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Abstract

In this paper we describe an efficient parsing model for monotonous
fixed-mode DCGs, including traversing of cyclic terms. The algorithm
can be viewed as an extension of the classic push-down automaton
model in dynamic programming along with the incorporation of a
mechanism for detecting and traversing cyclic trees. Details of imple-
mentation and experimental tests are described. Experimental results
show the performance of our approach.

Key Words: Definite Clause Grammar, Dynamic Programming, Logi-
cal Push-Down Automaton, Cyclic Term.

1 Introduction

One reason for the development of unification-based grammar formalisms
has been that of having a programming environment for natural language
processing. This is why logic programs resemble context-free grammars
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(CFGs) and their proof procedures can be viewed as a generalization of
context-free parsing [4]. We focus on definite clause grammars (DCGs), an
extension of CFGs in which grammatical categories are replaced by Horn
logic terms.

A relevant difference between CFGs and DCGs is given by the non-
terminal domain, which is finite for the former and infinite for the latter.
As a consequence, classic parsing techniques in CFGs may not guarantee
termination when they are applied to DCGs. One approach guaranteeing
termination that has been investigated is based on restricting to some ex-
tent the parsing process, for example mandating a non-cyclic context-free
backbone [1], coupling grammar and parsing design [9] or parameterizing
parsing algorithms with grammar dependent information [8]. Another ap-
proach has been to extend the unification in order to provide the capability
of traversing cyclic trees, for example substituting resolution by another uni-
fication mechanism such as natural deduction [3], considering functions and
predicates as elements with the same order as variables [2] or generalizing
an available algorithm for traversing cyclic lists [5].

We try to combine the advantages provided for the above approaches
eliminating, insofar as is possible, their drawbacks. We have chosen to work
in the context of a restricted class of DCGs, known as fized-mode DCGs [7],
in which each argument in a predicate acts either as input or as output of an
operation. This limitation does not seem to restrict the linguistic relevance
of the grammars.

2 A parsing model for DCGs

Strategies for executing DCGs are still often expressed directly as symbolic
manipulations of terms and rules, which does not constitute an adequate
basis for efficient implementation.

Sharing quality is another factor in obtaining efficiency in a framework
which is not deterministic. This sharing saves on the space needed to rep-
resent the computations, and also on the later processing. Finally, it is also
desirable to restrict computation effort to the useful part of the search space,
which is not the case for analyzers based on backtracking.

2.1 The operational formalism

Our operational formalism is an evolution of the notion of logical push-
down automaton (LPDA) introduced by Lang in [4], essentially a push-down



automaton that stores logical atoms and substitutions on its stack, and uses
unification to apply transitions.

For us, an LPDA is a 7-tupla A = (X,F,%,A,$,87,0), where: X is
a denumerable and ordered set of variables, F is a finite set of functional
symbols, 3. is a finite set of extensional predicate symbols, A is a finite set of
predicate symbols used to represent the literals stored in the stack, $ is the
initial predicate, $5 is the final predicate; and © is a finite set of transitions.
The stack of the automaton is a finite sequence of items [A,1t, bp, st].o,
where the top is on the left, A is in the algebra of terms TA[F U X], o a
substitution, ¢t is the current position in the input string, bp is the position
in this input string at which we began to look for that configuration of the
LPDA, and st is a state for the driver controlling the evaluation. The use
of it and bp is equivalent to indexing the parse, which allows us to reduce
the search space and to implement a garbage collector facility, by deleting
information relating to earlier substrings, as parsing progresses. This relies
on the concept of itemset, for which we associate a set of items to each token
in the input string, and which represents the state of the parsing process at
that point of the scan.

In order to maximize efficiency, we exploit the possibilities of dynamic
programming taking S! as dynamic frame [10, 12] by collapsing stacks to
obtain structures that we call items. Essentially, we represent a stack by its
top. In this way, we optimize sharing of computations in opposition to the
dynamic frames S2, where the stack is collapsed in its last two items; and
ST, where stacks are represented by all their elements.

To replace the lack of information about the rest of the stack during pop
transitions, we define the behavior of transitions on items S', as follows:

e Horizontal case: (B — C)(A) = Co, where 0 = mgu(A4, B).

e Pop case: (BD — C)(A) = {Do — Co}, where o = mgu(4, B),
and Do — Co is the dynamic transition generated by the pop tran-
sition. This is applicable not only to the item resulting from the pop
transition, but also to those to be generated and which share the same
syntactic context.

e Push case: (B+—— CB)(A) = Co, where 0 = mgu(A4, B).

where A, B, C and D are items.
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Figure 1: Characteristic finite state machine for the running example

2.2 An LALR approach in dynamic programming

Experience shows that the most efficient evaluation strategies seem to be
those bottom-up approaches including a predictive phase in order to restrict
the search space. So, our evaluation scheme is a bottom-up architecture
optimized with a control provided by an LALR(1) driver, that we shall
formalize now. Assuming a DCG of clauses v, : Ago: —Ag1,..., Ak n,, We
introduce: The vector fk of the variables occurring in -, and the predicate
symbol 7 ;. An instance of vk,i(fk) indicates that all literals from the 7"
literal in the body of -y, have been proved.

To illustrate our work we consider as running example a simple DCG
to deal with the sequentiation of nouns in English, as in the case of “North
Atlantic Treaty Organization”. The clauses, in which the arguments are used
to build the abstract syntax tree, could be the following

(1) s(X) :—np(X). (2) np(np(X,Y)) :—np(X) np(Y).
(3) np(X) :— noun(X:word).  (4) np(nil).

In this case, the context-free skeleton is given by the context-free rules:

0® =S4 (1)S — NP (2) NP — NP NP
(3) NP — noun (4) NP — ¢

whose characteristic finite state machine is shown in Fig. 1.



The parsing algorithm applies the following set of transitions:

L. [Ak,nk7 it, bp, St] — [Vk,nk (fk)a it, i, St] [Ak,nka it, bp, St]
{action(st, token;;) = reduce(fy,{)}
2. [Vk,z(Tk), Z.ta Ty Stl] .
[Ak,i’ T, bpa Stl] — [Vk,’ifl (Tk)a Zt’ bpa StZ]
{action(stq, token;;) = shift(st1)}, i € [1,ng]
3. [Vk,O(Tk:)a Zta bp7 Stl] — [Ak,07 ,Lta bp7 St2]
{goto(st1, Ax,0) = sta}

for the reduction mode, and

4. [Ak,i7 it, bp, st1] +— [Alc,i—Ha it + 1,14t sto] [Ak,ia it, bp, st1]
{action(st1, token;;) = shift(sta)},
token;; = Ak,i+la 1 € [O, nk)

5. [Alc,i; it,bp, st1] +— [Al,(), it + 1, it, sto] [Ak,z', it, bp, st1]
{action(st1, token;;) = shift(sta)},
tokeny # Ag i1, 4 € [0,1)

6. [$,0,0,0] —  [Ag,0,0,0,st] [$,0,0,0]

{action(0, tokeny) = shift(st)}

for the scanning one, where action(state, token) denotes the action of the
LALR(1) automaton associated to the context-free skeleton, for a given
state and token. Briefly, we can interpret these transitions as follows:

1. Selection of a clause: Select the clause 7, whose head is to be proved;
then push /kn, (Tk) on the stack to indicate that none of the body
literals have yet been proved.

2. Reduction of one body literal: The position literal vk,i(fk) indicates
that all body literals of v, following the i** literal have been proved.
Now, all stacks having Ay ; just below the top can be reduced and in
consequence the position literal can be incremented.

3. Termination of the proof of the head of clause -y : The position literal
vk,o(’_l_"k) indicates that all literals in the body of -, have been proved.
Hence, we can replace it on the stack by the head Ay of the rule,
since it has now been proved.

4. Pushing literals: The literal Ay ;11 is pushed onto the stack, assuming
that it will be needed in reverse order for the proof.



5. Pushing the first literal: The literal A; is pushed onto the stack in
order to begin to prove the body of clause ;.

6. Initial push transition: As a special case of the previous transition, the
initial predicate will only be used in push transitions, and exclusively
as the first step of the LPDA computation.

The parsing algorithm proceeds by building items from the initial config-
uration, applying transitions to existing ones until no new application is
possible. An equitable selection order in the search space assures fairness
and completeness. Redundant items are ignored by a subsumption-based
relation. Correctness and completeness, in the absence of functional sym-
bols, are easily obtained from [10, 12], based on these results for LALR(1)
context-free parsing and bottom-up evaluation, both using S' as dynamic
frame.

3 Parsing a sample sentence

To illustrate the algorithm, we are going to describe the parsing process for
the simple sentence North Atlantic using our running grammar. From the
initial predicate $ on the top of the stack, and taking into account that the
LALR automaton is in the initial state 0, the first action is the scanning of
the word North, which involves pushing the item [noun(” North”),0, 1, st;]
that indicates the recognition of term noun(” North”) between positions 0
and 1 in the input string, with state 1 the current state in the LALR driver.
This configuration is shown in Fig. 2.

At this point, we can apply transitions 1, 2 and 3 to reduce by clause
v3. The configurations involved in this reduction are shown in Fig. 3.

We can now scan the word Atlantic, resulting in the recognizing of the
term noun(” Atlantic”) between positions 1 and 2 in the input string, with
the LALR driver in state 1. As in the case of the previous word, at this
moment we can reduce by clause -y3. This process is depicted in Fig. 4.

After having recognized two np predicates, we can reduce by clause vy, in
order to obtain a new predicate np which will represent the nominal phrase
North Atlantic. This reduction is shown in Fig. 5.

The recognition of the complete sentence ends with a reduction by clause
71, obtaining the predicate s, which has as argument the term

s(np(np(” North”),np(” Atlantic”)))

representing the abstract parse tree for the sentence North Atlantic. The
state of the LALR driver will now be 4, which is the final state, meaning



[noun(” North”),0,1, st1]

[$, 0,0, Sto] =

[$, 0, 0, Sto]

Figure 2: Configurations during the scanning of North.

[V371(X), 1, ]., Stl]
- [noun(” North”),0,1, st ]
[$, 0, O, Sto]

[np(np(” NO’I'th”)), 07 17 St?]

[$, 0, 0, Sto]

[V3’0 (” NO’I‘th”), 0, 1, Sto]
[$, 0, 0, St()]

Figure 3: Configuration during the reduction of clause ;.

[noun(” Atlantic”), 1,2, st1]
[np(np(” North™)),0, 1, sto]
[$, O, 0, Sto]

[V3,0(" Atlantic”), 1,2, sto]
[np(np(” North”)),0, 1, sto]
[$, 0, 0, Sto]

[v272 (X, Y), 2, 2, St3]

[np(np(” Atlantic”)), 1,2, sts]

[np(np(” North™)),0, 1, st]

[$, 0, 0, Sto]

[v3,1 (X)7 27 27 Stl]
[noun(” Atlantic”), 1, 2, st1]
[np(np(” North”)),0,1, sto]

[$, 0, 0, Sto]

[np(np(” Atlantic”)), 1,2, sts]

[np(np(” North”)), 0,1, sta]

[$, 0, 0, Sto]

Figure 4: Configurations during the processing of the word Atlantic.

[Va,1(X,np(” Atlantic”)), 1, 2, sto]

[np(np(” North”)),0,1, sta]

[$, 0, 0, Sto]

[Va,0(np(” North”),np(” Atlantic”)), 0, 2, sto]

)
[$, 0, 0, Sto]

[np(np(” North”), np(” Atlantic”)), 0, 2, sta]

[$, 0, 0, Sto]

Figure 5: Recognition of the nominal phrase North Atlantic.




that the processing of this branch has finished. The resulting configurations
are depicted in Fig. 6.

[Vl,l (X), 2, 2, $t2]
F| [np(np(” North”), np(” Atlantic”)), 0, 2, sts]

[$, 0, 0, Sto]
- [V1,0(np(np(” North”),np(” Atlantic”))), 0, 2, sto]
[$, 0, 0, St()]
- [s(np(np(” North”),np(” Atlantic”))), 0, 2, st4)
[$, 0, 0, Sto]

Figure 6: Configurations for the recognizing of the sentence North Atlantic.

4 Extending unification to cyclic terms

Although structures that generate cyclic terms can be avoided in final sys-
tems, they usually arise during the development of grammars. For example,
in the previous example we have shown the parsing process for only one
branch, but the grammar really defines an infinite number of possible analy-
ses for each input sentence. If we observe the LALR automaton, we can see
that in states 0, 2 and 3 we can always reduce the clause 74, which has an
empty right-hand side, in addition to other possible shift and reduce actions.
In particular, in state 3 the predicate np can be generated an unbounded
number of times without consuming any character of the input string.

Our parsing algorithm has no problems in dealing with non-determinism.
It simply explores all possible alternatives in each point of the parsing pro-
cess. This does not affect the level of sharing, which is achieved by the use
of S' as dynamic frame, but it can pose problems with termination due to
the presence of cyclic structures. Therefore, a special mechanism for repre-
senting cyclic terms must be used. At this point, it is important to remark
that this mechanism should not decrease the efficiency in the treatment of
non cyclic structures. In this context, we have separated cyclic tree traversal
in two phases:

1. Cycle detection in the context-free backbone.

2. Cycle traversing for predicate and function symbols by extending the
unification algorithm to these terms.
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Figure 7: Cyclicities in the context-free skeleton and within terms.

The first phase [10] is performed verifying that in a given position in
the input string, the parsing process re-visits a state. This implies that an
empty string has been parsed in a loop within the automaton. Following
with our example, we can see in the left-hand drawing of Fig. 7 a cycle in
the context-free skeleton produced by successive reductions by rules 2 and
4 in state 3.

To verify now that we can extend cyclicity to predicate symbols, it will be
sufficient to test whether the terms concerned unify. In particular, we must
generalize unification to detect cyclic terms with functional symbols. To
prevent the unification to loop, the concept of substitution is generalized to
include function and predicate symbol substitution. This means modifying
the unification algorithm so that these symbols are treated in the same way
as for variables.

We take advantage both of working with monotonous fixed-mode gram-
mars and of our bottom-up parsing algorithm, which guarantees that at
least one of the terms implied in a substitution is ground. Then, the ex-
tension of the unification algorithm is limited to one case, namely when a
predicate symbol is present. Here, after testing the compatibility of name
and arity with the other term, the algorithm establishes if the associated
non-terminals in the driver have been generated in the same state, covering
the same portion of the text, which is equivalent to comparing the corre-
sponding back-pointers. If all these comparisons succeed, unification could
be possible and we look for cyclicity, but only when these non-terminals
show a cyclic behavior in the LALR(1) driver. In this case, the algorithm
verifies, one by one, the possible occurrence of repeated terms by comparing
the addresses of these with those of the arguments of the other predicate
symbol. The optimal sharing of the interpretation guarantees that cyclicity
arises if and only if any of these comparisons succeed. In this last case,



the unification algorithm stops on the pair of arguments concerned, while
continuing with the rest of the arguments.

Retaking Fig. 7, once the context-free cyclicity has been detected, we
check for possible cyclic term in the original DCG. The center drawing in
that figure shows how the family of terms np(np*(nil), np(nil)) is generated.
In an analogous form, the family np(np(nil), np*(nil)) can be generated, and
in general the family np(np*(nil), np*(nil)) will be generated by successive
applications of clauses 2 and 4. We now describe how we detect and
represent these types of construction. In the first stages of the parsing
process, two terms np(nil) are generated, which are unified against np(X,Y,
yielding np(np(nil), np(nil)). In the following stage, a unification will be
tried between this last term and the variable X in np(X,Y’). At this point,
we consider that:

e we are applying the same kind of unification as before, and
e there exists a cycle in the context-free backbone.

Therefore this process can be repeated an unbounded number of times for
giving terms with the form np(np*(nil),np(nil)). The same reasoning can
be applied for the case of trying aq unification with the variable Y. The
right-hand drawing in Fig.7 shows the compact representation we use in this
case of cyclic terms. The functor np is considered in itself as a kind of special
variable with two arguments. Each of these arguments can be either nil or
a recursive application of np to itself. In the figure, superscripts are used to
indicate where a functor is referenced by some of its arguments.

5 Experimental results

For the tests we take our running example. Given that the grammar contains
a rule NP — NP NP, the number of cyclic parses grows exponentially with
the length, n, of the phrase. This number is:
2n 1
=C; =1 = — if 1
Co=0C1 and C, <n>n+1’ln>

We cannot really provide a comparison with other DCG parsers because

of their problems in dealing with cyclic structures. From our work in [11], we

can however consider results on S7 as a reference for non-dynamic SLR(1)-
like methods [6, 7], and naive dynamic bottom-up methods [4, 12] can be
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Figure 8: Number of items and instantiated variables

assimilated to S' results without synchronization. This information is com-
piled in Fig. 8: The number of items generated in S', comparing the items
generated in S! and S, and the number of dynamic transitions generated
in S' considering synchronization on itemsets as well as when that syn-
chronization is not considered. There is also a comparison of the variables
instantiated in S', 2% and S7.

6 Conclusion

We have described an efficient strategy for analyzing DCG grammars which
is based on a LPDA interpreted in dynamic programming, with a finite-
state driver and a mechanism for dealing with cyclic terms. The evaluation
scheme is parallel bottom-up without backtracking and it is optimized by
predictive information provided by an LALR(1) driver. The system ensures
a good level of sharing at the same time as it guarantees correctness and
completeness in the case of monotonous fixed-mode DCGs. In this context,
we exploit the context-free backbone of these logic programs to efficiently
guide detection of cyclic constructions without overload for non-cyclic ones.
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