A Predictive Bottom-up Evaluator

Manuel Vilares Ferro* Miguel Angel Alonso Pardof

Abstract
This paper® presents a recursive query processing strategy on Horn Clauses which plays, with respect to classic
context-free parsing algorithms, a similar role to the well known LALR compilation schemes. Over a base structure
equipped with an efficient context-free parsing algorithm based on dynamic programming techniques, we define a
logic push-down automaton which breaks computations into combinable, sharable and storable sub-computations.
The latter provides computation sharing and operational completeness and solves most of the problems posed by
classic depth-first left-to-right traversals.

1 Introduction

Context-free parsing represents a fine starting point to understand computational aspects of syntactic phenomena in full
first order logic based on Horn Clauses. Indeed the Prolog language that popularized them was initially intended as a
powerful formalism for describing natural languages based on a context-free backbone [1]. Clear, concise and powerful,
they have been largely used for implementing natural languages analyzers [2]. However, there seems to have been few
attempts to see whether known theoretical and technical results on context-free parsing (CFP) could be generalized
to Horn Clauses, specifically the use of push-down automata (PDA’s) and the corresponding form of non-deterministic
reasoning [3].

The aim of the work, which is partially reported here, is to devise general purpose algorithmic techniques to deal with
formalisms within the continuum that ranges from propositional Horn logic to full first order Horn logic, in practical
applications. To attain this goal, we have chosen to work in the context of logic push-down automata (LPDA’s) [4], a
formal logical engine for the execution of definite clause programs (DCP’s) that generalizes the dynamic programming
aspects of earlier evaluation strategies. A LPDA is essentially a PDA, in general non-deterministic, that stores logical
atoms and substitutions on its stack, and uses unification to apply transitions.

We propose a very simple technique to avoid, in most practical cases, evaluation conflicts by adding lookahead to
items in LPDA’s following a technique close to that applied by LALR machines in CFP, the lower end of the continuum
of Horn-like formalisms. It is possible that not all of the material in this paper is new. We have, however, felt the need
for a consistent and coherent exposition.

2 An Informal Overview

The abstract operational model represented by LPDA’s allows most of the execution strategies of Definite Clause
Programs (DCP’s) to unify in a same framework, permitting easy comparison and performance analysis. In relation to
this, practical experience has shown that the most efficient methods [4] seem to be those bottom-up approaches including
a predictive phase in order to restrict the computation to a useful part of the search space. This relies again on the
CFP theory, where the consideration of efficient determinization techniques such as the classic LR ones, differentiate
the syntactic contexts in function of the state where the parsing process is, by virtue of the application of a predictive
technique in the generation of the parser.

The idea to consider bottom-up evaluation with a top-down predictive control is not new. The Magic Set [5, 6, 7, 8]
techniques reduce the number of useless intermediate results produced by using a goal-oriented bottom-up evaluation.
The main drawback of this approach is the extra cost these methods require. In effect, the addition of predictive
control is made by re-writing logic programs and introducing new predicates. In order to avoid this, we have extended a
simple bottom-up evaluation strategy [3] on LPDA’s by including a predictive control directly derived from unrestricted
CFP [9] in dynamic programming. This control is given, in the simplest version, by a LALR(1) automata, possibly

*M. Vilares is with the Computer Science Department, University of Corunna, Campus de Elviiia S/N, 15071 A Coruiia, Spain. E. mail:
vilares@dc.fi.udc.es.

fM. A. Alonso is currently with the Ramén Pifieiro Linguistic Research Center, Santiago-Noia Road, 3 Km, A Barcia, 15896 Santiago de
Compostela, Spain. E. mail: malonso@cirp.es.

Ipartially supported by the Eureka Software Factory project, and by the Autonomous Government of Galicia under projects
XUGA10501A93 and XUGA20403B95.

non-deterministic, directly computed from the context-free grammar G; obtained by considering a parsing rule for each
clause in the intensional database. Using the simplest technique this construction is made by keeping only the funtors
of the logic terms.

In order to describe the recursive query processing strategy, given a clause 7y : Ago : —Ak,1,- .., Ak,n,, we introduce:

e The vector T, of the variables occurring in .

e The predicate symbol 74 ;. An instance of v ;(T%) indicates that all literals from the i* in the body of the clause
Yk, have been proved.

We can now formalize the compilation scheme by the transitions:
L Agn, (B} — Ven(Th) A,

Yk, 2. Vk,i(_’k) Ari +— Vki—1(Tk), € [1,n4]
3. Vk,O(Tk) — Ak,O

for the reduction mode, and
4. V"yk, Ak,i {Ek,z'} — Ek,,' Ak,i; 1 € [O,Hk)

for the scanning mode. In each case, {Ey} makes reference to the extra control conditions established by the LALR(1)
scheme associated to the grammar of functors Gy. So, in the reduction mode, {E}} and {E} ;} represent the conditions
over the lookahead in the production of Gy corresponding to ;. In the scanning mode, this condition represents the
verification of the existence of a term with the same funtor as A ;41 in order to avoid useless push actions. Briefly, we
can interpret these transitions as follows:

1. Selection of o clause: When the extra condition {E}} is verified and taking into account the literal Ay n, on top

of the stack, select the clause v, whose head is to be proved; then push Vi u, (fk) on the stack to indicate that
none of the body literals has yet been proved.

2. Reduction of one body literal: The position literal vk,i(fk) indicates that all body literals of ~; following the 7**
have been proved. Now, for all stacks having Ay ; just below the top, we can reduce them and in consequence
decrement the position literal.

3. Termination of the proof of the head of clause vi: The position literal vk,o(fk) indicates that all literals in the
body of 7, have been proved. Hence, we can replace it on the stack by the head A o of the clause, since it is now
proved.

4. Pushing literals from the database: The literal Ey ; is pushed onto the stack, assuming that literals will be needed
in reverse order for the proof.

To shorten the description of transitions we have not detailed the set of possible simplifications, some of them have
already been specified in previous works [4] and a lot of them have been derived from the particular strategy considered.

The technique described has also been generalized to a more complex schema by extending the concepts of first,, and
follow,, from classic LR parsing to DCP’s in a natural manner [9], extending context-free derivation by using unification
in a depth-first study of the database. Practical tests have shown that, applying simple prediction schema as LALR(1),
the percentage of useless intermediate results not generated is similar to that achieved in corresponding CFP analyzers.

References
[1] A. Colmeraeur, “Metamorphosis grammars”, in Natural [5] F.Bancilhon, D. Maier, Y. Sagiv, and J. Ullman, “Magic-
Language Communication with Computers. Springer set and other strange ways to implement logic programs”,
LNCS 63., L. Bolc ed., Ed., 1978. in Proc. of the 5th ACM symp. on Principles of Database
[2] F.C.N. Pereira and D.H.D. Warren, “Parsing as Systems, 1986.
deduction”, in Proc. of the 21° Annual Metting of the [6] U. Nilsson, “Abstract interpretation: A kind of magic”,
Association for Computational Linguistics, 37-144, Ed., in Proc. of PLILP’91, 1991.
Cambridge, Massachusetts, U.S.A., 1984. [7] R. Ramakrishnan, “Magic templates: A spellbinding
[3] B. Lang, “Towards a uniform formal framework for approach to logic programs”, in Proc. of the bth
parsing”, in Current Issues in Parsing Technology, International Conference on Logic Programming, 1988.
M. Tomlta ed., Ed., pp. 153-171. Kluwer Academic [8] H. Seki, “On the power of Alexander templates”, in Proc.
Publishers, 1991. of the 8th ACM symp. on principle of Database Systems,
[4] E. Villemonte de la Clergerie, Automates & Piles et 1989.
Programmation Dynamique, PhD thesis, University of [9] M. Vilares Ferro, Efficient Incremental Parsing for

Paris V11, France, 1993. Context-Free Languages, PhD thesis, University of Nice,

France, 1992.

