Exploring Interactive Chart Parsing

Manuel Vilares Ferro

Abstract

This work ezplores the problem of incremental
analysis in the context of chart parsing, probably the
most commonly used framework for the analysis of
natural language. Incrementality here means that
syntax correctness of a text is checked dynamically as
the text is edited, changing the internal representation
of the analysis rather than generating an entirely new
one. This implies that the system then may interact
with the user in order to resolve problems that occur.
As a consequence, these kinds of techniques can be
used to develop highly interactive and reactive natural
language processors.

The kernel of the work is an incremental parsing
algorithm that analyses arbitrary changes of a text,
allowing competing analyses to be developed in
parallel.

Key Words: Chart Parsing, Dynamic Programming,
Incremental Parsing, Interactive Processing, Push-
Down Automata.

1 Introduction

The notion of incrementality has been used in two
differing senses in the literature on parsing. In the
first sense, the purpose of an incremental parser is
to construct the analysis of a text bit by bit in a
single left-to-right pass, rather than in one go when
the text has come to an end. This is typically the
case of syntax-directed editors, where the user writes
the text in a top-down fashion, guided by the system
itself. The other sense for incrementality stresses
the necessity of efficiently analyzing arbitrary changes
within the set of input. We shall focus our attention

M. Vilares is with the Computer Science Department,
University of Corunna, Campus de Elviia S/N, 15071
A Coruna, Spain. E. mail: vilares@dc.fi.udc.es.

M. A. Alonso is currently with the Ramén Pifeiro
Linguistic Research Center, Estrada Santiago-Noya, Km. 3,
A Barcia, 15896 Santiago de Compostela, Spain. E. mail:
alonso@dc.fi.udc.es.

This work was partially supported by the Eureka Software
Factory project, and by the Autonomous Government of Galicia
under project XUGA10501A93.

Miguel Angel Alonso Pardo

on this last meaning that clearly includes the first one.

The reasons to achieve incremental parsing in
natural language are well known. At the outbreak,
interest in it was due to the necessity of efficiently
handling arbitrary changes within current input
during text composition in language-sensitive editors.
Here, incremental parsing can be used to make
the overall parsing process efficient, in a context
where several consecutive corrections of the text are
usually made. This means that preparing a text
requires significantly less effort than developing it
from scratch. Another application that can motivate
incremental parsing is the growing importance of
highly interactive, and real-time systems, where the
analysis process must be prompted immediately at the
onset of new input. Incrementality is also required in
systems allowing incomplete parsing, as is the case of
the speech recognition [1, 2], where the input language
can only be approximately defined, and individual
inputs can vary widely from the norm. Finally,
the incremental facility can take an interest in parse
systems capable of combining pieces of information
from different knowledge sources. This is the case of
systems involving multimodal communication, where
different parts of an utterance can be expressed in
different modalities, say, one part in natural language
and another by gesture.

The incremental parser development has been
grounded in a chart parsing framework [3] since
this is a frequently adopted technique in natural
language processing. Chart parsing is not a
fixed parsing algorithm, but rather a data and
control structure, based on the dynamic programming
paradigm [4], which guarantees a polynomial
complexity both in time and space, and is highly
independent of particular control strategies and
grammar formalisms® [5]. The kind of structure
they produce to represent all parses of the analyzed
sentence is an essential characteristic of these
algorithms: The chart, whose edges representing
partial analyses are also called items.

The aim of this work is computational. In

lthis characteristic can be used to compare experimentally
parsing schemata from different points of view: parser size,
parsing speed and size of shared forest.

consequence, we are not guided or motivated by
data concerning psycholinguistic plausibility?. In this
manner, we shall center our attention around context-
free grammars. In effect, grammars of this type are
well suited to computational use®, as a backbone to
build efficient natural language analyzers [6]. So, it
seems feasible that by using them, systems of the
future could have natural language components which
are both computational efficient and linguistically
elegant, in contrast to the heuristic approach of many
older systems. In this context, a major goal is
to investigate how natural languages parsers can be
adapted to interactive applications.

1.1 Previous work
We present now our general framework for both chart
and incremental parsing.

1.1.1 Chart parsing

The first chart parsing algorithms, also called tabular
methods, were developed independently by researchers
in compiler construction [7, 8, 9] and in natural
language processing [3, 10]. Whichever the case
was, these first techniques do not provide a simple
manner to extract parse trees since they only associate
non-terminal categories to segments of the analyzed
sentence. This represents an important drawback
since, in practice, parsing algorithms should produce
a structure that explicitly relates the instances of
non-terminals associated with sentence fragments
to their constituents, possibly in several ways in
case of ambiguity, sharing some common branches
between the distinct ambiguous parses [5]. This
is the case of FEarley-like algorithms, also called
parallel methods, in which context we choose to work.
Essentially, we consider a simple variation of Earley’s
dynamic programming construction [11], where in
order to solve the problems derived from grammatical
constraints, the classic construction can be extended
to push-down transducers (PDT’s), separating the
execution strategy from the implementation of the
PDT interpreter [5, 6, 12]. In comparison with

%in spite of this, psycholinguistic data are useful to work
in natural language processing. So, such a data provide
a complementary perspective, which may generate fruitful
questions and serve as an important source of inspiration in
order to find a parse which most closely matches the input.

3we are not suggesting that there is a context-free grammar
for a given natural language. It is probably more appropriate to
view the grammar as a convenient control structure for directing
the analysis of the input string.

tabular methods, which have a better asymptotic
behavior [13], parallel algorithms seem to be the most
appropriate for practical applications since theoretical
complexity bounds are rarely obtained.

1.1.2 Incremental parsing

Incremental parsing has not previously been
addressed within natural language processing with the
exception of Wirén [14], who reports preliminary work
on adapting PATR-II* [15] to this purpose. This
work has a theoretical interest, but the results are
not considered practical by the author himself. As an
additional restriction, Wirén only considers cycle-free
grammars. There are probably two reasons to justify
this lack of efficiency: First, the algorithm directly
interprets the grammar, rather than first compiling
it. Secondly, the algorithm makes use of dependencies
between chart edges in order to keep track of affected
parts of the analysis, something which requires a lot of
assumptions about these connections since the point
at which a modification is applied may be located
arbitrarily far ahead in the text. In practice, extra
time and space is needed for implementation, besides
complicating the update of the syntactic structures
during the incremental process. In order to avoid
this, we look for an incremental parsing method
capable of combining the following characteristics:
First, the algorithm should may be extended to the
family of chart parsers without restrictions, which
ensures uniform incremental framework for parsing
both the programming languages and the natural
The basic motivation for this approach is
to benefit from the context-free parsing technology
whose development over thirty years has lead to
powerful and efficient parsers, some of which have
been largely applied in the domain of natural language
analysis, in special Earley-like algorithms. Secondly,
the incremental algorithm should be closer to reason
maintenance, is recorded
by a dependency between nodes representing the
antecedent and consequent formula. That reduces the
complexity in relation to classic dependencies between
nodes in the chart.

At this point, the only practical reference to our
work is that represented by interactive programming
environments for general context-free languages. To
the best of our knowledge, the problem has not

ones.

in which an inference

“a unification-based linguistic formalism of the tool type,
is presently at the heart of much research in computational
linguistics.

previously been addressed except by Van den Brand
in [16], Rekers in [17] and the first author of this paper
in [12], even though the approach is different. In
effect, the incremental parsing routines used in [16]
and [17] take the non-terminal as a parameter to
which the text that is to be parsed should be reduced.
Although in most cases the focused node in the
original program will cover the alterations, for a few
of them the reparsing will have to start in an ancestor
node of the focus, which is found by a sequence of trial
and error. At this point, it is not possible to prevent
the system from doing unnecessary work during the
search for this minimal node covering the complete
syntactical effect of the modification, for example,
when the text to be parsed contains an error. In the
case of Vilares, the update of the parse forest is run
parallel to the parsing process itself which ensures the
earlier detection of parse errors, avoiding unnecessary
work. To be more exact, when the parsing process for
the introduced modification begins, the system has
previously verified if this is viable in relation to the
current syntactic context. This work may be easily
extended to Earley-like algorithms, which leads us
to conjecture that the technique described is at the
heart of incremental parsing constructions in dynamic
programming.

1.2 A simple road map

In section 2 of this paper, we give an overview
of chart parsing by dynamic programming. In
section 3, we describe the incremental algorithm,
justifying tactical decisions, comparing it with other
methods including complexity bounds both in time
and space. In section 4, we give an extensive range of
comparative tests between standard and incremental
parsing. Section 5 is a conclusion about the work
presented.

Finally, appendix A reviews from a practical point
of view the results previously explained.

2 Standard Parsing

We assume that by using a standard technique we
produce a recognizer for the context-free language
L(G), based on a PDT, possibly non-deterministic.
Our aim is to parse sentences in the language L£(G)
according to its syntax, where the notation is N for
the set of non-terminals, 3. for the set of terminal
symbols, P for the rules and S for the start symbol.
The empty string will be represented by e.

2.1 The descriptive model

An apparently major difference with other chart
parsers is the kind of structure we use to represent the
output shared forest, by using context-free grammars.
When the sentence has several distinct parses, the
set of all possible parse chains is represented in finite
shared form by a context-free grammar that generates
that possibly infinite set [5].

However, this difference is only apparent. In effect,
context-free grammars can be represented by AND-
OR graphs which in our case are in fact the shared
forest graph. More exactly, OR-nodes are represented
by the non-terminal categories, and AND-nodes are
represented by the rules of the grammars. There
are also leaf-nodes corresponding to the terminal
categories. The OR-node corresponding to a non-
terminal X has exiting arcs leading to each AND-
node n representing a rule that defines X. If there
is only one arc, this is represented by placing n
immediately under X. The sons of an AND-node are
the grammatical categories found on the right-hand-
side of the rule, in that order. The convention for
orienting the arcs is that they leave a node from below
and reach a node from above.

A characteristic of the AND-OR graph representing
a grammar is that all nodes have different labels.
Conversely, any labeled AND-OR, graph so that all
the node labels are different may be translated into a
context-free grammar so that AND-node labels are
rule names, OR-node labels represent non-terminal
categories, and leaf-node labels represent terminal
categories.

2.2 The operational model

Formally, a PDT is represented by a 8-tuple 7g =
(Q,%,A,11,4, g0, Zo, Qf) where: Q is the set of states,
3. the set of input word symbols, A the set of stack
symbols, IT the set of output symbols, qo the initial
state, Zp the initial stack symbol, and Qf the set
of final states. In relation to ¢, it is a finite set of
transitions of the form 7 = §(p, X,a) 3 (¢,Y,u) with
p,g€ QacXU{e}l; X, Y € AU{e}, and u € IT*.
To represent the state of a PDT in a moment
of the parse process, we define a configuration as a
5-tuple (p, Xa,az,u), where p is the current state,
Xa the stack contents with X on the top, ax the
remaining input where the symbol a is the next to be
shifted, z € ¥*, and u is the already produced output.
The application of a transition 7 = §(p,X,a) 3
(¢,Y,v) results in a new configuration (q,Y «a,z,uv)

where the terminal symbol a has been scanned, X
has been popped, Y has been pushed, and v has
been concatenated to the existing output u. So, for
example, if the terminal symbol a is € in the transition,
no input symbol is scanned. If X is € then no stack
symbol is popped from the stack. In a similar manner,
if Y is € then no stack symbol is pushed on the stack.

2.2.1 The parsing algorithm

The algorithm proceeds by building a collection of
items®, essentially compact representations of the
stack in the transducer in order to guarantee a good
level of sharing of the computational process®. We
associates a set of items S}, habitually called itemset,
for each word symbol w; at the position ¢ in the
input string of length n, w; ,. New items are
produced by applying transitions to existing ones,
until no new application is possible. In order to favour
understanding, we shall denote an item I € S by I,
or I}’ when the context is clear.

Items are also used as non-terminals of the output
grammar, for which rules are constructed together
with their left-hand-side item. Each time a pop
or a scan is applied, we generate a rule. In both
cases, the left-hand-side of this rule is the new item
describing the resulting configuration. In relation
to the right-hand-side, it is composed of the token
recognized in the case of a scan and, in the case of
a pop, of the items popped from the stack in that
action. The start symbol is the last item produced by
a successful computation. At this point, items are not
only elements of the computation process, but also
non-terminals of the output grammar. That allows
us to identify items with nodes in the resulting parse
forest. We shall denote by I,)%. forest all the rules in
the output grammar whose left-hand-side is the item
Iy

It is necessary to ensure that the representation
of configurations by compatible with
the formalism of transitions. To formalize this
idea, we consider the concept of dynamic frame,
establishing the conditions over which correctness and
completeness of computations with items are verified
in relation to the classic framework, that we call ST.

items is

Swhich corresponds with the concept of edge in classic chart
parsing terminology.

5the main purpose of chart parsing is to avoid any kind of
duplicated information.

2.2.2 The concept of dynamic frame

Given a transducer, we define a dynamic frame as a
pair (R, Op) where R is an equivalence relation on the
stacks, whose classes are named items, and Op is an
operator that translates transitions in ST to the new
framework; and verifies the following conditions:
o Compatibility: every computation in ST has its
counterpart in the dynamic frame.
o Completeness: every final configuration in $7 has
its counterpart in the dynamic frame.
o Correctness: every final configuration in the
dynamic frame has its counterpart in S7.
Dynamic frames were originally introduced by
Villemonte de la Clergerie in [18] to formalize the
notion of item in relation to the use of logical push-
down automata’.

3 Incremental Parsing

The aim of incremental chart parsing is to characterize
the part of the previous analysis that is affected in
answer to update operations, and to recover the stable
parts of the chart. The new chart structure must
show the same level of sharing as in standard parsing.
New analysis that result from the update can then be
generated by means of ordinary chart parsing.

In the context of the recovery process, we shall
define stable items between the initial parsing of
wi., and the parsing of the modified input string
Z1.n+k, k € [-n,00), as those items that represent
a stable configuration of the transducer that would
be reconstructed if we had redone an entire parse of
the modified input string up to that point. We shall
denote it as I} = I . In this case, items I;}” and
I, would represent equivalent trees of their shared
forest. Henceforth, we shall also denote C the relation
of inclusion induced by = in the sets of items.

Since we are interested in analyzing arbitrary
changes of a text, we shall begin by investigating
how update operations can affect the structure of the
chart. So, we can consider four different cases of
incremental recovery, as is shown in Fig. 1. These
are:

o Total recovery. The idea is to detect when

the parsing process becomes independent of the
modification.

essentially, automata that store atoms and substitutions on
their stack, and use unification to apply transitions. They are
due to Lang [19], which obtains an exponential reduction in
complexity over the traditional resolution methods.

e Partial recovery. In this case, recovery applies
to all trees of the shared forest corresponding
to a part of the remaining input. To be more
exact, we distinguish three cases in relation to
this, shown in Fig. 1: First, when recovery is
possible for all contexts on a finite interval of
itemsets. This is the grouped recovery. Secondly,
when recovery is possible for all the context, but
only for some branches in the shared forest. This
is the isolated recovery. Finally, recovery can be
possible for all the context in some branches, in
a finite interval of itemsets. In this case, we use
the term selective recovery.

3.1 An informal description

Because of cumulativity of chart parsing, analysis of
new input cannot invalidate previous analysis. Thus,
the kinds of changes that we have to consider are
those that require removal of information from the
chart. So, the only update operations to be taken into
account are the removal of a token and the splitting
of the chart®. To begin with, we consider a simplified
text-editing scenario, with a single modification
and where the parse algorithm does not consider
lookaheads. So, we assume z1 1k, k € [—n,00) is
a modified input string from w;, ,, where z is of the
form: @1 pqp = W1 We Ut - Uy Weghig1 + 0 Wy With

{u1_.;€2 andlu|:{

h=lul|—k
where we call S}, a point of modification relative to w
and x. That is, we are assuming that our modification
is the substitution® of wy, 1 g5 by U1,

By dynamic programming construction, items in
57, correspond to the stable part of the parsing
process, while items in Sy’SY -+ S} correspond to the
part of the parsing process which is new. Finally,
items in S ;. , correspond to the part of the
parsing process that will eventually be recovered.

Although all cases of incremental recovery have
been studied, our experience has shown that the
incremental treatment is not interesting from a
practical point of view when only a part of an
itemset is stable, as is usually the case when the
input grammar has a lot of ambiguities generating

k,ifk>0
0, otherwise

8this is needed as a preparation for inserting a new token
within the text, which affected the order of the previously
analyzed tokens.

for deletion we take u = € and k < 0, for insertion we assume
| w |=k with £ > 0 and for substitution we consider k£ = 0.

[/ new parts [recovered parts
—
e TV —
_— — ~—
— —~ ~
Total recovery
W1 Ul uj Wn W1 U:l Uj Wn
e~ —
o — = —~ —
- — ~—
— — ~
Grouped recovery
w, u, uj w w, u, uJ w
= = —
—— = — —
- — —
— —~ -~
Isolated recovery
w, u, uj w w, u, uJ w,
—
. — = — — —
- — —
— —~ -~
Selective recovery
W, u u w w, u u w

Figure 1: Types of incremental recovery

crossed forests. As a consequence, we shall only
consider the case of recovery on the basis of complete
itemsets'?, which reduce the problem to total and
grouped recovery. Even if this does not guarantee
that all superfluous computations will be avoided, it
allows the comparison between chart configurations
corresponding to the original and the modified input
string to be notably reduced.

3.2 Total recovery

We now have to establish a condition under which
total recovery is possible from a given input position
1. To do that, it is sufficient to find a condition capable
to ensure that all future pop transitions do not depend
on the modification, such as is shown in Fig. 2. This is
because pop transitions are the only ones depending
on the past of the parsing process.

Therefore a sufficient condition for S}’ so that it
allows total recovery from that itemset is that, for
each item I € S} such that:

1. I is the argument in a pop transition from a valid

10that is, scan actions are checkpoints in the parsing process.

w w u u w w
S, S, S S S S

j | 1 j i k

u u

[Forest to be recomputed from the modification Sl .. S
j

Figure 2: A stable pop reducing Z from Y and X

suffix of wy_;.
2. All pop transition taking I as argument, implies
a return to an itemset S;’, ¢ <1 — 1.
I is stable, and t < £ the point of modification relative
to w and x. More formally, we call items verifying
conditions 1 and 2, gaps,,. or gaps;’ when the context
is clear.

Observe that the concept of gaps;’ does not include
those items in the same itemset S}’ representing
trivial nodes'! from which the only possible actions
to perform are empty reductions followed by a
shift. Even if this does not guarantee that all
superfluous computations will be avoided, it allows
the comparison tests between stack configurations
corresponding to the original and the modified input
string to be notably reduced.

In practice, the sets gaps;’ are computed by
considering the basis of S;’, that is, those items
that were introduced into S}’ by a push transition
corresponding to a shift action of the transducer.
From each one of those items, we put into gaps}’
the first descendant in the parse forest in S;”;
representing a non-trivial node, as is shown in Fig. 3.

3.2.1 The case of the recognizer

Once we have computed the gaps, we can give a
sufficient condition for total recovery, in the case of
the recognizer: Given z1_ptx, k € [—n,00) a modified
input string from wi.., and S}’ a point of modification
relative to w and z, verifying

dle€[l+h+1,n), such that

1. gaps}y’ C gapsy, (resp. gaps)’ = gapsy,)

2. VI € gapsy,, I.back </

then, from the point of view of the recognizer S}’ C
SE Vte[l,n) (resp. S = S% , Vte[l,n)).

w? we?

Ufor which t = i—1 since they have not syntactic descendence.

Figure 3: Computing gaps from the parse

Effectively, if the set of possible pop transitions is
the same in two parsing processes and the not yet
parsed substring is also the same, then the future is
identical.

This result can be extended to the case of several
simultaneous modifications of the input string, in a
single recovery process. To do that, we define the
notion of a totally recovered point of modification
relative to w and x, as a point in the recovery process
such that the corresponding modification has been
totally recovered. Then the condition becomes: Given
Z1.n+k, k € [-n,00) a modified input string from
w1.p, and S7 m contiguous points of modification
relative to w and z, verifying

34 €[1,m], l € [l;+h; +1,¢;11), such that
1. gaps}’ C gapsy, (resp. gaps’ = gapsy,)
2. VI € gapsy,, L.back < {;
3. Vjel,i—1], Sy, has been totally recovered

then, from the point of view of the recognizer S}’ C
Sw.s Yt € [I,4i11) (resp. S =S5, Vt € [I,4i11)).

we?

3.2.2 The case of the parser

To get incrementality for the parser, we must find in
addition the scope of the modifications in the original
forest, a simple task, given that the nodes affected
by changes in its structure are those common with
the new parse forest which have at least a changed
descendant in relation to the new development, that
is, those common items capable of being accessed in
the continuation of the parsing process in the case
no incremental treatment was applied. To update
one of these nodes it will be sufficient to find its
stable descendants in the parse forest which have
been effectively recomputed and to replace them with
the original corresponding structure in the recovered
parse forest.

Taking into account that we only recover complete
itemsets, this phenomenon is limited to those items

w W u u ww w

S S,'S,; S. S, S, S,

(e} overgapsTN < SW1 [Stable parts
i i-
0000

X X
[e) overgapsW < SW [New parts

-1

Figure 4:
parser

Extending incremental recovery to the

representing stable trivial nodes for which their
ancestors in the parse forest are not computed in
the same itemset S, where they are included. We
call these items overgaps,, or more simply overgaps;’
when the context is clear!?.

At this point, to extend total recovery to the
parser, we must perform for all IV € overgaps}’ the
assignments I".forest := I”.forest, where I and
I® represent in each case the same node in the parse
forest, that is I = I*. This process is illustrated in
Fig. 4.

3.3 Grouped recovery

We start by considering the case of a single
modification, and we now have to establish a condition
under which grouped recovery is possible from itemset
S;” to itemset S7’. To do that, it is sufficient to find
a condition under which pop transitions would not
depend on the modification for itemset Sj,. to itemset
Sw;» as it is shown in Fig. 5. We assume no additional
modification in the substring w;. ;.

z
/\/Y‘<>X\
w u u w w w
SI Sl Si Sj Si Sk

u u
[Forest to be recomputed from the modification S1 .. S
j

Figure 5: A stable pop reducing Z from Y and X

Therefore a sufficient condition for S}’ to allow
partial recovery from that itemset to some itemset
S}’ is that for each item I € S ; such that:

1. I is the argument in a pop transition from a valid

suffix of wy_;.

12the reason for which we have chosen the name overgaps is
that these items are built from the gaps of the corresponding
itemset.

2. All pop transition taking I as argument, imply
a return to an itemset S, ¢t <7 — 1.
there does not exist a pop transition in S;”; taking I
as argument!3.

It is important to remark that the above condition
does not imply the stability of the item I. This is
because it does not take into account the past of
the parsing process represented by the back pointer,
as was the case in total recovery. So, we say that
these items are weakly stables. We shall denote it as
I;" = I, . In this case, items I} and [would not
necessarily represent equivalent trees of their shared
forest. We shall denote < the relation of inclusion
induced by = in the sets of items.

Taking into account the definition of gaps}’, we
conclude that there is no pop transition in 5" ; taking
I € gapsy’ as argument.

More formally, we that given
T1.n+k, k € [-n,00) a modified input string from
w1.n and SZ__m m contiguous points of modification
relative to w and z, verifying that

can ensure

3ie[l,m], 1,j € [; + hi +1,£;,1), such that

1. gapsy = gapsy, (resp. gaps}® = gapsﬁl)
2. 5} is the first itemset applying a pop on gaps;’

then, from the point of view of the recognizer, S}’ C
Su,, YVt e [l,5—1] (resp. S = Sy, Vt € [l,j —1]).
To extend this result to the parse forest, it is sufficient
to perform for all I € overgaps;” the assignments
IY forest := I®.forest, where IV =2 I*.

3.4 Comparing with other approaches

Here, we focus our attention in the full incremental
parsing algorithm suggested by Van den Brand in [16].
The author proposes a sequence of four steps to get
full incrementality for an isolated modification:
1. The system focuses on the node to be updated.
2. Prune this node in order to replace it later, if
possible, by the new one resulting from the parse
of the modification.
3. Reparse the substring
modification.
4. If this reparse is successful, we recover the
resulting tree. If we can translate it into the
place of the old pruned node, the incremental

representing the

13in practice, the realization of this test just necessitates to
store the minimum value of j when applying pop transitions
after S;°, from S5’

process is finished. Otherwise, we must focus on
an ancestor of the old node to restart the process
from the first step.
In comparison with our method, this approach
seems to be less general. In effect:

« The concept of total recovery, the most
advantageous case of incrementality, cannot be
considered.

o If the reparse of the modification does not
succeed, the complete program is reparsed.

o If the reparse of the modification succeeds, but
the label of the node does not agree with the old
one, the system can make some unnecessary work
searching for the minimal node which covers the
complete syntactical effect of the modification.
At worst making a complete reparse of the
program. In practice, to reduce the impact of
this problem Van den Brand proposes a set of
heuristic rules to be applied, but results are not
guaranteed.

A similar idea is applied in the case of the SDF [20]
environment, such as described by Rekers and Koorn
in [17]. In this case, only the extent of the node
focused is reparsed, which represents an additional
constraint in relation to the algorithm presented
by Van den Brand. Here, if the parse of the
modification finds an error, the user of the system
has to move the focus explicitly. = Consequently,
incremental parsing consists of a sequence of deriving,
pruning and grafting operations interleaved with
cursor movements that shift the focus of attention in
the forest.

3.5 Complexity bounds

We assume 71 ik, k € [-n,00) is a modified input
string from wy ,, and Sy~ m contiguous points of
modification relative to w and x. In this context, the
application of our incremental test takes a time O(n?)
and a space O(n?), in the worst case. The reasons for
this are:

1. The number of items in S} is O(l), as is proved
in [12]. Therefore, the number of items in gaps}’
is also O(1), in the worst case. The result is the
same for the number of items in overgaps}’.

2. As a consequence, time complexity for the test
gaps}’ C gapsy, (resp. gapsy’ < gapsy,) is o(1?).
On the other hand, we need a space O(I) to store
gapsj’.

3. From that, we have that in the worst case, the
consideration of the incremental mode takes a

time O(2,1 5 112 < O(Zy?) = O(n?) and

a space O(S 1, 11) < O(X7 1) = O(n?)
We can characterize the class of grammars which the
algorithm do in time O(n). For some grammars,
called bounded item grammars, the number of items
in a given itemset cannot grow indefinitely. In
this case, the number of items is O(k) with &
constant, whichever it is the considered itemset. As a
consequence, the test for incrementality takes a time

4i—1 2 n 1.2y _
O(Elzfﬁ—hﬁ—lk) < O 1=k) = O(n), and a space
l;—1 n _
O(Z5y, 1h,41k) < O(E]Lk) = O(n).
2 80 % modified tokens . le+ld
[T}
§70 | number of ambiguities | le+12
2
.“_§
E 60 . le+10
X
50] | 1e+08
40 | 1e+06
30 | 10000
20 | 100
3
10 | 1 E
K=
o)
0 0o §
I I I I I I I

.10 15 20
value of | for Ci

Figure 6: Testing incrementality

4 Experimental Results

Once the incremental parsing algorithm is introduced,
our goal is now to prove the practical validity of our
approach. To do it, we are interested in a scenario
that cannot be qualified as favourable, whichever the
point of view considered. At this point, we search
for grammars with the following characteristics: The
number of rules, and the size of the sentences used
in the tests, should be as small as possible, in order
to favour understanding. For the same reason, the
language generated should be universally known. The
language must also provide sentences with a high
density of ambiguities, to prove the adaptation of the
algorithm to this feature. The testing of sentences
must assume an also high density of changes, in order
to show the degree of interactivity in the system.
Finally, the grammar must include the possibility to
generate an also high number of crossed forests, the

most unfavourable condition to apply the algorithm
previously described.

At this point, pure natural language grammars
seem not to be the most appropriate, and we turn our
attention to simple context-free grammars. In this
way, we shall use the syntax of ambiguous arithmetic
expressions to show the efficiency of the incremental
parsing process. Formally, our grammar considered is
given by the following set of productions:

(0) (1)
(2) (3)

In effect, in relation to the preceding requirements,
this grammar has a small size, and it is easy to
write small sentences with a high level of ambiguities
and crossed forests. In order to provide tests where
the number of changes from the initial input text is
important, we analize programs of the form:

S—S+ S5
S—=(95)

S-S5+ S
S — number

(b4 b) + b{+(b+b) + b}’

to obtain .
b+ b{+b + b}’

by the substitution of expressions (b + b) by b, where
1 > 0 represents the number of times we repeat the
corresponding expression. Results are given in Fig. 6,
in relation to the number of tokens modified in the
original program, and in Fig. 7 in relation to the
number of items needed to reparse them. Given that
the programs are of the form:

b{+b}*

they contain a number of ambiguous parses which
grows exponentially with ¢. This number is:

1 if i=0,1

Ci = 2 1
1 i+1

which provides good tests to test incrementality in
ambiguous parsing.

if i>1

5 Summary and Conclusions

Chart parsing has been largely applied in the domain
of natural language analysis and speech processing,
domains for which incremental treatment has a
practical sense. Given that these kinds of parsers
combine information in a piecemeal, accumulative
fashion, a classic dependency relation on the set of

- == number of ambiguities L le+ld
300 |]
= NON incremental | le+12
one modification
- | 1le+10
three modifications
|
e
200 1 pmmm five modifications L7 /L le+08
I six modifications 1e+06
10000
100
100
[%2]
§ 8
2 1 3
2
=)
0 0o §
0 4 8 .12 16 20
value of | for Ci

Figure 7: Testing incrementality

chart edges seems to be unadequate, in practice,
for determining the potentially affected parts of the
analysis resulting from an update.

In this work, we have shown how chart parsing
can be extended to allow an incremental treatment
using reason maintenance, in connection with natural
language processing. Although efficient incremental
parsing may have seemed a difficult problem, we were
able to keep the complexity of the algorithm low. The
validity of this approach has been proved on examples
where the number of ambiguities stays reasonably
small, as is the case in practice.

To express incrementality we have only used generic
concepts taken from parallel parsing theory. This
leads us to conjecture that the technique described is
at the heart of incremental constructions in dynamic
programming.

References

[1] H. Hoge and E. Marschall, “Statistical analysis
of left-to-right parser for word-hypothesing”,
NATO ASI Series, vol. F46, pp. 297-303, 1988.

[2] A. Paeseler, “Modification of Earley’s algorithm
for speech recognition”, NATO ASI Series, vol.
F46, pp. 466-472, 1988.

3] M. Kay, “Algorithm schemata and data
structures in syntactic processing”, Tech. Rep.,
XEROX Palo Alto Research Center, Palo Alto,
California, U.S.A., 1980.

R. E. Bellman,
Princeton University Press,
Jersey, U.S.A., 1957.

B. Lang, “Deterministic techniques for efficient

non-deterministic parsers”, Tech. Rep. 72,

INRIA, Rocquencourt, France, 1974.

M. Tomita, “An efficient augmented-context-free

parsing algorithm”, Computational Linguistics,

vol. 13, no. 1-2, pp. 31-36, 1987.

D.G. Hays, “Automatic language-

data processing”, in Computer Applications in

the Behavioral Sciences, H. Borko ed., Ed., pp.

394-423. Prentice-Hall, 1962.

J. Kasami, “An efficient recognition and syntax

analysis algorithm for context-free languages”,

Tech. Rep. AFCRL-65-758, Air Force Cambridge

Research Laboratory, Bedford, Massachusetts,

U.S.A., 1965.

D.H. Younger, “Recognition and parsing of

context-free languages in time n3”, Information

and Control, vol. 10, no. 2, pp. 189-208, 1967.

R. M. Kaplan, “A general syntactic processor”,

in Natural Language Processing, R. Rustin, Ed.,

pp- 193-241. Algorithmics Press, New York, New

York, U.S.A., 1973.

J. Earley, “An efficient context-free parsing

algorithm”, Communications of the ACM, vol.

13, no. 2, pp. 94-102, 1970.

[12] M. Vilares Ferro, Efficient Incremental Parsing
for Context-Free Languages, PhD thesis,
University of Nice, France, 1992.

[13] L.G. Valiant, “General context-free recognition

in less than cubic time”, Journal of Computer

and System Sciences, vol. 10, pp. 308-315, 1975.

M. Wirén, Studies in Incremental Natural-

Language Analysis, PhD thesis, Linkoping

University, S-581 83 Linkoping, Sweden, 1992,

ISBN 91-7870-027-8.

S.M. Shieber, H. Uszkoreit, F.C.N. Pereira, J.J.

Robinson, and M. Tyson, “The formalism

and implementation of PATR-II”, Research on

Interactive Acquisition and Use of Knowledge

SRI Final Report 1894, SRI International, Menlo

Park, California, U.S.A., 1983, Barbara Grosz

and Mark Stickel, eds.

M.G.J. van den Brand, A Generator

for Incremental Programming FEnvironments,

PhD thesis, Katholieke Universiteit Nijmegen,

Nijmegen, Nederlands, 1992.

J. Rekers, Parser Generation for Interactive

Environments, PhD thesis, University of

Dynamic Programming,
Princeton, New

[5]

[6]

[7]

(8]

[10]

[11]

[14]

[15]

[16]

[17]

10

Amsterdam, Amsterdam, The Netherlands, 1992.

[18] E. Villemonte de la Clergerie, Automates a
Piles et Programmation Dynamique, PhD thesis,
University of Paris VII, France, 1993.

[19] B. Lang, “Complete evaluation of Horn Clauses,
an automata theoretic approach”, Tech. Rep.
913, INRIA, Rocquencourt, France, 1988.

[20] J. Heering, P.R.H. Hendriks, P. Klint, and
J. Rekers, “The syntax definition formalism SDF
- reference manual”, SIGPLAN Notices, vol. 24,
no. 11, pp. 43-75, 1989.

A A practical example

To illustrate the following discussion, we shall assume
the pico-grammar of English, taken from [6], and given
by the productions:

0) @S A (1) S— NP VP

(2) S—SPP (3) NP — noun

(4) NP — pronoun (5) NP — determiner noun
(6) NP — NP PP (7) PP — preposition NP
(8) VP — verb NP

whose representation as AND-OR graph is shown in
Fig. 8.

preposition

determiner

noun

pronoun

Figure 8: The pico-grammar of English using a graph

A.1 Standard parsing

The first thing to do is to choose a parallel parsing
method. We shall consider an extended LALR(1)

algorithm, for which the characteristic finite state
machine associated to the pico-grammar of English
is shown in Fig. 9.

state 6 state 0

\M» determiner noun . ® >.S
S ->.SNsv
S ->.SPP

NP->_noun

NP->. pronoun

NP -> . determiner noun
NP->.NPPP

PP -> . preposition NP
VP->.verb NP

determiner

noun
NP

c
]
€

pronoun

state 1
e E—
NP-> determiner .noun _ |

state 2

noun “

determiner

state 9

| VP->verb. NP

noun

determiner

state 7 state
ronoun
PP -> preposition . NP }p—% NP -> pronoun . }

pronoun

state 11

preposition State 4
S->S.PP

4

NP

preposition

sates
S >NP.VP
NP->NP. PP

preposition

sate 12
NP->NP. PP \
PP -> preposition NP.

PP

&

state 10

—
| NP->NPPP.

NP

shift-reduce conflict O

state 14

®->S .

dtate 8

state 13

NP->NP. PP
VP->verb NP.

shift-reduce conflict O

preposition

Figure 9: The LR(0) machine for the G grammar

Now, we must define our dynamic frame. So, we
shall consider items of the form [p, X, S7’, 5}], where
pis a state, X Is a stack symbol, S} is the back pointer
to the itemset associated to the input symbol w; at
which we began to look for that configuration of the
transducer, and S}’ is the current itemset. Given
a transition 7 = d(p, X,a) > (gq,Y,u) defined on a
configuration in the automata, we translate it into a
new one capable to directly work on items in the form:

1. 0([p,X,5%,8,a) > (g5 5%, 5%],¢)
2. 5([p7XaS;U=Szw]7a) & ([payaszwaszy—)}—l]aa)
3. (p, X, 87, 5¢,a) > (¥, I = 1Y)
4. 6([p,5,5}-”,5}”],a) > Ty

if an only if

1. Y=X

2. Y=a

3. YeN

4. 'Y =¢, Vg € Q such that 3 (g, X,¢) 2 (p, X, ¢)
respectively. Where we have considered:

Td = Sd([Qaga Slw,S'ZU]aa) 2 ([qaga Slwas;u]algj - I}f[é”)

11

I =p,Y,5¢,5°, Iy
IY = [q,e,50°, 5], IY

5 = [p,&,S]w,S,}U]

{

where [t is the set of all items developed in the parsing
process, II is given by a set of context-free rules
directly built from items, and b4 is called the set of
dynamic transitions. Succinctly, we can describe the
preceding cases as follows:

1. Corresponds to a goto action from the state p to

state ¢ under transition X.
2. Corresponds to a push of terminal a from state
p- The new item belongs to the itemset S7, ;.
3. Corresponds to a push of non-terminal Y from
state p.
Corresponds to a pop action from state p, where
q is an ancestor of state p under transition X in
the transducer. In this case, we do not generate
a new item, but a dynamic transition 74 to deal
with the absence of information about the rest of
the stack.

It is important to comment the behavior of
the algorithm face to a pop action, the last case
represented. In effect, given that our compact
representation of the stack is its top, we must consider
a protocol to deal with the absence of information
about the rest of the stack. The solution relies to the
concept of dynamic transition. Briefly, it consists in
generating a new transition from that implying the
pop action. This new transition must be built in
such a manner that it is applicable not only to the
configuration resulting of the first one, but also on
those to be generated and sharing the same syntactic
structure.

Following with our example, table 1 shows the
itemsets corresponding to the parsing process for two
different input strings:

= [anaS;'UaSzw]
= [anaSiwasf]

and

§:1t x DU {e} — {Tt U dg} x IT*
dg: It xXU{e} — It

4.

w = John saw a man with a telescope —
z = John in the room saw a man with a telescope -

We only include in those tables, items corresponding
to the recognition of a syntactic category in the
original grammar.

Parse forests corresponding to input strings w and
x can be respectively seen in Fig. 10 and Fig. 11. In
order to facilitate understanding, we have included in

SO $ S %
¥ (wr = John) S? (1 = John)
1;” =[0, w1, S, S¥] 1“_[0 z1, 8%, 87]
"t =[0,NP,S¥,S¥) =0, NP,Sg, S7]
S3 (mz =in)
Iyo [5 5112,51,32]
S5 (acs = the)
I:f,o = [73 1'3,:9;, S?af]
S§ (x4 = room)
I4.’E, 0= [1, T4, S§, Sf]
= [7, NP, 53, S5
I“ [5, PP, S¢, S%]
I7* = [0, NP, Sg, 5%
Sy (w2 = saw) Sg (m5 = saw)
Iwo [5 w2551,52] IEO [5 $5:S4:S5]
S5 (w3 =a) Sé (aca =a)

05[9’w33‘9§u:s§u] 05[9,3}6,5;,5;]

Sy (ws = man) S% (z7 = man)
7% = [1,ws, S¥, S¥] I2° =[1,z7, S8, 5%]
le [9, NP, Sy, S¥] I?' =9, NP, SE, 5%)
1’“ 2 =[5,VP,S¥,S¢] I2° =1[5VP, S5, 55
1% =[0,5, 58, 5¢] I° =10, 5, S5, 57]
Sy (w5 = with) S8 (xzs = with)
I¥° = [13, ws, SY, S¥] I3° = [13, z8, S, S
I = [4,ws, SY, S¥] IY' = [4,zs, 5%, 58]
S¢ (we = a) S§ (zo = a)
1 = [7,we, S¥, 5¢] 13 = [7,0, 58, 55]
S7 ('w7 = telescope) S7o (mlo = telescope)
I’;D 0= [1 wr, Sg,as}?u] Ifdo = [1,-'1710, 55, SfO]
I} =[7,NP,S¥, 7] I3 = [7, NP, S§, Sto]
I¥? =[4, PP, Sy, S¥] I%? = [4, PP, S2, S%
I¥? =10,8,8y,5% I =0, 8,58, S%]
I¥* =13, PP, Sy, S¥] IZt =7, PP, S, S%
I¥® =[9,NP, Sy, S¥] I7® =9, NP, SE, 8%,
I¥® =[5,VP, Sy, S¥] I%° =[5, VP, S5, 5%
S (ws =) St (211 =)

130 = [4,ws, S¥, 5¥] I3° = [4z11, S50, ST

Table 1: Itemsets for w and z

each node corresponding to the reduction of a non-
terminal in the original input grammar, the number
of the considered rule.

A.2 Incremental parsing

First of all, we must translate the concept of stability
to our current framework. So, in our case, an item
[p, X, S;-”,SZ?”] is stable if and only if there
exists an item I = [p, X, S}, Sy,], which implies
that both items represent the same configuration in
the automaton.
We shall present the incremental algorithm from the
input strings w and z whose gaps in relation to the
pico-grammar of English are shown in table 2.

12

A.2.1 Total recovery

To illustrate total recovery, we shall first consider the
original input string = and the modified one w. That
is, we shall here assume that:
« The only point of modification relative to z and
w is S5.
¢ The modification consists in the delete of the
the room” words. Thus, u;. ;=€
[] h:|€|—k:—3
The itemsets Sy’ and S}’ are obtained without changes
from 5§, ST, but we must recompute the itemset S5'.
From gapsj and gapsy, = gapsy, we obtain that
gapsg C gapsy. We conclude that S¥ C S7°, Vi €
[5,11]. From the point of view of the parse, we recover
all the AND-OR graph represented in Fig. 11, once the
system has reduced “John in the room” by a nominal
phrase to give Iy 3. The resulting graph is shown in

ﬂ,],'n

Fig. 10.
gapsy =0 gapsi =0
gapss = {17}
gaps§ = {I;°}
gaps§ = {13°}
gapsy = {I;"'} gapst = {I;°}
gapsy = {I3"°} gapsg = {I15°}
gapsy = {I;"°} gaps§ = {I5"°}
gapsy = {I{"' 1Y gapsg = {I7', I7°}
gapsy = {I°, I"'} gapsy = {I3°, I3"}
gaps¥ = {I5"°} gaps§o = {I37°}
gapsy = {I;"°} gapst = {133’}

Table 2: Gaps for w and x

A.2.2 Grouped recovery

Here, the concept at stake is the weak stability. In our
case, an item I}’ = [p, X, S, S]] is weakly stable if
and only if there exists an item Iy, = [p, X, Sy ,Sg,. |-

To illustrate grouped recovery, we now consider that
z is a modified input string from w whose only point of
modification is S5. That is, the modification consists
in the insertion of “n the room” words. In this case,
h =] u| —k = 0. As in the total recovery case, the
first two itemsets remains unchanged. In this case

= Sy and ST = Sy.

Given that £+ A + 1 = 2, we shall firstly compare
the gaps from Sy’ and Sy, S%, to obtain that
gapsy A gapst, reason for which we shall continue
to compare gapss with gapsg. In this case, we shall
have gapsy = gaps§, and therefore we can ensure
that SY = S§, given that the first itemset applying a
pop transition on gapsy is SY. Intuitively, we have

recovered all the development corresponding to nodes
labeled by I¥"° and I¥"? in Fig. 10, which can be seen
as nodes labeled by I3"° I3%n Fig. 11.

|0
w,3
|
o .7

nil
ST b
2 | g .
fffnl 0 T,,’iifnll

7 with Iw,l X,2
ST S
D 5 a telescope 3 ! V\:Ixﬂ; ,ljﬂl rrrrrrrrrrrrrrr

1 w2 3 A R I
1 "
8 sawi I ! nil
o RN
‘ sy DR S
1 0i5 Ie‘}l’om?‘zo | oils fff”"
[S 3 4 | 0:5 a man
ffnll | |2,0 |;0
! x3
s e
fff””l ,,,,,,,,, 1 06 12
! : |
y |
1o » | 7 oin oy
fff : Iz f’ifml
8 O I‘;"S : 3 1% 5 thtg roogn
fffnil 3 ffnll % I
6 O 1w ! 3 John
ﬁffml S N
[
7 with O fffm
|v5vv0 10 e |
"
Figure 10: AND-OR graph for the input w 8 0 Iy "
RN
6 O I
e
7 with O
1%°

Figure 11: AND-OR graph for the input z

13

