An LALR Extension for DCGs
in Dynamic Programming

Manuel Vilares Ferro
Miguel A. Alonso Pardo

University of Corunna

Abstract

We propose a parsing model for natural languages based on the con-
cept of definite clause grammar. Qur work embodies in a common
frame a dynamic programming construction developed for logical
push-down automata, and techniques that restrict the computation
to a useful part of the search space inspired by LALR. parsing. Unlike
preceding approaches, our proposal avoids backtracking in all cases,
providing computational sharing and operational completeness for
definite clause grammars without functional symbols.

Introduction

The popularity of definite clause grammars (DCGs) is often related to natural
language processing. In comparison with other formalisms, they seem to be par-
ticularly well-suited to control the perspicuity with which linguistic phenomena
may be understood and expressed in actual language descriptions. However,

2 MANUEL VILARES FERRO AND MIGUEL A. ALONSO PARDO

descriptive adequation does not guarantee operational efficiency, and computa-
tional tractability is required if we intend to use descriptions for the mechanical
processing. Though much research has been devoted to this subject, most of
the practically usable work deals with the reduction of backtracking phenomena
when parsing. To attain this goal, authors often follow two different approaches:

e Reduce the search space, using control techniques. Here, we distinguish be-
tween dynamic techniques when control is made by rewriting programs (Ban-
cilhon et al. 1986; Nilsson 1991) and static ones when control is made by
an external driver, which determines the action to be performed (Nilsson
1986). Some authors (Rosenblueth and Peralta 1994) try to integrate both
strategies.

e Incorporate dynamic programming techniques (Lang 1991; Pereira and
Warren 1983), which ensure that all parses are made in parallel, elimi-
nating backtracking processes.

Our goal is to combine the advantages of the preceding approaches, eliminating
drawbacks. We focus on three aspects: Firstly, improve the quality of sharing, re-
ducing the dependence on the syntactic context. Secondly, avoid extra evaluation
work. Finally, reduce the search space by indexing the parse, and implementing
a garbage collector facility. We chose as operational model the logical push-down
automaton (LPDA), a formal engine introduced by B. Lang (Lang 1991) that
generalizes the dynamic programming aspects of earlier evaluation strategies.

In the following sections of this article, we introduce dynamic programming in
LPDA’s and we describe our evaluation scheme, as well as our dynamic program-
ming framework and its complexity bounds for both time and space. A general
consideration on the quality of the system is presented, as well comparisons with
preceding proposals. The article ends with a discussion of the work.

The General Framework

In essence, an LPDA is a push-down automaton that stores logical atoms and
substitutions on its stack and uses unification to apply transitions. We consider
a simple variation from the original notion of B. Lang (Lang 1991). Formally,
an LPDA is a 7-tuple A = (X, F,3,A,$,8;,0), where: X is a denumerable and
ordered set of variables, F is a finite set of functional symbols, ¥ is a finite set
of extensional predicate symbols, A is a finite set of predicate symbols used to
represent the literals stored in the stack, $ is the initial predicate, $; is the final
predicate; and © is a finite set of transitions of three kinds:

AN LALR EXTENSION FOR DCGS IN DyYNAMIC PROGRAMMING 3

e Horizontal: B — C{A}. Applicable to the stack E.p &, iff there exists
the most general unifier (mgu), o0 = mgu(E, B) such that Fo = Ao, for a
fact F in the extensional database. We obtain the new stack Co.po €.

e Pop: BD — C{A}. Applicable to stacks of the form E.pE'.p' ¢, iff there
isoc =mgu(< E,E'p >,< B,D >), such that Fo = Ao, for a fact F in the
extensional database. The result will be the new configuration Co.p'po £.

e Push: B — CB{A}. We can apply it to configurations E.p &, iff there
is ¢ = mgu(FE, B), such that Fo = Ao, for a fact F in the extensional
database. We obtain the stack Co.0 B.p €.

where B,C and D are literals in the algebra of terms TA[F U X] and A is in
Tx[F U X], representing a control condition. Henceforth, we shall talk about
stacks or configurations to refer to finite sequences of pairs literal/substitution
denoted by A.o, with the top on the left.

A dynamic programming interpretation of an LPDA A is the systematic ex-
ploration of a search space, whose elements [¢] are the classes of an equivalence
relation R on the stacks &, that we call items. To manipulate this space, we
define an operator Op adapting the transitions in A to their use with items. We
use the term dynamic frame (Vilares 1992; De la Clergerie 1993) to refer pairs
(R, Op), and we denote by ST the standard dynamic frame where Op is the iden-
tity and each stack is an item. Whichever is the dynamic frame, it must verify
three properties in relation to S7: Firstly, each computation in S7 has its cor-
responding counterpart in the dynamic frame (cf. compatibility). Secondly, all
final configuration in S7 has its corresponding counterpart in the dynamic frame
(cf. completeness). Finally, all final configurations found in our dynamic frame
must correspond to final ones in ST (cf. correctness).

The parsing algorithm proceeds by building items from the initial configura-
tion, by applying transitions to existing ones until no new application is possible.
To ensure fairness and completeness, an equitable selection order must be es-
tablished in the search space. To ignore redundant items a subsumption-based
relation must be put into place.

Improving Sharing and Efficiency

Due to non-determinism of DCGs, it is convenient to merge the search space as
much as possible. This saves on the space needed to represent items, and also on
their processing.

4 MANUEL VILARES FERRO AND MIGUEL A. ALONSO PARDO

The dynamic frame S*

We exploit the possibilities of dynamic programming taking S' as the dynamic
frame (Vilares 1992; De la Clergerie 1993). We take items of the form [A.u] :=
{A.u&}, which implies that stacks are represented by their top. So, we reduce at
maximum the dependence on the syntactic context. To replace during pops this
lack of information, we define the operator Op as follows:

e Horizontal case: Op(B —— C)([A]) = [Co], where 0 = mgu(A, B).

e Pop case: Op(BD —— C)([A]) = {Do —— Co}, where o = mgu(4, B),
and Do — Co is the dynamic transition generated by the pop transition.
This transition is applicable not only to the configuration resulting from
the first one, but also to those to be generated and which share the same
syntactic structure.

e Push case: Op(B — CB)([A]) = [Co], where o = mgu(4, B).

Reducing the search space

We index the parse by string position. So, we limit the search space at the time of
recovery, as parsing progresses, by deleting information relating to earlier string
positions. This relies on the concept of itemset (?), for which we associate a set
of items to each token in the input string, that represents the state of the parsing
process at that point of the scan.

We extend itemsets to include dynamic transitions and decrease the number
of such structures generated. To do this, it is sufficient to consider itemsets as
synchronization points, generating them one by one. So, dynamic transitions in
an itemset are only necessary once an empty reduction has been performed and
ambiguity arises in the scope of the itemset (Vilares 1992).

We attach to each item a back pointer to the itemset associated to the input
symbol at which we began to look for that configuration of the LPDA, as well as
a pointer to the current itemset. Items are now triples [A, itemset, back-pointer],
where A € TA[F U X].

The control strategy

S1 guarantees the best sharing quality for a given evaluation scheme, but the
choice of this scheme can alter perceptibly the results (Vilares 1992). A balance

AN LALR EXTENSION FOR DCGS IN DyYNAMIC PROGRAMMING 5

between computational and sharing efficiency, and parser size is the best basis
to decide. We focus on LALR(1)-like methods, which have a moderate splitting
state phenomenon, improving both sharing and efficiency.

To build the driver, we recover the context-free backbone G/ of the DCG
G. We obtain terminals from the extensional database and non-terminals from
heads in the intensional one. Terms with the same functor, but different number
of arguments correspond to different symbols in G/. We then build the LALR(1)
automaton, probably non-deterministic, for G/, that is adapted to context-free
parsing in S (Vilares 1992). To communicate the driver and the logical engine,
we augment items with the state in which the driver is, to obtain quadruples
[A, itemset, back-pointer, state]. We illustrate the work with the Dyck-language
with one type of brackets. Throughout the rest of this paper, the following DCG
is our running example:

_>
: —
73 3(3([’Ta])) -

In this case, G/ is given by the context-free rules:

s(T1) s(T2)
[s(T)]

7({:<I>—>S—| ")’{IS—)E 75:5—)55 7§:S—>[S]

To control pops in a reduction, given a clause 7y defined by Ay o — Ak.1,..., Ak n,
in a DCG 7y1._m, we consider: The vector fl_"k of the variables occurring in 7, and
the predicate symbol /5 ;. An instance of Vk,i('—fk) indicates that all literals from
the *" literal in the body of v, have been proved. So, our evaluation scheme is
given by the transitions:

1. [Agn,,it, bp, st] > [Vi (Te), it it, 5t] [Ag.ny, it, bp, st]
{action(st, token;;) = mduce(y}cc)}
2. [Vri(Te),it, T, st1]
[Ag.i, 7, bp, sto] — [Vki-1(Th), it, bp, sta]
{action(stg, token;;) = shift(st1)}, i € [1,ng]

3. [Vk,o (’f"k)a Zta bpa St] — [Ak:,()a ’Lta bpa St]
for the reduction mode, and

4. [Ak,i7 it, bp, st1] +— [Alc,i—l—la it + 1,14t sto] [Ak,ia it, bp, st1]
{action(st, token;;) = shift(ste)}, 7 € [0,ng)
5. [$,0,0,0] — [Ag,0,0,0,st] [$,0,0,0]
{action(0, tokeng) = shift(st)}

for the scanning one. Briefly, we can interpret these transitions as follows:

6 MANUEL VILARES FERRO AND MIGUEL A. ALONSO PARDO

1. Selection of a clause: Select the clause v, whose head is to be proved; then
push xn, (Tk) on the stack to indicate that none of the body literals have
yet been proved.

2. Reduction of one body literal: The position literal vk,i(fk) indicates that
all body literals of 7 following the i** literal have been proved. Now,
for all stacks having Ay ; just below the top, we can reduce them and in
consequence increment the position literal.

3. Termination of the proof of the head of clause y,: The position literal
Vk,o(fk) indicates that all literals in the body of 7, have been proved.
Hence, we can replace it on the stack by the head Ay o of the rule, since it
has now been proved.

4. Pushing literals: The literal Ay ;1 is pushed onto the stack, assuming that
they will be needed in reverse order for the proof.

5. Initial push transition: The initial predicate will be only used in push
transitions, and exclusively as the first step of the LPDA computation.

Correctness and completeness are easily obtained from (Vilares 1992) and (De
la Clergerie 1993), based on these results for LALR(1) context-free parsing and
bottom-up evaluation without functional symbols', both using S' as dynamic
frame.

Complexity Bounds

Unrestricted DCGs have Turing machine power. So, it is not at all obvious to
give a useful notion of computational complexity. Following F. C. N. Pereira
and D. H. D. Warren (Pereira and Warren 1983) we differentiate between online
and offline parsing algorithms according to constraints due to unification that
are considered as soon as rules are applied, or as a supplementary filtering phase
after a classic context-free parsing. Given that the offline case seems to be the
only linguistically relevant at the same time as the parsing problem is decidable,
we estimate complexity of doing online unification for offline parsable grammars.
Assuming an input string of length n, our algorithm takes a time O(n?) and a
space O(n?), in the worst case. The reasons are:

e The number of variables to access in an item and their ranges are both
bounded. Only the value for the back pointer depends on 7, and it is

lthe general case is not always decidable (Pereira and Warren 1983).

AN LALR EXTENSION FOR DCGS IN DyYNAMIC PROGRAMMING 7

bounded by n. In consequence, the number of items associated to the string
position 7 is O(i), and the algorithm needs a space O(X% yi) = O(n?).

e Push and horizontal transitions each execute a bounded number of steps
per item in any itemset, while pop ones can execute O(i) steps because
they may have to add O(l) items for the itemset in the position ! pointed
back to. So, it takes a time O(i2) in the itemset in the position 7, in the
worst case, and time complexity for a successful parsing, including online
unification and subsumption checking is O(X7_i2) = O(n?).

For the class of bounded item grammars, the number of items is bounded whichever
it is the itemset, and linear time and space on the length of the input string are
attained. This has a practical sense because this class of grammars includes the
LALR(1) family and, in consequence, linear parsing can be performed while local
determinism is present.

A Comparison with Previous Works

We shall compare our work with some of the most representative approaches
based on inference systems for logic programs. We take as reference the work
of U. Nilsson (Nilsson 1986; Nilsson 1991), F. Bancilhon et al. (Bancilhon et al.
1986), B. Lang (Lang 1991), E. Villemonte de la Clergerie (De la Clergerie 1993),
and D. Rosenblueth and J. Peralta (Rosenblueth and Peralta 1994).

U. Nilsson (Nilsson 1986) and D. Rosenblueth and J. Peralta (Rosenblueth
and Peralta 1994) propose SLR(1)-like evaluators, more efficient than grammar
oriented algorithms, as (Pereira and Warren 1983), because they drastically limit
backtracking. The difference between both approaches is due to the form in which
they incorporate the contextual information present in DCGs. U. Nilsson ignores
it to generate the driver, delaying its consideration until reduction occurs. To
avoid this, D. Rosenblueth and J. Peralta concentrate the contextual information
into the clauses of the extensional database, which forces to rewriting in a non
trivial manner the original DCG, while the application domain is restricted to
fixed-mode DCGs. Both of them (Nilsson 1986; Rosenblueth and Peralta 1994)
work in S7 and none indexing technique is considered. In consequence, the
sharing quality is low.

Control can also be introduced by a goal-oriented strategy, whose efficiency
depends on the amount of significant work required to evaluate the control pred-
icates introduced. This is the case of the Magic Set methods (Bancilhon et al.
1986; Nilsson 1991), which disregard the sharing problem.

8 MANUEL VILARES FERRO AND MIGUEL A. ALONSO PARDO

1000+ - letl4 4007 ler14
ated it inS1 i iti i
[] generated itemsin | e [[_] dynamic transitions without sync. 1612
good [useful itemsin Sn I dynamic transitions with sync.
) . L 1e+10 300) let10
I useful itemsin S1 —— order of cyclic parsers
600 —— order of cyclic parser: - 1e+08 1let+08
L 1e+06 1let+06
400 | 10000 10000
- 100 & 100
2001 4 g
%) B 2 S
g g 2 'gg
0~ OO B‘ 0o
0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20
valueof i for C; valueof i for C;

Figure 1: Number of items and dynamic transitions

B. Lang and E. Villemonte de la Clergerie exploit the dynamic programming
construction of LPDAs, but they always consider state-less automata, which rests
efficiency to evaluation. The size of the search space depends only on the evalu-
ation scheme and efficiency depends also in fine on the DCG and the corpus of
sentences to be analized, such it is proved by M. Vilares (Vilares 1992).

Our proposal guarantees completeness and correctness, in the case of absence
of functional symbols, for unrestricted DCGs. Control is given by an LALR(1)
driver, with a moderate state splitting phenomenon and large deterministic do-
main. The dynamic programming construction avoids backtracking, and the
dynamic frame S' ensures optimal sharing for the evaluation scheme. The use
of itemsets as synchronization structures facilitates the reduction of the search
space and cycles detection, a point that none of the preceding authors touch.

Experimental Results

We have selected a scenario that cannot be qualified as advantageous. We search
for DCGs with the following characteristics: The language includes sentences
with a high density of ambiguities, to prove the adequation of the algorithm
to sharing of computations. The grammar should also tackle the problem of
recursive evaluation, and data contain cycles to prove the adaptation to this
feature. Finally, garbage collection should not be trivial.

In relation to these requirements, our running example seems to be a good
candidate. Reductions imply, in the worst case, two terminals separated by an-

AN LALR EXTENSION FOR DCGS IN DyNAMIC PROGRAMMING 9

400 - levld gom le+14
[usefull itemsin S1 [T instantiationsin Sn
- letl12 le+12
[deleted itemsin S1 B instantiations in S1
3004 ; - 1let10 600 1e+10
order of cydlic parses —— order of cyclic parsers
- 1e+08 1e+08
200 - 1et0p 400 1e+06
- 10000 10000
1004 -100g 2004 100 @
1) L .5 g 'g B g—
5 lgg 2 g2
2 83§ £
0 T T T T T T T T T 0 © = 0 °
0 2 4 6 8 10 12 14 16 18 20 0O 2 4 6 8 10 12 14 16 18 20

value of i for C;

vaueof i for C;

Figure 2: Unified pairs and garbage collector

other reduction. So, the the use of indexes does not allow large memory recovery.
Taking as input strings sentences of the form [.%. [].%.], given that the grammar
contains a rule S — S S, the number of cyclic parses grows exponentially with 3.
This number is:

2i 1 ...

Co=Ci=1 and Ci:(;)i-i—l’ ifi>1
On this basis, the left scheme in Figure 1 gives the number of useful and useless
items generated in S' and also compares the number of generated useful items
in S* and ST, while the right scheme shows the number of dynamic transitions
generated in S considering synchronization on itemsets and also when do not
consider that synchronization. Finally, the left scheme in Figure 2 shows the be-
havior of the garbage collector facility, while the right one represents the number
of unified pairs during the parse process. Additional costs due to the computation
of the driver are irrelevant.

We cannot really provide a comparison with other DCG parsers because their
problems to deal with cyclic structures, however we can take results on S7 as
reference for non-dynamic SLR(1)-like methods (Nil86,RosPera94, since in this
case the SLR(1) driver is closed to the ours due to the little impact of the
consideration of the lookahead facility. Naive dynamic bottom-up meth-
ods (Lang 1991; De la Clergerie 1993) can be assimilated to S* results with-
out synchronization either garbage collector, due to the also little impact of
state splitting in the example.

10 MANUEL VILARES FERRO AND MIGUEL A. ALONSO PARDO

Conclusion

We have described a strategy to implement DCGs parsers. Our opera-
tional frame is an LPDA in dynamic programming. The architecture is
a bottom-up evaluation scheme optimized with a predictive control given
by an LALR(1) driver. The system ensures an optimal treatment of shar-
ing of computations, and completeness and correctness for DCGs without
functional symbols.

Although preliminary results seem robust, there is still some work to be
done to exploit the potential of our proposal to the fullest. In particular,
future improvements will include an incremental facility in order to provide
interactive parsing.

Acknowledgments

This work was partially supported by Xunta de Galicia (Projects XUGA
20403B95 and XUGA 10505B96) and Government of Spain (Accidn in-
tegrada HF96-36).

References

Bancilhon, F., Maier, D., Sagiv, Y. and Ullman, J. 1986. “Magic-set and
other strange ways to implement logic programs”. Proc. of the 5th ACM
SIGMOD-SIGACT Symp. on Principles of Database Systems.

Earley, J. 1970. “An efficient context-free parsing algorithm”. Communications
of the ACM 13(2):94-102.

Lang, Bernard. 1991. “Towards a uniform formal framework for parsing”. In
M. Tomita (ed.), Current Issues in Parsing Technology. Norwell: Kluwer
Academic Publishers, 153-171.

Nilsson, Ulf. 1986. “AID: An alternative implementation of DCGs”. New Gen-
eration Computing 4:383-399.

Nilsson, UlIf. 1991. “Abstract interpretation: A kind of magic”. Proc. of
PLILP’91.

AN LALR EXTENSION FOR DCGS IN DyNAMIC PROGRAMMING 11

Pereira, Fernando C. N. and Warren, David H. D. 1983. “Parsing as deduc-
tion”. Proc. of the 215 Annual Meeting of the Association for Computa-
tional Linguistics, 137-144.

Rosenblueth, David A. and Peralta, Julio C. 1994. “LR inference: Infer-
ence systems for fixed-mode logic programs, based on LR parsing”. In
M. Bruynooghe (ed.), Logic Programming. Proceedings of the 1994 Inter-
national Symposium (ILPS’9j). Cambridge: The MIT Press, 439-453.

Vilares Ferro, Manuel. 1992. Efficient Incremental Parsing for Context-Free
Languages, PhD thesis, University of Nice, France.

Villemonte de la Clergerie, Eric. 1993. Automates a Piles et Programmation
Dynamique, PhD thesis, University of Paris VII, France.

