
This work was partially supported by the Autonomous Government of Galicia under project 1

XUGA20403B95

M. Vilares is with the Computer Science Department, University of Corunna, Campus de Elviña s/n, 2

15071 A Coruña, Spain. E-mail: vilares@dc.fi.udc.es.

M. A. Alonso is currently at INRIA, Domaine de Voluceau, Rocquencourt, B.P.105, 78153 Le Chesnay 3

Cedex, France. E-mail: Miguel.Alonso-Pardo@inria.fr.

D. Cabrero is currently with the Ramón Piñeiro Linguistic Research Center, Estrada Santiago-Noia, Km. 4

3, A Barcia, 15896 Santiago de Compostela, Spain. E. mail: dcabrero@cirp.es

An Experience on Natural Language Parsing1

M. Vilares Ferro M. A. Alonso Pardo D. Cabrero Souto2 3 4

We propose an interactive development descriptive adequation does not
environment for the automatic guarantee operational efficiency, which
generation of natural language is required for practical systems. In fact,
analyzers from definite clause natural language analyzers today are
grammars. Our system has been often based on depth-first left-to-right
baptized GALENA, and it is organized parsing schema with backtracking. This
around a generator of logical push- allows the consideration of effective
down automata, which are interpreted space recovery techniques, a crucial
in dynamic programming. An extensible point in NLP due to the complexity of
user graphical interface provides a its computational treatment. However,
complete set of customization and trace these implementations do not guarantee
facilities for the system. In relation to sharing of computations even
previous approaches, our proposal operational completeness. As a
guarantees operational completeness consequence, actual systems in NLP
and correctness at the time that often go far from the declarative model
efficiency increases. due to the user, and efficiency

Key Words: Definite Clause Grammar,
Push-Down Automaton, Language To deal with this problem, we have
Prototyping. developed a parser generation

1. Introduction

Grammar formalisms based on the
encoding of grammatical information in
complex-valued feature systems, such
as definite clause grammars (DCGs),
have been popular in these recent years
in natural language processing (NLP).
The most salient feature of this
approach is its declarativeness, but

decreases.

environment based on the concept of
logical push-down automaton (LPDA)
[1]. In essence, an LPDA is a classic
push-down automaton that stores
logical atoms and substitutions on its
stack and uses unification to apply
transitions. This allows us to guarantee
completeness and correctness in the
parsing of DCGs without functional
symbols, at the price to surcharge the
evaluation process. To solve this
drawback , we have adapted the formal

model to increase parsing efficiency by controlling the evaluation. Transitions
reducing the amount of computations. are of three kinds:
In particular, we have optimized the
sharing of these computations as well as
the restriction of the computation
process to a useful part of the search
space.

In section 2 of this paper, we introduce
our approach to dynamic programming
in LPDAs. Section 3 describes our
parsing scheme. In section 4 we show
the programming environment and an
overview of the system at work.
Section 5 compares our proposal with
previous approaches. Finally, section 6
is a conclusion about the work
presented.

2. The operational
formalism

Formally, our parser engine is an LPDA
of the form Α = (χ, F, Σ, ∆, $, $, Θ),f

where: χ is a denumerable and ordered
set of variables, F is a finite set of
functional symbols, Σ is a finite set of
extensional predicate symbols, ∆ is a
finite set of predicate symbols used to
represent the literals stored in the stack,
$ is the initial predicate, $ is the finalf

predicate; and Θ is a finite set of
transitions.

Our automaton manipulates items more
than simple stacks. Items are of the
form [A,it,bp,st].σ, where A is in the
algebra of terms Τ [F ∪ χ], σ is a∆

substitution, it is the current position in
the input string, bp is the position in
this input string at which we began to
look for that configuration of the
LPDA, and st is an state for a driver

· Horizontal: B → C{A}.
Applicable to items E, iff there exists
the most general unifier (mgu),
σ=mgu(E,B) such that Fσ = Aσ, for
a fact F in the extensional database.
We obtain the new item Cσ.

· Pop: BD → C{A}. Applicable to
items E, iff there is σ = mgu(E,B) ,
such that Fσ = Aσ , for a fact F in
the extensional database. The result
will be the dynamic transition
Dσ → Cσ.

· Push: B → CB{A}. We can apply
it to items E, iff there is
σ=mgu(E,B), such that Fσ = Aσ,
for a fact F in the extensional
database. We obtain the item Cσ.

Where B, C and D are items and A is in
the algebra of terms T [F ∪ χ],Σ

representing a control condition.

Our transitional formalism improves the
computational efficiency from two
different points of view: First, it
manipulates items in the dynamic frame
S , which implies that stacks are1

represented by their top, to favour
sharing of computations. Second, it
indexes the parsing by string position to
reduce the search space, that is, the set
of items to be explored when we apply
a transition. This also permits the space
to be recovered, as parsing progresses,
by deleting information relating to
earlier string positions. Furthermore,
we shall call itemset the set of items
generated at the same position in the
input string.

esp(tree) : PHRASE(tree)
PHRASE(phr(tree1, tree2) : NP(tree1, nmbr), VP(tree2, nmbr)
PHRASE(phr(tree1, tree2) : PHRASE(tree1), PP(tree2)
NP(np(s(wrd)), nmbr) : NOUN(wrd:word, nmbr:number)
NP(pr(wrd), nmbr) : PRONUON(wrd:word, nmbr:number)
NP(np(det(wrd1), s(wrd2)), nmbr) : DETERMINER(wrd1:word, nmbr:number, gndr:gender),

NOUN(wrd2:word, nmbr:number, gndr:gender)
NP(np(tree1, tree2), nmbr) : NP(tree1, nmbr), PP(tree2)
PP(pp(prep(wrd), tree)) : PRESPOSITITON(wrd:word), NP(tree,nmbr)
VP(vp(verb(wrd), tree), nmbr) : VERB(wrd:word, nmbr:number), NP(tree, nmbr)

Example DGC.

3. The parsing strategy

To illustrate our discussion, we shall
consider, through the rest of this paper,
the above DCG as running example.
This set of clauses describes a simple
subset of Spanish, establishing some
known restrictions in relation to the
number and the gender. So, for
example, we force that the first rule to
parse a phrase must guarantee the
congruence of the number between the
nominal and the verbal predicates. The
mechanism for information passing is
based on unification. We also recover
information from the tagging set of the
lexical categories in a simple manner. In
relation to this, GALENA includes a
generator of taggers described in [2].
So, for example, the first clause for NP
recovers the string and the number of
the noun, by using the key words word
and number. The results of these
queries are saved, in this case, in the
attributes wrd and nmbr respectively.
The number nmbr will be used to
initialize the corresponding attribute of
the nominal predicate, while the string

wrd will be used to build the abstract
tree np(s(wrd)).
To introduce formally our parsing
strategy, let's assume a DCG of clauses
γ of the form A : A ,... , A . Wek k,0 k,1 k,nk

consider:

· The vector T of the variablesk

occurring in γ . k

· The predicate symbol ∇ . Ank,i

instance of ∇ (T) indicates that allk,i k

literals from the i in the body of theth

clause γ , have been proved.k

We first recover the context-free
skeleton of the logic program, by
keeping only functors in the clauses to
obtain terminals from the extensional
database, and variables from heads in
the intensional one. Terms with the
same name, but different number of
arguments correspond to different
symbols in the skeleton. The result is
the augmented context-free grammar
G =(Σ ,N ,P ,S), that in our runningf f f f f

example is given by the following rules:

Φ → S NP → noun

S → PHRASE | pronoum

PHRASE → NP VP | determiner noun

| PHRASE PP | NP PP

VP → verb NP PP → preposition NP

Table 1

1. [A , it , bp, st] → [∇ (T), it, it, st] [A , it , bp, st]k,nk k,nk k k,nk

{action(st, token , reduce(γ))}it k

2. [∇ (T), it, r, st] [A , r , bp, st] → [∇ (T), it, bp, st]k,i k 1 k,nk 2 k,i-1 k 2

{action(st , token , shift(st)), lookahead(A , token)}2 it 1 k,i it
f

3. [∇ (T), it, bp, st] → [A , it, bp, st]k,0 k k,0

4. [A , it, bp, st] → [A , it+1, st] [A , it, bp, st]k,i 1 k,i+1 2 k,i 1

{action(st , token , shift(st)), follow(A , token)}1 it 2 k,i it
f

5. [$, 0, 0, 0] → [A , 0, 0, st] [$, 0, 0, 0]k,1

{action(0, token , shift(st)), first(Φ,A)}0 k,1
f

Table 2

We denote by A the term in G they will be needed in reverse order forf f
k,i

obtained from A , and by γ the rulek,i k
f

corresponding to the clause γ . Then,k

we consider the set of transitions in
table 2: where action(state,token,do)
denotes the action do of the LALR(1)
automaton for G , for a given state andf

token. We denote by first, follow and
lookahead the known concepts on
formal languages [3] of the type
LALR(1). Briefly, we can interpret
these transitions as follows:
1. Selection of a clause: Select the
clause γ whose head is to be proved;k

then push ∇ (T) on the stack tok,nk k

indicate that none of the body literals
have yet been proved.
2. Reduction of one body literal: The
position literal ∇ (T) indicates that allk,i k

body literals of γ following the i literalk
th

have been proved. Now, for all stacks
having A just below the top, we cank,i

reduce them and in consequence
increment the position literal.
3. Termination of the proof of the
head of clause γ : The position literalk

∇ (T) indicates that all literals in thek,0 k

body of γ have been proved. Hence,k

we can replace it on the stack by the
head A of the rule, since it has nowk,0

been proved.
4. Pushing literals: The literal A isk,i+1

pushed onto the stack, assuming that

the proof.
5. Initial push transition: The initial
predicate will be only used in push
transitions, and exclusively as the first
step of the LPDA computation.

The parsing algorithm proceeds by
building items from the initial
configuration, by applying transitions to
existing ones until no new application is
possible. An equitable selection order in
the search space assures fairness and
completeness. Redundant items are
ignored by a subsumption-based
relation. Correctness and completeness
are easily obtained from [3,4], based on
these results for LALR(1) context-free
parsing and bottom-up evaluation, both
using S as dynamic frame. It can be1

easily proved that time complexity for a
successful parsing, including online
unification and subsumption checking is
O(Σ i) = O(n), in the worst case,n 2 3

i=0

for a input string of length n. Space
complexity is O(n), in the worst case.2

We can also characterize the class of
grammars which the algorithm does in
time and space O(n). They are the
bounded item grammars, for which the
number of items in a given itemset
cannot grow indefinitely. This is the
case of DCGs whose context-free
skeleton is LALR(1). This has a

Figure 1: The grammar editor

practical sense, since it permits us to 2.- The abstract syntax defined by the
benefit from local determinism during functional symbols. This establish, for
the parsing process. In effect, on the example, that the first alternative to
often large parts of the computation parse a phrase is a tree labeled phr with
which are not ambiguous the algorithm two sons, tree1 and tree2, which are
becomes linear. themselves the abstract trees resulting

4. The system at work

The GALENA system has a multi-
window, menu-driven user interface
[5], running under X11. To explain the
behavior of the environment at work,
we shall build a parser for the subset of
Spanish described by the DCG of our
running example. Our goal will be to
parse the input string ``Un hombre con
telescopio toma café en mi ciudad por
el día'' from two different points of
view:

1.- The concrete syntax defined by the
predicate symbols. This establish, for
example, that the first alternative to
parse a phrase is a tree labeled
PHRASE with two sons labeled NP and
VP respectively.

of the parse of a nominal predicate and
a verbal predicate respectively.

To illustrate this discussion, we shall
refer to Fig. 1, 2 and 3, representing the
external appearance of GALENA at
different moments of the parsing
process. As first step, we must create
the file describing the grammar. For this
purpose, the system foresees the
interaction with most of standard text
editors in UNIX. So, for example, Fig. 1
shows the system working with the
EMACS editor [6]. Once we have
generated the parser, it is time to test it.
The IICEeditorCEeditor tool has an editor to
write the source text, which is shown in
the right upper corner of Fig. 1. The
input text can also be directly recovered
from a file previously edited. Each time
we parse a text, the window
ICEmessagesICEmessages with the resulting
messages is activated, as shown in the

Figure 2: A concrete shared-forest

Figure 3: An abstract shared-forest

right-hand-side of Fig. 2 and 3. The of the form #n. If necessary, the
user can choose the level of information structures generated during the parsing
that will be displayed in this window, process can be saved on disk and
from nothing at all to have every recovered in following sessions.
elementary action available. To get a more friendly environment, we
The user can also navigate in the shared can select the language in which the
forest, which is shown in the system interacts with us: English,
ICEnavigateICEnavigate window, in the left-hand- French, Spanish and Galician are
side of Fig. 2 and 3, containing
respectively the concrete and the
abstract shared-forests. In both cases, The co-official language,
ambiguities are represented by dotted- together with Spanish, in the

lines, and shared nodes by expressions

5

5

currently available. A help facility is Lang [1] and Villemonte de la Clergerie
available every time to solve questions [4] exploit the dynamic programming
about the editors, parser generation and construction of LPDAs, but they always
parsing facilities. consider state-less automata, which

5 . Comparison with
previous approaches

We now summarize some of the
contributions of our proposal in relation
to previous approaches. So, Nilsson
[7], and Rosenblueth and Peralta [8]
propose SLR(1)-like evaluators, more
efficient than grammar oriented
algorithms, as [9], because they
drastically limit backtracking. The
difference between both approaches is
due to the form in which they
incorporate the contextual information
present in DCGs. Nilsson ignores it to
generate the driver, delaying its
consideration until reduction occurs. To
avoid this, Rosenblueth and Peralta
concentrate the contextual information
into the clauses of the extensional
database, which forces to rewriting in a
non trivial manner the original DCG,
while the application domain is
restricted to fixed-mode DCGs. Both of
them, Nilsson and Rosenblueth et al.,
work in S and none indexing techniqueT

is considered. In consequence, the
sharing quality is low.

The reduction of the search space can
also be attained by a goal-oriented
strategy, whose efficiency depends on
the amount of significant work required
to evaluate the control predicates
introduced. This is the case of the
Magic Set methods [10, 11], which
disregard the sharing problem.

rests efficiency to evaluation. The size
of the search space depends only on the
evaluation scheme and efficiency
depends also in fine on the DCG and
the corpus of sentences to be analized.
Our proposal guarantees completeness
and correctness, in the case of absence
of functional symbols, for unrestricted
DCGs. Control is given by an LALR(1)
driver, with a moderate state splitting
phenomenon and large deterministic
domain. The dynamic programming
construction avoids backtracking, the
dynamic frame S assures optimal1

sharing for the evaluation scheme, and
the use of itemsets as synchronization
structures facilitates the reduction of
the search space. In an empirical
comparison, these features seems
convert GALENA in the most efficient
formalism in relation with the rest of
the proposals considered in this section.

6. Conclusion

In this paper, we try to reconcile
declarativeness and completeness in
efficient unification-based parsing. Our
proposal is based on a predictive
bottom-up evaluation scheme, where
control is provided by a LALR
automaton capturing the context-free
backbone of the unification grammar.
The operational frame is a logical push-
down transducer that uses dynamic
programming to share computations.

Preliminary results seem demonstrate
the adequation of our proposal for
computational requirements. Although
these results must be extrapolated with
caution because our system is still aAutonomous Community of Galicia,
prototype, we feel that this techniqueSpain.

can be used to make those increasingly [6] R.M. Stallman, GNU EMACS

powerful grammar formalisms Manual. Version 18, Free Software
computationally feasible. Foundation, Inc., 675 Mass Avenue,

7. References

[1] B. Lang, ``Complete evaluation of
Horn Clauses, an automata theoretic
approach'', Tech. Rep. 913, INRIA,
Rocquencourt, France, 1988.

[2] M. Vilares Ferro, A. Valderruten
Vidal, J. Graña Gil, and M. A. Alonso
Pardo, ``Une approche formalle pour la
gènèration d'analyseurs de langages
naturels'', in Actes de TALN'95,
Marseille, France, 1995.

[3] M. Vilares Ferro, Efficient
Incremental Parsing for Context-Free
Languages, PhD thesis, University of
Nice, France, 1992.

[4] E. Villemonte de la Clergerie,
Automates à Piles et Programmation
Dynamique, PhD thesis, University of
Paris VII, France, 1993.

[5] M. A. Alonso Pardo, ``Edición
interactiva en entornos incrementales'',
Master's thesis, Computer Sciences
Department, University of A Coru\~na,
A Coru\~{n}a, Spain, 1994.

Cambridge, MA 02139, U.S.A., 1991.

[7] U. Nilsson, ``AID: An alternative
implementation of DCGs'', New
Generation Computing, vol. 4, pp.
383-399, 1986.

[8] D.A. Rosenblueth and J.C. Peralta,
``LR inference: Inference systems for
fixed-mode logic programs, based on
LR parsing'', in International Logic
Programming Symposium, The MIT
Press, Cambridge Massachussets 02142
USA, 1994, pp. 439-453.

[9] F.C.N. Pereira and D.H.D. Warren,
``Parsing as deduction'', in Proc. of the
21 Annual Metting of the Associationst

for Computational Linguistics, 37-144,
Ed., Cambridge, Massachusetts,
U.S.A., 1984.

[10] F. Bancilhon, D. Maier, Y. Sagiv,
and J. Ullman, ``Magic-set and other
strange ways to implement logic
programs'', in Proc. of the 5th ACM
SIGMOD-SIGACT Symp. on Principles
of Database Systems, 1986.

[11] U. Nilsson, ``Abstract
interpretation: A kind of magic'', in
Proc. of PLILP'91, 1991.

