An LALR Extension for DCGs in Dynamic Programming

Manuel Vilares Ferro
Miguel A. Alonso Pardo

University of Corunna

Abstract

We propose a parsing model for natural languages based on the concept of definite clause grammar. Our work embodies in a common frame a dynamic programming construction developed for logical push-down automata, and techniques that restrict the computation to a useful part of the search space inspired by LALR parsing. Unlike preceding approaches, our proposal avoids backtracking in all cases, providing computational sharing and operational completeness for definite clause grammars without functional symbols.

Introduction

The popularity of definite clause grammars (DCGs) is often related to natural language processing. In comparison with other formalisms, they seem to be particularly well-suited to control the perspicuity with which linguistic phenomena may be understood and expressed in actual language descriptions. However,
descriptive adequation does not guarantee operational efficiency, and computational tractability is required if we intend to use descriptions for the mechanical processing. Though much research has been devoted to this subject, most of the practically usable work deals with the reduction of backtracking phenomena when parsing. To attain this goal, authors often follow two different approaches:

- Reduce the search space, using control techniques. Here, we distinguish between dynamic techniques when control is made by rewriting programs (Bancilhon et al. 1986; Nilsson 1991) and static ones when control is made by an external driver, which determines the action to be performed (Nilsson 1986). Some authors (Rosenblueth and Peralta 1994) try to integrate both strategies.

- Incorporate dynamic programming techniques (Lang 1991; Pereira and Warren 1983), which ensure that all parses are made in parallel, eliminating backtracking processes.

Our goal is to combine the advantages of the preceding approaches, eliminating drawbacks. We focus on three aspects: Firstly, improve the quality of sharing, reducing the dependence on the syntactic context. Secondly, avoid extra evaluation work. Finally, reduce the search space by indexing the parse, and implementing a garbage collector facility. We chose as operational model the logical push-down automaton (LPDA), a formal engine introduced by B. Lang (Lang 1991) that generalizes the dynamic programming aspects of earlier evaluation strategies.

In the following sections of this article, we introduce dynamic programming in LPDA's and we describe our evaluation scheme, as well as our dynamic programming framework and its complexity bounds for both time and space. A general consideration on the quality of the system is presented, as well comparisons with preceding proposals. The article ends with a discussion of the work.

The General Framework

In essence, an LPDA is a push-down automaton that stores logical atoms and substitutions on its stack and uses unification to apply transitions. We consider a simple variation from the original notion of B. Lang (Lang 1991). Formally, an LPDA is a 7-tuple $\mathcal{A} = (\mathcal{X}, \mathcal{F}, \Sigma, \Delta, \$, \$\iota, \Theta)$, where: \mathcal{X} is a denumerable and ordered set of variables, \mathcal{F} is a finite set of functional symbols, Σ is a finite set of extensional predicate symbols, Δ is a finite set of predicate symbols used to represent the literals stored in the stack, $\$\iota$ is the initial predicate, $\$\iota$ is the final predicate; and Θ is a finite set of transitions of three kinds:
• **Horizontal:** $B \rightarrow C\{A\}$. Applicable to the stack E, ρ, ξ, iff there exists the most general unifier (mgu), $\sigma = \text{mgu}(E, B)$ such that $F\sigma = A\sigma$, for a fact F in the extensional database. We obtain the new stack $C\sigma, \rho \sigma, \xi$.

• **Pop:** $BD \rightarrow C\{A\}$. Applicable to stacks of the form $E, \rho E', \rho' \xi$, iff there is $\sigma = \text{mgu}(E, E', B, D)$, such that $F\sigma = A\sigma$, for a fact F in the extensional database. The result will be the new configuration $C\sigma, \rho \sigma, \xi$.

• **Push:** $B \rightarrow CB\{A\}$. We can apply it to configurations E, ρ, ξ, iff there is $\sigma = \text{mgu}(E, B)$, such that $F\sigma = A\sigma$, for a fact F in the extensional database. We obtain the stack $C\sigma, \xi, B, \rho \xi$.

where B, C and D are literals in the algebra of terms $T_{\Delta}[F \cup \mathcal{X}]$ and A is in $T_{\Sigma}[F \cup \mathcal{X}]$, representing a control condition. Henceforth, we shall talk about stacks or configurations to refer to finite sequences of pairs literal/substitution denoted by A, σ, with the top on the left.

A dynamic programming interpretation of an LPDA A is the systematic exploration of a search space, whose elements $[\xi]$ are the classes of an equivalence relation R on the stacks ξ, that we call items. To manipulate this space, we define an operator Op adapting the transitions in A to their use with items. We use the term dynamic frame (Vilares 1992; De la Clergerie 1993) to refer pairs (R, Op), and we denote by S^T the standard dynamic frame where Op is the identity and each stack is an item. Whichever is the dynamic frame, it must verify three properties in relation to S^T: Firstly, each computation in S^T has its corresponding counterpart in the dynamic frame (cf. compatibility). Secondly, all final configuration in S^T has its corresponding counterpart in the dynamic frame (cf. completeness). Finally, all final configurations found in our dynamic frame must correspond to final ones in S^T (cf. correctness).

The parsing algorithm proceeds by building items from the initial configuration, by applying transitions to existing ones until no new application is possible. To ensure fairness and completeness, an equitable selection order must be established in the search space. To ignore redundant items a subsumption-based relation must be put into place.

Improving Sharing and Efficiency

Due to non-determinism of DCGs, it is convenient to merge the search space as much as possible. This saves on the space needed to represent items, and also on their processing.
The dynamic frame S^1

We exploit the possibilities of dynamic programming taking S^1 as the dynamic frame (Vilares 1992; De la Clergerie 1993). We take items of the form $[A,u] := \{A,u\}$, which implies that stacks are represented by their top. So, we reduce at maximum the dependence on the syntactic context. To replace during pops this lack of information, we define the operator Op as follows:

- **Horizontal case:** $\text{Op}(B \rightarrow C)([A]) = [C\sigma]$, where $\sigma = \text{mgu}(A,B)$.
- **Pop case:** $\text{Op}(BD \rightarrow C)([A]) = \{D\sigma \rightarrow C\sigma\}$, where $\sigma = \text{mgu}(A,B)$, and $D\sigma \rightarrow C\sigma$ is the dynamic transition generated by the pop transition. This transition is applicable not only to the configuration resulting from the first one, but also to those to be generated and which share the same syntactic structure.
- **Push case:** $\text{Op}(B \rightarrow CB)([A]) = [C\sigma]$, where $\sigma = \text{mgu}(A,B)$.

Reducing the search space

We index the parse by string position. So, we limit the search space at the time of recovery, as parsing progresses, by deleting information relating to earlier string positions. This relies on the concept of itemset (?), for which we associate a set of items to each token in the input string, that represents the state of the parsing process at that point of the scan.

We extend itemsets to include dynamic transitions and decrease the number of such structures generated. To do this, it is sufficient to consider itemsets as synchronization points, generating them one by one. So, dynamic transitions in an itemset are only necessary once an empty reduction has been performed and ambiguity arises in the scope of the itemset (Vilares 1992).

We attach to each item a back pointer to the itemset associated to the input symbol at which we began to look for that configuration of the LPDA, as well as a pointer to the current itemset. Items are now triples $[A, \text{itemset}, \text{back-pointer}]$, where $A \in T_\Delta[\mathcal{F} \cup \mathcal{X}]$.

The control strategy

S^1 guarantees the best sharing quality for a given evaluation scheme, but the choice of this scheme can alter perceptibly the results (Vilares 1992). A balance
between computational and sharing efficiency, and parser size is the best basis to decide. We focus on LALR(1)-like methods, which have a moderate splitting state phenomenon, improving both sharing and efficiency.

To build the driver, we recover the context-free backbone G^f of the DCG G. We obtain terminals from the extensional database and non-terminals from heads in the intensional one. Terms with the same functor, but different number of arguments correspond to different symbols in G^f. We then build the LALR(1) automaton, probably non-deterministic, for G^f, that is adapted to context-free parsing in S^1 (Vilares 1992). To communicate the driver and the logical engine, we augment items with the state in which the driver is, to obtain quadruples $[A, itemset, back-pointer, state]$. We illustrate the work with the Dyck-language with one type of brackets. Throughout the rest of this paper, the following DCG is our running example:

$$
\begin{align*}
\gamma_1 & : s(\text{nil}) \quad \rightarrow \quad \epsilon \\
\gamma_2 & : s(s(T_1, T_2)) \quad \rightarrow \quad s(T_1) \ s(T_2) \\
\gamma_3 & : s([, T,])) \quad \rightarrow \quad [\ s(T) \]
\end{align*}
$$

In this case, G^f is given by the context-free rules:

$$
\begin{align*}
\gamma^f_0 & : \Phi \rightarrow S \quad \uparrow \quad \gamma^f_1 : \ S \rightarrow \epsilon \quad \gamma^f_2 : \ S \rightarrow S \ S \quad \gamma^f_3 : \ S \rightarrow [\ S \]
\end{align*}
$$

To control pops in a reduction, given a clause γ_k defined by $A_{k,0} \rightarrow A_{k,1}, \ldots, A_{k,n_k}$ in a DCG $\gamma_1..m$, we consider: The vector \overline{T}_k of the variables occurring in γ_k, and the predicate symbol $\forall_{k,i}$. An instance of $\forall_{k,i}(\overline{T}_k)$ indicates that all literals from the i^{th} literal in the body of γ_k have been proved. So, our evaluation scheme is given by the transitions:

1. $[A_{k,n_k}, it, bp, st] \quad \rightarrow \quad [\nabla_{k,n_k}(\overline{T}_k), it, it, st] \ [A_{k,n_k}, it, bp, st]$
 \{
 \text{action}(st, \text{token}_{it}) = \text{reduce} (\gamma^f_k) \}

2. $[\nabla_{k,i}(\overline{T}_k), it, r, st_1]$
 $[A_{k,i}, r, bp, st_2] \quad \rightarrow \quad [\nabla_{k,i-1}(\overline{T}_k), it, bp, st_2]$
 \{
 \text{action}(st_2, \text{token}_{it}) = \text{shift}(st_1) \}, \ i \in [1, n_k]

3. $[\nabla_{k,0}(\overline{T}_k), it, bp, st] \quad \rightarrow \quad [A_{k,0}, it, bp, st]$

for the reduction mode, and

4. $[A_{k,i}, it, bp, st_1] \quad \rightarrow \quad [A_{k,i+1}, it + 1, it, st_2] \ [A_{k,i}, it, bp, st_1]$
 \{
 \text{action}(st_1, \text{token}_{it}) = \text{shift}(st_2) \}, \ i \in [0, n_k)

5. $[\$, 0, 0, 0] \quad \rightarrow \quad [A_{k,0}, 0, 0, st] \ [\$, 0, 0, 0]$
 \{
 \text{action}(0, \text{token}_{\$}) = \text{shift}(st) \}$

for the scanning one. Briefly, we can interpret these transitions as follows:
1. Selection of a clause: Select the clause γ_k whose head is to be proved; then push $\bigvee_{k,n_k}(T_k)$ on the stack to indicate that none of the body literals have yet been proved.

2. Reduction of one body literal: The position literal $\bigvee_{k,i}(T_k)$ indicates that all body literals of γ_k following the i^{th} literal have been proved. Now, for all stacks having $A_{k,i}$ just below the top, we can reduce them and in consequence increment the position literal.

3. Termination of the proof of the head of clause γ_k: The position literal $\bigvee_{k,0}(T_k)$ indicates that all literals in the body of γ_k have been proved. Hence, we can replace it on the stack by the head $A_{k,0}$ of the rule, since it has now been proved.

4. Pushing literals: The literal $A_{k,i+1}$ is pushed onto the stack, assuming that they will be needed in reverse order for the proof.

5. Initial push transition: The initial predicate will be only used in push transitions, and exclusively as the first step of the LPDA computation.

Correctness and completeness are easily obtained from (Vilares 1992) and (De la Clergerie 1993), based on these results for LALR(1) context-free parsing and bottom-up evaluation without functional symbols\(^1\), both using S^1 as dynamic frame.

Complexity Bounds

Unrestricted DCGs have Turing machine power. So, it is not at all obvious to give a useful notion of computational complexity. Following F. C. N. Pereira and D. H. D. Warren (Pereira and Warren 1983) we differentiate between *online* and *offline* parsing algorithms according to constraints due to unification that are considered as soon as rules are applied, or as a supplementary filtering phase after a classic context-free parsing. Given that the *offline* case seems to be the only linguistically relevant at the same time as the parsing problem is decidable, we estimate complexity of doing online unification for offline parsable grammars. Assuming an input string of length n, our algorithm takes a time $O(n^3)$ and a space $O(n^2)$, in the worst case. The reasons are:

- The number of variables to access in an item and their ranges are both bounded. Only the value for the back pointer depends on i, and it is

\(^1\)the general case is not always decidable (Pereira and Warren 1983).
bounded by n. In consequence, the number of items associated to the string position i is $O(i)$, and the algorithm needs a space $O(\sum_{i=0}^{n} i) = O(n^2)$.

- Push and horizontal transitions each execute a bounded number of steps per item in any itemset, while pop ones can execute $O(i)$ steps because they may have to add $O(l)$ items for the itemset in the position l pointed back to. So, it takes a time $O(i^2)$ in the itemset in the position i, in the worst case, and time complexity for a successful parsing, including online unification and subsumption checking is $O(\sum_{i=0}^{n} i^2) = O(n^3)$.

For the class of bounded item grammars, the number of items is bounded whichever it is the itemset, and linear time and space on the length of the input string are attained. This has a practical sense because this class of grammars includes the LALR(1) family and, in consequence, linear parsing can be performed while local determinism is present.

A Comparison with Previous Works

We shall compare our work with some of the most representative approaches based on inference systems for logic programs. We take as reference the work of U. Nilsson (Nilsson 1986; Nilsson 1991), F. Bancilhon et al. (Bancilhon et al. 1986), B. Lang (Lang 1991), E. Villemonte de la Clergerie (De la Clergerie 1993), and D. Rosenblueth and J. Peralta (Rosenblueth and Peralta 1994).

U. Nilsson (Nilsson 1986) and D. Rosenblueth and J. Peralta (Rosenblueth and Peralta 1994) propose SLR(1)-like evaluators, more efficient than grammar oriented algorithms, as (Pereira and Warren 1983), because they drastically limit backtracking. The difference between both approaches is due to the form in which they incorporate the contextual information present in DCGs. U. Nilsson ignores it to generate the driver, delaying its consideration until reduction occurs. To avoid this, D. Rosenblueth and J. Peralta concentrate the contextual information into the clauses of the extensional database, which forces to rewriting in a non trivial manner the original DCG, while the application domain is restricted to fixed-mode DCGs. Both of them (Nilsson 1986; Rosenblueth and Peralta 1994) work in S^T and none indexing technique is considered. In consequence, the sharing quality is low.

Control can also be introduced by a goal-oriented strategy, whose efficiency depends on the amount of significant work required to evaluate the control predicates introduced. This is the case of the Magic Set methods (Bancilhon et al. 1986; Nilsson 1991), which disregard the sharing problem.
B. Lang and E. Villemonte de la Clergerie exploit the dynamic programming construction of LPDAs, but they always consider state-less automata, which rests efficiency to evaluation. The size of the search space depends only on the evaluation scheme and efficiency depends also in fine on the DCG and the corpus of sentences to be analyzed, such it is proved by M. Vilares (Vilares 1992). Our proposal guarantees completeness and correctness, in the case of absence of functional symbols, for unrestricted DCGs. Control is given by an LALR(1) driver, with a moderate state splitting phenomenon and large deterministic domain. The dynamic programming construction avoids backtracking, and the dynamic frame S^1 ensures optimal sharing for the evaluation scheme. The use of itemsets as synchronization structures facilitates the reduction of the search space and cycles detection, a point that none of the preceding authors touch.

Experimental Results

We have selected a scenario that cannot be qualified as advantageous. We search for DCGs with the following characteristics: The language includes sentences with a high density of ambiguities, to prove the adequation of the algorithm to sharing of computations. The grammar should also tackle the problem of recursive evaluation, and data contain cycles to prove the adaptation to this feature. Finally, garbage collection should not be trivial.

In relation to these requirements, our running example seems to be a good candidate. Reductions imply, in the worst case, two terminals separated by an-
other reduction. So, the use of indexes does not allow large memory recovery. Taking as input strings sentences of the form \([. \hat{i}. [. \hat{i}.],\] given that the grammar contains a rule $S \rightarrow S S$, the number of cyclic parses grows exponentially with i. This number is:

$$C_0 = C_1 = 1 \quad \text{and} \quad C_i = \binom{2i}{i} \frac{1}{i + 1}, \text{if } i > 1$$

On this basis, the left scheme in Figure 1 gives the number of useful and useless items generated in S^1 and also compares the number of generated useful items in S^1 and S^T, while the right scheme shows the number of dynamic transitions generated in S^1 considering synchronization on itemsets and also when do not consider that synchronization. Finally, the left scheme in Figure 2 shows the behavior of the garbage collector facility, while the right one represents the number of unified pairs during the parse process. Additional costs due to the computation of the driver are irrelevant.

We cannot really provide a comparison with other DCG parsers because their problems to deal with cyclic structures, however we can take results on S^T as reference for non-dynamic SLR(1)-like methods (Nil86,RosPera94, since in this case the SLR(1) driver is closed to the ours due to the little impact of the consideration of the lookahead facility. Na"ive dynamic bottom-up methods (Lang 1991; De la Clergerie 1993) can be assimilated to S^1 results without synchronization either garbage collector, due to the also little impact of state splitting in the example.
Conclusion

We have described a strategy to implement DCGs parsers. Our operational frame is an LPDA in dynamic programming. The architecture is a bottom-up evaluation scheme optimized with a predictive control given by an LALR(1) driver. The system ensures an optimal treatment of sharing of computations, and completeness and correctness for DCGs without functional symbols.

Although preliminary results seem robust, there is still some work to be done to exploit the potential of our proposal to the fullest. In particular, future improvements will include an incremental facility in order to provide interactive parsing.

Acknowledgments

This work was partially supported by Xunta de Galicia (Projects XUGA 20403B95 and XUGA 10505B96) and Government of Spain (Accion integrada HF96-36).

References

