speech (POS) taggers assume that
their input is already correctly tokenized. This means
that every token in the input is an individual linguistic
component suitable for being tagged with a single
POS tag. The tokenization task tends to be relatively
simple, since in most cases each word corresponds to
one linguistic token. However, there are cases where
this segmentation can be more complex. On one hand,
there are contractions and verbal forms with enclitic
pronouns, where the same word contains information

about two or more linguistic components which have
to be split into individual tokens. On the other, there
are idioms, where several words act together as one
linguistic component, and must be joined to form a
unique compound token.

Segmentation ambiguities arise when one or more
words can be segmented into linguistic tokens in more
than one way. This kind of phenomenon is quite
common in languages with a rich morphology, such as
Spanish or Galician. To deal with such ambiguities,
several works [8] [9] use artificial tags to be assigned
to compound tokens or to tokens which are part of
only one linguistic reality. However, they postpone the
solution of these segmentation tasks to later phases of
Natural Language Processing (NLP), which in most
cases are not documented.

Our approach lies in using the one-pass Viterbi
algorithm extension [6] over second order Hidden
Markov Models (HMMs) to carry out the segmenta-
tion just at the moment of assigning POS tags. Seg-
mentation ambiguities are detected by a morphological
preprocessor using lexicons and provided as input to
the algorithm.

This way, POS tagging and segmentation disam-
biguation are accomplished in one unique process us-
ing a lattice structure. Lattices will allow us to repre-
sent every possible segmentation and to manage all the
computations needed for the classic Viterbi algorithm
at the same time, as we will explain later.

2 Segmentation Issues

As we have indicated earlier, many POS tagging
environments simply ignore segmentation issues,
leaving them to be solved in later steps. For
example, a common approach is to use agglutinations
of tags1 which are assigned to contractions and enclitic
1 To simplify, in this work, we use Adj for adjective, Adv

for adverb, C for conjunction, Det for determiner, P for



forms. A contraction formed by a preposition and a
determiner could be tagged with a compound tag like
P+Det, instead of being split into one token tagged
with P and another one tagged with Det. Given that
many NLP applications need to know the linguistic
information of each word component, when using this
approach the contraction will need to be processed in a
later step in order to extract its linguistic information.
Moreover, it causes an unnecessary growth of the
tagset, with its negative consequences (sparse data,
larger training corpus needed, etc.) [4].

In comparison, we detect tokenization ambiguities
just before the POS tagging phase with a morpholo-
gical preprocessor [7]. This is done using external
lexicons and some segmentation rules for verbal
forms with enclitic pronouns. If a word can make
sense with different segmentations, the morphological
preprocessor provides every alternative to the POS
tagger. Then, the POS tagger will choose the best
one.

Fig. 1: Ambiguous segmentations of ‘polo’ and
‘sin embargo’ for Galician and Spanish languages
respectively.

Contractions, verbal forms with enclitic pronouns,
idioms and proper nouns are the categories which
are able to generate segmentation ambiguities. For
example, as we can see in figure 1, the Galician
word ‘polo’ could be treated as a noun (chicken),
as a contraction of the preposition ‘por ’ and the
determiner ‘o’ (by the) or even as a verbal form ‘pos’
with the enclitic pronoun ‘o’ (put it). On the other
hand, a sequence of words like the Spanish expression
‘sin embargo’ could be joined together and tagged
as a conjunction (however) or it could be tagged
individually as a preposition and a noun (without
seizure).

Once a sentence has been preprocessed and
segmentation ambiguities detected, a tagging model
is used to assign the correct POS tag to each of
the tokens. The model is built as a second order
Hidden Markov Model (HMM) and its parameters
are estimated from a training corpus using linear
interpolation of uni-, bi- and trigrams as our
smoothing technique [5].

3 Lattices

In the context of POS tagging with HMMs, the
classic version of the Viterbi algorithm is applied on
trellises [3], where the first row contains the words
of the sentence to be tagged, and the candidate
tags appear in columns below the words. However,

preposition, Pro for pronoun, N for noun, V for verb, Id for
idiom and Q for punctuation mark.

this structure does not allow the representation of
ambiguous segmentations.

A practical solution lies in using lattices to
represent sentences. Figure 2 shows a Galician
language sentence which contains several types of
ambiguous segmentations: ‘Non poden verse a causa
de certo individuo’ (they cannot meet each other
because of a certain person). The gaps between the
words are enumerated and an arc can span one or more
words. Such an arc is labelled with the words spanned
and their corresponding POS tag. For example, gap
3 marks the begining of an ambiguous segmentation
for the word ‘verse’. It could be segmented into verb
‘ver ’ (to meet) and reflexive enclitic pronoun ‘se’, or
as verb ‘verse’ (it may deal with). In gap 5, the idiom
‘a causa de’ (because of) could be also segmented into
several different tokens and the same in gap 7 for ‘de
certo’ (certainly).

Although there are 40 possible paths in this
sentence, only the one formed by the arcs drawn
in the upper part of the lattice shows the correct
segmentation. Each arc represents a token, so the
correct segmentation is seven tokens long, while the
longest possible segmentation of this sentence is nine
tokens long.

Therefore, lattices will allow us to represent all the
information about ambiguous segmentations. Now we
will see how an extension of the Viterbi algorithm
can use them to tag sentences without repeating
computations for each path.

4 Viterbi-N: the one-pass
Viterbi algorithm with nor-
malization

The Viterbi algorithm [10] is a dynamic programming
algorithm for finding the most likely sequence of
hidden states (called the Viterbi path) that explains a
sequence of observations for a given stochastic model.
In the context of POS tagging, we are looking for the
most likely sequence of tags that explains a sequence of
words in a sentence. In order to do so, a trellis is built
from the sentence to be tagged. For each state (tag)
in that trellis the cumulative probability for all paths
reaching that state must be computed but, given that
such paths in trellises have the same length, it is only
necessary to store the cumulative probability of the
best one. At the end, the most likely sequence of tags
for the sentence is obtained by comparing cumulative
probabilities of final states and going backwards.

On the contrary, the Viterbi-N algorithm is applied
on lattices [6], so it is possible to reach one state
coming from paths of different length. Thus, for each
state in the lattice, it will be necessary to store as
many cumulative probabilities as there are different
lengths of path reaching that state. Therefore,
let ∆t,t′,l(q) be an accumulator which collect the
maximum probability of state q covering words from
position t to t′, and with length l, l being the number
of states from first state to state t′.

Only accumulators with the same length would
be directly comparable, because of the different
number of factors involved in their computation.



Fig. 2: Ambiguous segmentations represented on a lattice.

As accumulators are computed by products of
probabilities, longer segmentations are penalized by
the higher number of factors, making them less
likely than shorter ones. In practice, this means
that alternatives which imply the joining of words
would be chosen more often than others which imply
segmentation into several words. To solve this, a
normalization step must be accomplished in order
to compare segmentation paths of different lengths.
Moreover, it must be noted that the algorithm works
using only one lattice and performing only one pass of
the Viterbi algorithm.

Figure 3 shows how the algorithm is applied on
the Galician language sentence ‘Non poden verse.’
(they cannot meet each other.). Lattices can be
implemented as graphs in which each node is a
probability accumulator associated to one linguistic
token and one POS tag. In the figure we can see
the accumulators needed to tag and disambiguate this
sentence. Such accumulators are written with the
format ∆(t, t′, l, q), where t and t′ are the instants
where the current token starts and ends, l is the
number of tokens from the beginning of the sentence
until the current token and q is the associated POS tag.
As there are two possible segmentation paths reaching
the last token of the sentence, it has two accumulators,
with lengths 5 and 4. The algorithm will normalize
both accumulators by their lengths and choose the
best one. Then, the sequence of tags compounding
the best segmentation path can be obtained by going
backwards in the lattice.

The equations of the classic Viterbi algorithm can
be adapted to process lattices [2]. Assuming the use
of logarithmic probabilities to avoid problems of pre-
cision with factors less than 1, we replace products by
sums and adapt the Viterbi-N algorithm’s equations
as follows:

Let’s use δi,j(q) to denote the probability of the
derivation emitted by state q having a terminal yield
that spans positions i to j.

- Initialization:

∆0,t,1(q) = P (q|qs) + δ0,t(q)

- Recursion:

∆t,t′,l(q) = max
(t′′,t,q′)∈Lattice

∆t′′,t,l−1(q′)+P (q|q′)+δt,t′(q)

(1)

for 1 ≤ t < T

- Termination:

max
Q∈Q∗

P (Q, Lattice) = max
l

max
(t,T,q)∈Lattice

∆t,T,l(q) + P (qe|q)

l

Additionally, it is also necessary to keep track of the
elements in the lattice that maximized each ∆t,t′,l(q).
When reaching time T , we get the length of the best
path in the lattice:

L = arg max
l

max
(t,T,q)∈Lattice

∆t,T,l(q) + P (qe|q)

l

Next, we get the best last element of all paths of length
L in the lattice:

(tm1 , T, qm
1 ) = arg max

(t,T,q)∈Lattice

∆t,T,L(q) + P (qe|q)

Setting tm0 = T , we collect the arguments
(t′′, t, q′) ∈ Lattice that maximized equation (1)
by going backwards in time:

(tmi+1, t
m
i , qm

i+1) =

arg max
(t′′,tm

i ,q′)∈Lattice

∆t′′,tm
i ,L−i(q′)+P (qm

i |q′)+δtm
i ,tm

i−1
(qm

i )

for i ≥ 1, until we reach tmk = 0. Now, qm
1 . . . qm

k is the
best sequence of phrase hypothesis (read backwards).

To sum up, the normalized probabilities calculated
by the Viterbi-N are directly compared and the highest
one is chosen to build the best segmentation path for
current sentence.

5 Defining alternatives

The input for the algorithm is based on the input
format of classic taggers [3]. That is, one word per
line, optionally followed by its candidate POS tags.
However, this classic representation does not allow the
inclusion of segmentation alternatives.

We have decided to use XML-like tags for
the definition of such alternatives. An alterna-
tive structure starts with a line containing only
the tag <alternatives>. Then, each segmenta-
tion alternative starts with a line containing only
the tag <alternative> and ends with the tag
<\alternative>. Between those tags, the segmen-
tation alternatives are presented using the classic
format. Finally, the alternative structure ends with



Fig. 3: Viterbi-N algorithm applied on a lattice

the tag <\alternatives>. For example, the alterna-
tive structure for the galician word ‘polo’ (see figure
1) would be as follows:

<alternatives>
<alternative>

polo N
</alternative>
<alternative>

por P
o Det

</alternative>
<alternative>

pos V
o Pro

</alternative>
</alternatives>

Alternative structures may appear at any place
inside a sentence. Their construction is a task that
should be accomplished by the previously mentioned
morphological preprocessor2. It should build every
alternative and assign candidate tags in each branch.
It must be noted that some branches may already
have already the correct POS tags (e.g. contractions
have usually unique tags when they are segmented),
providing valuable information that can be used to
choose the correct alternative.

6 Evaluation

We have performed three experiments using Galician
language texts obtained from the “Reference Corpus
from Present-day Galician Language” project [1]
to test the accuracy of our approach. We have
implemented the Viterbi-N algorithm over a lattice
structure, and fed it with the input described in section
5. The main goal of these tests is to establish both how
accurate the segmentation disambiguation process is,
and how dependent it is from the trained model.

We worked with a manually tagged corpus,
containing 115754 words and organized in 3920
sentences. In this corpus, our morphological
preprocessor detects 1967 sentences with at least

2 Details about how the preprocessor accomplishes this lie
outside the scope of this work [7].

one ambiguous segmentation. The whole number of
segmentation ambiguities in the corpus is 3037.

Our first experiment (E1), only to figure out
the possibilities of our system, consisted in tagging
ambiguous sentences from the training corpus. A
high degree of accuracy would be expected in this
experiment, since there are no unknown words in
the text. We performed this experiment on a set of
434 sentences randomly extracted from the training
corpus, with the only requisite of containing at least
one ambiguous segmentation. This set contained 702
cases of ambiguous segmentations.

For the second experiment (E2), we randomly
extracted 185 sentences, again containing at least one
ambiguous segmentation. These sentences are formed
by 6073 words, and were used as a testing corpus.
The remaining 109681 words were used as a training
corpus.

As a high number of segmentation ambiguities
remained undetected in experiment E2, we decided to
carry out a third experiment avoiding this problem.
Thus, in the third experiment (E3), we again tagged
the extracted testing corpus, but with an improved
version of the morphological preprocessor, which is
able to detect new ambiguous segmentations, not
detected in experiment E2.

Although the size of the testing corpus could
seem a little small, we have chosen such a size
for three reasons. First, the Galician language is
a less-resourced language, so the amount of tagged
text available was small. Second, it is difficult to
align manual and automatic tagged text to compare
results when alternative segmentation options are
given. Therefore, with a small corpus errors could
be easily detected and checked. Third, we wanted to
make a detailed study of the error cases in order to
determine where they come from, and how to avoid
them.

Table 1 shows the experimental results. The first
column shows the number of ambiguous segmentations
detected by the preprocessor. The second column
shows the number of segmentations where the correct
segmentation was chosen. The third shows the number
of ambiguous segmentations not detected by the
preprocessor. The next column shows the percentage
accuracy of the segmentation disambiguation taking
cases of the third column as errors, and the
last one shows the accuracy of the segmentation
disambiguation process when the cases of the third



Cases Good choice No option given Total Accuracy Real Accuracy

E1 702 662 8 94.30% 95.39%
E2 309 241 41 77.99% 89.92%
E3 309 255 5 82.52% 83.88%

Table 1: Test results for experiments E1, E2 and E3.

column are not treated as errors.
As expected, experiment E1 produced very good

results. Only 8 cases of ambiguous segmentation were
not detected by the morphological preprocessor. We
cannot consider these cases as real errors, since no
alternatives are given to the algorithm and they could
be detected just by upgrading the lexicons used by
the morphological preprocessor. The real accuracy
achieved in this experiment is over 95%.

Experiment E2 is a more natural one, because
unknown words appear in the testing corpus. As
can be seen, there is a high number of ambiguous
segmentations not given by the preprocessor. This
fact has a simple explanation: idioms which are in
the corpus but not included in the morphological
preprocessor lexicons, unknown enclitic forms, etc.
A human linguist is able to detect them, but our
preprocessor simply does not have the necessary
information to do so. Once again, if we do not take
these cases as errors, the accuracy is 89.92%. This
accuracy descends to 77.99% if we treat them as errors.

For experiment E3, we added to the lexicons of
the morphological preprocessor many of the unknown
cases of experiment E2. In fact, all but those that
do not meet the usual criteria for inclusion in a
lexicon (Latin or foreign idioms, etc.). Now, we
have to keep in mind that these new added cases
are not in the trained model, so some branches of an
alternative segmentation could be an unknown word.
In these conditions, which could be considered as
the worst case for our system, we achieved 83.88%
accuracy. We judge this value as a real approximation
to the overall accuracy of the system in segmentation
disambiguation and we adopt it as a baseline for future
developments.

Although the results obtained were not outstand-
ing, we believe it is a very promising technique. We
must note that the training corpus used is very small
for the size of the tagset3 and at the moment we have
no more corpora available. In fact the training corpus
is still under development and the one used here has a
lack of coherence. So we think most errors come from
the training corpus and not from the technique itself.
Unfortunately, we have no other approaches to com-
pare with, or we do not know any other work which ex-
plains and tests the segmentation disambiguation for
Western European languages.

Concerning the pure POS tagging results, they are
subordinate to the success of the tokenization task.
Taking each segmention error as one POS tagging
error, we achieved 87.14% accuracy in experiment E3.
We have checked that this poor result comes once
again from the poverty of the training corpus.

3 The tagset used has near 300 different tags. It can be
consulted in http://corpus.cirp.es/xiada/etiquetario.html

6.1 Error analysis

In a detailed analysis of the errors, we became aware
of some interesting points. First, we have detected two
different kinds of error, which we could classify as soft
and hard:

• Soft errors are those from idioms. Such errors
arise when several words are not joined into an
idiom, but are correctly tagged individually, or
when they are joined into an idiom when they
should not be. These kinds of error choose
segmentations that commonly make sense with
the rest of the sentence. In some cases it is
not even clear for linguists when some idioms
should be built, so the information of the model
is limited for this purpose.

• Hard errors are those from contractions, enclitic
forms, etc. If the correct segmentation is not
chosen in such cases, the error is very hard, since
it could even start a cascade error for the rest of
the sentence. As a result of this kind of error, the
tagged sentence makes no sense and it could be
considered a whole tagging error. For example,
in the Galician sentence ‘o polo comeu millo’
(the chicken ate corn), if polo is segmented as
a contraction, we will have ‘o por o comeu millo’
(the by the ate corn), a completely meaningless
sentence.

Table 2 shows the rates of soft and hard errors
detected in experiment E3. As can be seen, we
achieved 63.56% accuracy for idioms. Further analysis
of the training corpus revealed that it was very poor
in idioms. Linguists who tagged it, usually chose not
to join several words to make an idiom, even when it
was possible. Therefore, the training corpus had very
little information about idioms.

However, we achieved outstanding results for the
rest of segmentations. It is worth noting that every
segmentation ambiguity was detected for such cate-
gories, and only two among 175 cases were wrongly
solved, giving us 98.85% accuracy.

Moreover, we realized that most soft errors
come from the fact that some idioms contain very
common words. This means that the alternative
branches where words are not joined have a very
high probability according to the training model. For
example, the preposition ‘a’ (to, at, on) is one of the
most common words in the model. It has a very high
occurrence probability and it is also very common to
find it inside idioms.

The real problem is that idioms themselves appear
little in the training corpus. So the trained model will
give more weight to the segmented branch over the
joined branch when the word ‘a’ appears in the idiom.



Cases Good choice No option given Total Accuracy Real Accuracy

Soft errors 134 82 5 61.19% 63.56%
Hard errors 175 173 0 98.85% 98.85%

Table 2: Test results for experiment E3 classified by kind of errors.

This happends with several very common words as
‘que’ (that, which, than), ‘de’ (of, from), etc. A
possible solution would be to upgrade the size of the
training corpus.

However, almost these errors could still be solved
with morphosyntactic information, leading us to think
that it is possible to upgrade the accuracy of the
system with some rules. This approach would be a less
expensive solution than increasing the training corpus.
Such rules may act in the lattice structure itself,
pruning segmentation branches that prove impossible
for the current context. From our point of view, a
small set of rules could greatly improve the accuracy
of the system for idioms and bring it near to 100%
for other categories. In this case we would have a
hybrid system with a very high degree of accuracy in
the tokenization task.

7 Conclusions and future work

The tokenization task is usually simplified, leaving
segmentation ambiguities to be solved in later steps
of the NLP applications. In our case, we chose to
accomplish segmentation tasks in the POS tagging
phase, making it more complex, but the benefits will
affect all successive applications.

In this paper, we have presented a practical ap-
plication of the Viterbi-N algorithm for segmentation
disambiguation and POS tagging. Segmentation am-
biguities arise when one or several words can be seg-
mented into linguistic tokens in more than one way.
These are the cases of some contractions, verbal forms
with enclitic pronouns, idioms, etc. The underlying
idea for this combination of tasks is that POS cate-
gories provide a lot of information that can be used
when choosing the correct alternative for an ambigu-
ous segmentation. In the end, we have developed a
POS tagger able not only to decide the tag to be as-
signed to every token, but also to choose the best se-
quence of tokens from a set of possible segmentation
paths as well. Since the approach is purely stochas-
tic, the technique could be easily exported to other
languages.

Another advantage of the approach used, is that
segmentation disambiguation could be considered a
costless add-on for the POS tagging environment.
If the training corpus is built carrying out the
segmentations, they will be included in the learned
model automatically.

The developed system was tested in the context
of the Galician language, which has a very rich
morphology, that is, the worst scenario for our
system, and quite good results were achieved in the
segmentation disambiguation task. We believe that
they will be improved when the training corpus will
be mature enough.

Indeed, another way to improve results is to use

rules based on linguistic information which could
prune some erroneous segmentation candidates. This
would be particularly useful when the training corpus
is of small size or low quality.
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