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Abstract. Synchronous Reactive Modelling provides an optimal frame-
work for the modular decomposition of programs that engage in com-
plex patterns of deterministic interaction, such as many real-time and
communication entities. This paper presents an approach which includes
performance modelling techniques in the Synchronous Reactive Mod-
elling method supported by ESTEREL. It defines a methodology based
on timing and probabilistic quantitative constructs which complete the
functional models. A monitoring mechanism provides performance re-
sults during the simulation. This methodology is applied to a protocol
modelling case study. Performance metrics are computed and compared
with known reference results.
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1 Introduction

Developing systems with the use of formal modelling methods is steadily growing.
Their use allows an unambiguous and precise description of a system and leads
to easier formal verification and validation. Synchronous Reactive Models are
used to describe computer-based systems which must react instantaneously to
external events, such as the operative commands sent to an embedded system
in a satellite or the alarms produced by sensors.

However, this modelling method was not intended to support quantitative
analysis and the prediction of the system behaviour with respect to non-functional
requirements. Performance evaluation techniques can help the developer, advis-
ing him about the estimated performance of a design option in order to justify
the choices. Performance is defined by the IEEE [6] as the degree to which a sys-
tem acomplishes its functions within given constraints such as speed, accuracy
or resource utilisation.

The increasing complexity of cooperative systems in general, and that of real-
time and embedded systems, leads us to focus on the integration of performance
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evaluation and formal description techniques. This will allow specification, im-
plementation and analysis of such systems taking into account both functional
and non-functional requirements [12]. When formal models include inputs with
regard to performance evaluation, we can obtain performance models addressing
the service quality (speed, reliability...), very early in the system development
life-cycle. The major goal of this approach is to define and validate rules allow-
ing an easier definition of performance models and then to compute performance
metrics.

In this paper we attempt to obtain performance results from Synchronous
Reactive Models. These models describe tightly coupled and deterministic pro-
cesses, communication being achieved by instantaneous broadcasting; they com-
pletely ignore the timing and probabilistic aspects of the system, and so give
no information with regard to performance. In order to fill this gap, the idea
is to consider the performance requirements of a design as dedicated constructs
for checking performance constraints by simulation. The semantics of these con-
structs must differ from those of the Synchronous Reactive System, and then
unambiguities must be avoided.

We have chosen different known approaches as a reference for the validation of
our models. All of them are based on the use of Formal Description Techniques
such as LoTos [10, 13] and PETRI NETS [9, 7]. By obtaining a performance
model from a Synchronous Reactive Model, and solving it by simulation, we
would have to find the same results as those analytically found as reference. In
order to support our modelling methodology, we use the ESTEREL [5] language
for Synchronous Reactive Modelling, and AGEL [1] which is a user-friendly tool
that supports the related modelling methodology.

This paper presents the first results of our work. The application example is
the Stop & Wait protocol.

2 Synchronous Reactive Modelling Using ESTEREL

The ESTEREL language was designed to develop Synchronous Reactive Mod-
els [3]. In these models, a module reacts instantly to each input event by modi-
fying its internal state and creating output events. The reactions are then syn-
chronous with the inputs: the processing of an event is uninterruptible, and the
system is sufficiently fast to process its input events. Such a system has an under-
lying finite state machine. Real-time embedded controllers and communication
protocol entities are good examples of reactive systems.

ESTEREL is an imperative concurrent language, with high level control and
event handling constructs. Modules are the basic entities which can be interfaced
with the environment or with other modules. Each module has an event interface
used to communicate with its environment. Events are the main objects handled
by the modules: they may be composed of several signals, which can be either
present or absent during the reaction to an input. The present construct is used
to test the presence of a signal in the current event:



present <signal> [then <instruction-1>]
[else <instruction-2>]
end

In order to be present in a reaction, an output signal can be emitted by a module
using the emit <signal> instruction. This emission is broadcast to all modules
having the signal defined as input. Signals are hence used for synchronization
and communication description.

ESTEREL instructions are of two kinds:

— Instantaneous instructions, in the basis of the perfect synchrony hypothesis,
which are completed in the same reaction it was activated: signal emission
(emit), signal presence test (present) and sequencing (<instruction-1> ;
<instruction-2>) are examples of such instructions.

— Waiting instructions, the simplest of which is the await <signal> statement.
Their execution is blocked until a specified event occurs.

A parallel operator || allows the control flow to be transmitted to several in-
structions simultaneously. It terminates when its two branches are terminated,
and again, it takes no time by itself.

The watching statement deals with behaviour preemption, one of the most
important features of ESTEREL. A complex watching construct is defined with
the syntax:

do <instruction-1>
watching <signal>
timeout <instruction-2>
end

Here instruction-1 will be interrupted and instruction-2 executed if an
occurrence of signal happens before instruction-1 ends. This instruction ter-
minates when instruction-1 does, or when instruction-2 does if a timeout
occurs.

In general, more user-friendly statements are derived from a set of primitive
or kernel statements. A detailed description of its semantics is presented in [2].
The complete list of kernel statements is:

nothing

halt

emit <signal>

<instruction-1> ; <instruction-2>
loop <instruction> end

present <signal> then <instruction-1> else <instruction-2> end
do <instruction> watching <signal>
<instruction-1> || <instruction-2>
trap <trap> in <instruction> end
exit <trap>

signal <signal> in <instruction> end



Finally, even if the ESTEREL compiler can work as a front-end to several lan-
guages, we only use the language C interface in order to instrument the Syn-
chronous Reactive Models for Performance Engineering purposes.

3 Case Study: the Stop & Wait Protocol Specification

Let us consider the design of the datalink layer of the OSI reference model [8].
The problem is to find an algorithm to achieve a reliable, efficient communication
between two sites physically connected by a communication channel. Data is
transmitted in one direction, from Host A to Host B. The sender sends a frame,
the receiver may only send an acknowledgement if the data is correctly received.
Since the communication channel is noisy, when a damaged frame reaches the
receiver, it has to be discarded; after a while, the sender is faced with a time-out
and sends the frame again. This process stops when the frame finally arrives
intact.
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Fig. 1. Communication Abstract Model

The receiver acknowledges the data receipt. But the acknowledgement frame may
be completely lost and the sender has no way of knowing about this fact. When
the sender times out, having not received an acknowledgement, it incorrectly
assumes that the data frame has been lost or damaged and sends it again. The
duplicate frame arrives and is unwittingly passed to Host B. To avoid this, the
receiver needs a way of distinguishing a retransmission from a frame which is
being seen for the first time. The obvious way to achieve this is to let the sender
put a sequence number in the header of each frame it sends. Then the receiver
can check the sequence number of each incoming frame to find out whether it is



a new frame

or a duplicated one to be discarded. A one bit sequence number is

sufficient, the protocol is known as the alternating bit protocol [11].

When using a resource oriented specification approach, this protocol is mod-
elled as three processes: a transmitter, a receiver and a communication channel
(medium). The components are then composed in parallel as is shown below:

module protocol:

input TIMEQUT, CHANNEL_ERROR, TRANSMISSION_TIME;
output GET, GIVE;

signal SEND_INFO, SEND_ACK, REC_INFO, REC_ACK

in

end
end

run sender
run medium
run receiver
signal
module

Sender and receiver reactive modules are respectively as follows:

module sender:

input REC_ACK, TIMEQOUT;
output GET, SEND_INFO;
loop

end
end

emit GET;
emit SEND_INFO;
do
loop
await TIMEQUT;
emit SEND_INFO;
end loop;
watching immediate REC_ACK;
end;
loop
module

module receiver:
input REC_INFO;

outp
loop

end

ut GIVE, SEND_ACK;

await REC_INFO;
emit GIVE;

emit SEND_ACK;
loop

end module



In this study, we focus on the communication channel: since the medium is
unreliable in both directions, we must take into account the possible loss of
frames. With regard to the transmitter and the receiver, an abstraction is made
over the reliability operations, e.g. frame sequence numbering and verification,
duplicate frames discarding. . .

module medium:
input SEND_INFO, SEND_ACK, ERROR, TRANSMISSION_TIME;
output REC_INFO, REC_ACK;
loop
await
case immediate SEND_INFO do
do
await ERROR
watching TRANSMISSION_TIME
timeout
emit REC_INFO
end
case immediate SEND_ACK do
do
await ERROR
watching TRANSMISSION_TIME
timeout
emit REC_ACK
end
end await
end loop
end module

Note that in this model, events related to time (TIMEOUT, TRANSMISSION.TIME)
and the loss probability (ERROR) are declared as external inputs. It corresponds to
a purely functional viewpoint, which does not include the performance behaviour
in the model itself. We search for a way to add this behaviour in order to compute
the interesting performance measures by using the simulation facility of AGEL.

4 Considering Performance

Taking into account performance issues during the system life-cycle is done by
means of a performance modelling process, involving a set of system designers
and modelling expert activities [4]. In this case, the aims of modelling include
performance requirements, which may include throughput, timing and utilization
rate constraints.

We present an approach which in a first step completes the functional speci-
fication with all performance (non functional) information, allowing the compu-
tation of performance results by simulation.

In order to compare our performance analysis of the Stop & Wait proto-
col specification with the approaches using Queueing Networks derived from



Lotos [13], Timed Petri Nets [9], Stochastic Petri Nets [7], and Stochastic Lo-
TOS [10], we make similar assumptions. The expected result is the throughput
computation under the following constraints:

— The link baud rate is 9600.

— The information and acknowledgement frames contain 1024 bits 2.

— The next information frames are available as soon as previous information
frames were successfully sent: only a small overhead delay of 1 ms is added.

— The medium can loose both information and acknowledgement frames with
a 5% probability.

— The timeout is 1 s.

— The time for processing the information and acknowledgement frames is 13.5
ms.

In order to add this kind of performance information to the ESTEREL functional
specification, the necessary quantitative information below must be introduced:

1. The estimated processing time relevant to each timed action. A timed action
is an action which consumes time, e.g. the time for processing a frame,
the transmission time. . . are relevant in performance modelling, but have no
sense in a Synchronous Reactive Model. Our modelling choices must avoid
any semantical incongruence with the perfect synchrony hypothesis.

2. The probability associated with each possible alternative behaviour. When a
probability defines the system behaviour, a degree of non-determinism must
be introduced in the Synchronous Reactive Model, which is deterministic by
nature. Once again, the modelling choices must treat this point carefully.

In order to express this information, we complete the Synchronous Reactive
Model with two types of performance constructs:

1. The timed action construct assumes a specific global signal which represents

the time, TS. The adopted time unit is stated by the model abstraction, i.e.
it is a modelling choice. Note that this clock signal is an input event from
the reactive module viewpoint.
In this construct, await n TS determines the time n associated to the current
timed action. This action is defined by using two events: the initial event and
the final one. For instance, the information frame construction in the sending
process, modelled as emit SEND_INFO in the sender reactive module, may be
described as follows:

emit SEND_INFO_I;
await 10 TS;
emit SEND_INFO_F;

2 transmission time is then 106.7 ms.



where each occurrence of the TS event corresponds to 0.1 ms; the overhead
of 1 ms for this action is hence taken into account. The protocol timeout and
the transmission time® are modelled with the same clock convention, i.e. as
await 10000 TS and await 1067 TS respectively.

2. The alternative behaviour construct uses an externally implemented func-
tion, probability (value), which returns true with the probability given
as a parameter. Its use is shown in the example of the module medium; we
state that the REC_INFO emission is done with a 95% probability:

module medium:
function probability(integer) :boolean;

if probability(95)
then [
emit REC_INFO_T;
await 135 TS;
emit REC_INFO_F; 1]
end

5 Model Instrumentation

The complementary work that must be done in order to obtain performance
measures from our models is to instrument them with a suitable monitoring
mechanism. We propose to add a new module, the monitor, which is in charge
of observing a set of signals defined by the designer. Is the responsibility of the
designer to decide which events are necessary in order to compute the wanted
performance metrics.

The monitor calls an auxiliary function, save_entry (<time>,<string>),at
each occurrence of a signal we want to observe. This function writes the date of
the occurrence and the name of the signal on an output file.

module monitor:
procedure save_entry () (integer,string);
input TS, GET, GIVE;
var TIME := 0 : integer in
loop
await TS;
TIME := TIME + 1;
present GET then call save_entry () (TIME,"GET"); end;
present GIVE then call save_entry () (TIME, "GIVE"); end;
end loop
end var
end module

8 TIMEQOUT and TRANSMISSION_TIME signals in the model presented in section 3.



The proposed monitoring mechanism only offers the basic observation function-
ality that is needed for performance measuring. A complete statistical tool must
include at least the computation of the confidence intervals that are needed to
control the simulation time.

6 Feasibility Study

In the first step we analyse the feasibility of the instrumentation of ESTEREL
models with the proposed performance constructs and measurement mechanisms
for their use as a performance evaluation technique.

Our approach of feasibility study relies on the modelling of the protocol writ-
ten in Stochastic LoT0S. LOTOS gives rules to compute the dynamic model from
a given specification; this model can be represented by a finite state machine.
Using Stochastic LoTo0s, Rico and Bochmann [10] have modified some of these
rules in order to introduce probability and action duration into the specification.
The modified rules allows the performance labels of the finite state machine to
be computed. Figure 2 is the result of the application of these new rules to the
Stop € Wait protocol specification.
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Fig. 2. Finite state machine
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A simple ESTEREL model is obtained from this finite state machine, defining a re-
active module for each state and a signal for each transition. The model includes
the performance information by using the proposed performance constructs. For
instance, the module associated to the third state is:



module reactive_3:

function probability(integer) :boolean;
input S2, TS;

output S3, S4;

loop
await immediate S2;
if probability(5)
then [ await 10000 TS;
emit S4; 1]
else [ await 1202 TS;
emit S3; ]
end if
end loop

end module

In order to allow computation of throughput from the simulation, we only need
to observe the occurrences of signal S5, corresponding to a GIVE event. A monitor
is then placed in parallel. The resulting code for the main module is as follows:

module all_reactives:

input TS;

signal INIT, S1, S2, S3, S4, S5, S6 in
emit INIT;

run reactive_1
run reactive_2
run reactive_3
run reactive_4

run reactive_monitor
end signal
end module

Note that an initial signal (INIT) must be emitted to start the simulation, since
the reactive_1 module is waiting for it.

The simulation was accomplished by using the corresponding AGEL function-
ality. This tool supports a timer which can be associated to any input signal, the
TS input in this case. Simulation can be stopped at any moment, hence one can
stop it, compute the performance measures (throughput) and continue the sim-
ulation if stability is not yet reached. The obtained throughput is 2.819 frames
per second, which is close to the value computed when using Markov chains on
Stochastic LoTos [10](2.852) or analytical methods on Derived Queueing Net-
works [13](2.853). It also comes close to the 2.75 frames per second obtained
with Stochastic Petri Nets and exponential distributions [7].



Therefore this example allows the relevance of the proposed instrumentation
methodology to be validated in order to model protocol performance by using
adapted ESTEREL models.

7 Performance Model

A complete performance model was designed for the Stop € Wait protocol spec-
ification presented in section 3. A user-level viewpoint was added in order to
represent the communications between users and protocol entities. The main
module becomes the system reactive:

module system:
input TS;
output GET, GIVE;
signal GET_I, GET_F, GIVE_
in
run hostA
I
run protocol
I
run monitor
I
run hostB
end signal
end module

The module hostA (resp. hostB) is a single loop waiting GET_I and GET_F signals
from the sender entity (resp. GIVE_ from the receiver), then emitting a GET (resp.
GIVE) signal to the environment.

The protocol reactive only differs from that presented in section 3 in the in-
terface declaration: TS is the only input, the outputs are GET-I, GET_F and GIVE_,
and the set of local signals is SEND_ACK_, SEND_INF0_I, SEND_INFQO_F, REC_ACK I,
REC_ACK_F, REC_INFO_I and REC_INFO_F.

Receiver and sender reactive modules now include several timed action con-
structs, becoming respectively:

module receiver:
input REC_INFO_I, REC_INFO_F, TS;
output SEND_ACK_, GIVE_;
loop
await REC_INFO_I;
await 135 TS; % Processing a frame: 13.5 ms
await immediate REC_INFO_F;
emit GIVE_;
emit SEND_ACK_; % without delays
end loop
end module



module sender:
input REC_ACK_I, REC_ACK_F, TS;
output GET_I, GET_F, SEND_INFO_I,
loop
emit GET_I;
await 10 TS;
emit GET_F;
emit SEND_INFO_I;
await 10 TS;
emit SEND_INFO_F;
do loop
await 10000 TS;
emit SEND_INF0_I;
await 10 TS;
emit SEND_INFO_F;
end loop;
watching immediate REC_ACK_I
timeout
await 135 TS;
await immediate REC_ACK_F;
end;
end loop
end module

SEND_INFO_F;

%

%

%

%

%

1 ms delay

1 ms delay

Timeout: 1 s

1 ms delay

Processing a frame: 13.5 ms

Note the presence of the alternative behaviour construct in the module medium,

which is now defined as follows:

module medium:

function probability(integer) :boolean;
input SEND_INFO_I, SEND_INFO_F, SEND_ACK_, TS;
output REC_INFO_I, REC_INFO_F, REC_ACK_I, REC_ACK_F;

loop
await

case immediate SEND_INFO_I do

await 10 TS;

%

await immediate SEND_INFO_F;

await 1067 TS;

if probability(95)

then [ emit REC_INF0_I;
await 135 TS;

%
%

%

emit REC_INFO_F; ] end

case immediate SEND_ACK_ do
await 1067 TS;
if probability(95)
then [ emit REC_ACK_I;
await 135 TS;
emit REC_ACK_F; 1]
end await
end loop
end module

%
%

%

end

1 ms delay

Transmission time: 106.7 ms
Probability of loose: 5%

Processing a frame: 13.5 ms

Transmission time
Probability of loose: 5%

Processing a frame: 13.5 ms



Finally, the module monitor is the same as the one presented in section 5. GET
and GIVE signals are observed in this way, allowing throughput computation
during the simulation.

After simulation, we have obtained very similars values to those which we had
for reference. The throughput is 2.858 frames per second, that can be compared
to our first result (2.819), and to the simulation result obtained when deriving
Queueing Networks from LoTos [13](2.859).

8 Conclusion

This study shows the possibility of obtaining performance results from instru-
mented Synchronous Reactive Models. An instrumentation methodology that
involves two steps is proposed:

— The use of performance constructs in order to take into account the quanti-
tative information needed for performance evaluation. Two constructs were
defined: a timed action construct based on a global time referential, and an
alternative behaviour construct implementing probabilities.

— The monitoring of the model using a monitor reactive that tests at any
event the presence of predefined signals. Choosing the convenient signals, the
generated simulation trace allows computation of performance measures.

We have applied this methodology in the Stop & Wait protocol case study, val-
idating the models obtained with ESTEREL as modelling language and AGEL as
a development tool supporting simulations.

Our present work concentrates on:

— The generalization of a set of instrumentation rules in order to ensure the
coverage of the specific semantic of ESTEREL.

— The improvement of the simulation framework, enhancing the simulation
control and the computation of performance measures.

Performance evaluation models can then be directly obtained from formal spec-
ifications. Designers can be able to choose between several design options ac-
cording to the provided performance estimations, without a costly redesign of
the system, as Performance Engineering states.
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