Towards Analyzers Based on Efficient Logical Frames

Manuel Vilares Ferro

Abstract

A general strategy for implementing natural language
analyzers is described. Quver a base structure equipped
with a logic push-down automaton, which provides
completeness and correctness, we introduce a flexible
level of control order to avoid useless computations. In
relation to previous approaches, control is introduced
statically, which reduces the amount of work during the
evaluation process.

Our proposal ensures computation and syntactic
sharing, termination for function-free programs and
solves most of the problems posed by classic depth-first
left-to-right traversals.

1 Introduction

The use of definite clause grammars (DCG’s) for the
description of natural language analyzers has regained
much attention in theoretical linguistics in the last few
years. However, even though considerable work has
been done to optimize them, strategies for executing
DCG’s are still often expressed directly as symbolic
manipulations of terms and rules, which is not the basis
for efficient implementations. It is also well known
that classic depth-first left-to-right schema are not fully
adequate for describing natural languages, nor even
many programming languages, because of problems with
completeness in the implemented resolution algorithm.

Sharing quality is another factor to get efficiency
in a framework which is not deterministic. =~ This
sharing saves on the space needed to represent the
computations, and also on the later processing. Finally,
it is desirable to restrict the computation effort to the
useful part of the search space, which is not the case for
analyzers based on classic backtracking techniques.

We search for a balance between sharing quality and
parsing efficiency by working in the context of logic
push-down automata (LPDA’s), essentially a push-down
automaton that stores logical atoms and substitutions
on its stack, and uses unification to apply transitions.
In this paper, we consider an evolution of the original
concept [1]. For us, an LPDA is a 7-tupla A =
(X, F,X,A,$,%;,0), where: X is a denumerable and

This work was partially supported by the Eureka Software
Factory project, and by the Autonomous Government of Galicia
under projects XUGA10501A93 and XUGA20403B95.

M. Vilares is with the Computer Science Department, University
of Corunna, Campus de Elvina S/N, 15071 A Coruna, Spain. E-
mail: vilares@dc.fi.udc.es.

M. A. Alonso is currently at INRIA, Domaine de Voluceau,
Rocquencourt, B.P.105, 78153 LLe Chesnay Cedex, France. E-mail:
Miguel.Alonso-Pardo@inria.fr.

Miguel A. Alonso Pardo

ordered set of variables, F is a finite set of functional
symbols, ¥ is a finite set of extensional predicate
symbols, A is a finite set of predicate symbols used
to represent the literals stored in the stack, $ is the
initial predicate, $; is the final predicate; and © is a
finite set of transitions. The stack of the automaton is
a finite sequence of items [A,it, bp, st].o, where the top
is on the left, A is in the algebra of terms Ta[F U X],
o a substitution, it is the current position in the input
string, bp is the position in this input string at which we
began to look for that configuration of the LPDA, and
st is an state for the driver controlling the evaluation.
Transitions are of three kinds:

o Horizontal: B —— C{A}. Applicable to stacks
E.p &, iff there exists the most general unifier
(mgu), o = mgu(F, B) such that Fo = Ao, for
F a fact in the extensional database. We obtain
the new stack C'o.po €.

o Pop: BD +— C{A}. Applicable to stacks
of the form F.pE'.p &, iff there is ¢ =
mgu((F, E'p), (B, D)), such that Fo = Ao, for F
a fact in the extensional database. The result will
be the new stack Co.p'po €.

o Push: B —— CB{A}. We can apply it to stacks
E.p &, iff there is ¢ = mgu(E, B), such that Fo =
Ao, for F' afact F in the extensional database. We
obtain the stack Co.oc B.p &.

where B, C' and D are items and A4 is in Tx[F U X],
representing the control condition. The use of it and
bp is equivalent to indexing the parse, which allows
to implement a garbage collector facility, by deleting
information relating to earlier substrings, as parsing
progresses.

2 An Informal Overview

Practical experience has shown that the most efficient
evaluation strategies [2] seem to be those bottom-up
approaches including a predictive phase in order to
restrict the search space. However, the choice of an
efficient evaluation scheme does not guarantee by itself
good performances. We must also take into account the
general data structures considered. In this sense, we
exploit the possibilities of dynamic programming taking
St as dynamic frame [2, 3] by collapsing stacks to obtain
structures that we call items. More exactly, we represent
a stack by its top. In this way, we improve sharing
of computations in opposition to S7, the standard
dynamic frame, where stacks are represented by all their
elements. To replace during pop transitions this lack of
information, we redefine the behavior of transitions on



items S', as follows:

o Horizontal case: (B — C)(A) = Co, where
o = mgu(A, B).

o Pop case: (BD —— C)(A) = {Do — Co}, where
o = mgu(4, B), and Do —— Co is the dynamic
transition generated by the pop transition. This is
applicable not only to the item resulting from the
pop transition, but also to those to be generated
and which share the same syntactic context.

o Push case: (B —— CB)(A) = Co, where ¢ =
mgu(A, B).

We can now formalize our evaluation strategy. Let’s
assume a DCG of clauses y3 : Apo 1 —Ar1, ..., Ak ny-
We introduce:

¢ The vector T}c of the variables occurring in ;.

o The predicate symbol /1 ;. An instance of ij(fk)
indicates that all literals from the i*? in the body
of the clause v, have been proved.

We first recover the context-free skeleton of the logic
program, by keeping only functors in the clauses to
obtain terminals from the extensional database, and
variables from heads in the intensional one. Terms
with the same name, but different number of arguments
correspond to different symbols in the skeleton. The
result is the grammar G/ = (X7, N/, P/ S7), denoting
by A?i the term in G obtained from Ap,i, and by 7{; the
rule corresponding to the clause v. Then, we consider
the following set of transitions:

1. [Agn, it bp, st] = [Trony (Th), it it, st]
[Ag,n, i, bp, st]
{action(st, token;;, reduce('y{))}
2. [Vki(Th),it,r, st1]
[Ag i, 7, bp, sta] — [vk’i_l(fk),it,bp,stg]
{action(stz, token;;, shift(stq)),
lookahead(A,J:’i , token;;)}
3. [Vklo(ffk),it,bp,st] —  [Ago,it,bp, st]
4. [Akﬂ‘,it,bp,stl] — [Ak7i+1,it+1,it,st2]
[Ak’i,it,bp,stl]
{action(stq, token;;, shift(stz)),
follow(Ai’i , token;) }
5. [$,0,0,0] —— [Ak’l,0,0, st] [$,0,0,0]
{action(0, tokeng, shift(st)),
first(®, AL )}

where action(state, token, do) denotes the action do of
the LALR(1) automaton for G/, for a given state and
token. The axiom of G/ is ®. Briefly, we can interpret
these transitions as follows:

1. Selection of a clause: Select the clause v, whose
head is to be proved; then push V;:”TZLZ (Tk) on the
stack to indicate that none of the body literals have
yet been proved.

2. Reduction of one body literal: The position literal
Vﬁ’[(fk) indicates that all body literals of
following the i*" literal have been proved. Now,
for all stacks having AZ’yl;.p just below the top, we
can reduce them and in consequence increment the
position literal.

3. Termination of the proof of the head of clause vy :
The position literal V?y’gp(fk) indicates that all
literals in the body of v; have been proved. Hence,
we can replace it on the stack by the head Ay o of
the rule, since it has now been proved.

4. Pushing literals: The literal A;:,-z!ii” is pushed onto
the stack, assuming that they will be needed in
reverse order for the proof.

5. Initial push transition: The initial predicate will
be only used in push transitions, and exclusively as
the first step of the LPDA computation.

The parsing algorithm proceeds by building items from
the initial configuration, by applying transitions to
existing ones until no new application is possible. An
equitable selection order in the search space assures
fairness and completeness. Redundant items are ignored
by a subsumption-based relation. Correctness and
completeness are easily obtained from [2, 3], based
on these results for LALR(1) context-free parsing and
bottom-up evaluation, both using S' as dynamic frame.

3 Preliminary Results

Although our logical engine is still a prototype,
preliminary results seem to improve preceding results.
At the moment, we have compared our work with
SLR(1)-like methods [4] in ST with backtracking, and
state-less bottom-up methods [3] in S1. We have not
observed additional cost in time due to control, and
extra space cost is not relevant. Theoretic time and
space bounds are cubic on the length of the input string
in the worst case, although it is possible to characterize
grammars with linear complexity. This has a practical
sense because this class of grammars includes those
DCG’s whose context-free skeleton is LALR(1) and, in
consequence, linear parsing can be performed while local
determinism is present.

References

[1] B. Lang, “Towards a uniform formal framework for
parsing”, in Current Issues in Parsing Technology,
M. Tomita ed., Ed., pp. 153-171. Kluwer Academic
Publishers, 1991.

[2] M. Vilares Ferro, Efficient Incremental Parsing for
Context-Free Languages, PhD thesis, University of
Nice, France, 1992.

[3] E. Villemonte de la Clergerie, Automates ¢ Piles el
Programmation Dynamique, PhD thesis, University
of Paris VII, France, 1993.

[4] D.A. Rosenblueth and J.C. Peralta, “LR
inference: Inference systems for fixed-mode logic
programs, based on LR parsing”, in International
Logic Programming Symposium, The MIT Press,
Cambridge Massachussets 02142 USA, 1994, pp.
439-453.



