An Operational Model for Parsing Fixed-Mode DCGs*

M. Vilares Ferrof M.A. Alonso Pardof D. Cabrero Soutot

Abstract

Logic programs share with context-free grammars a strong reliance on well-formedness conditions.
Their proof procedures can be viewed as a generalization of context-free parsing. In particular,
definite clause grammars can be interpreted as an extension of the classic context-free formalism
where the notion of finite set of non-terminal symbols is generalized to a possibly infinite domain
of directed graphs. In this case, standard polynomial parsing methods may no longer be applicable
as they can lead to gross inefficiency or even non-termination for the algorithms.

We briefly present a proposal to avoid these drawbacks. We choose to work in the context of
fixed-mode programs, focusing on two aspects: Avoiding limitations on the parsing process, and
extending the unification to composed terms without overload for non-cyclic structures.

Key Words: DCG, Dynamic Programming, Logical Push-Down Automaton, Cyclic Term.

1 A parsing strategy for DCGs

Strategies for executing definite clause grammars (DCGs) are still often expressed directly as
symbolic manipulations of terms and rules using backtracking, which does not constitute an
adequate basis for efficient implementations. Some measures can be put into practice in order to
make good these lacks: Firstly, to orientate the proof procedure towards a compiled architecture.
Secondly, to improve the sharing quality of computations in a framework which is naturally not
deterministic. Finally, to restrict the computation effort to the useful part of the search space.

Our operational formalism is an evolution of the notion of logical push-down automaton (LPDA)
introduced by Lang in [1], a push-down automaton that stores logical atoms and substitutions
on its stack, and uses unification to apply transitions. The stack is a finite sequence of items
[A,it, bp, st].o, where the top is on the left, A is a category in the DCG, o a substitution, it is the
current position in the input string, bp is the position in this input string at which we began to
look for that configuration of A, and st is a state for a driver controlling the evaluation. We choose
as driver the LALR(1) automaton associated to the context-free skeleton of the logic grammar,
by keeping only functors in the clauses to obtain terminals from the extensional database, and
variables from heads in the intensional one.

To illustrate our work we consider as running example a simple DCG to deal with the
sequentiation of nouns in English, as in the case of “North Atlantic Treaty Organization”. The
clauses could be the following:

$(X) :—np(X). np(np(Y,X)) :—np(X) np(Y). np(X) :— noun(X:word). np(nil).
In this case, the context-free skeleton is given by the context-free rules:
0)® — S - (1)S - NP (2) NP — NP NP (3) NP — noun (4) NP — ¢

We exploit the possibilities of dynamic programming taking S' as dynamic frame [4, 5], by
collapsing stacks on its top. In this way, we optimize sharing of computations in opposition to the

*Work partially supported by Government of Spain (HF96-36) and by Xunta de Galicia (XUGA10505B96).

tM. Vilares and M. A. Alonso are with Departamento de Computacién, Universidad de La Coruiia, Campus de
Elvifia s/n, 15071 La Corufia, Spain. E-mail: {vilares, alonso}@dc.fi.udc.es.

iD. Cabrero is currently with Centro de Investigaciéns Lingiiisticas e Literarias Ramén Piiieiro, Estrada Santiago-
Noia, Km. 3, A Barcia, 15896 Santiago de Compostela, Spain. E-mail: dcabreroQcirp.es.

standard dynamic frame S, where stacks are represented by all their elements, or even S? using
only the last two elements. In S' transitions are of three kinds, whose application over an item A
is given by the following rules [5]:

e Horizontal case: (B — C)(A) = Co, where 0 = mgu(A4, B).

e Pop case: (BD — C)(A) = {Do — Co}, where o0 = mgu(A, B), and Do — Co is the

dynamic transition generated by the pop transition. This is applicable to the item resulting
from the pop transition, and also probably to items to be generated.

The number of dynamic transitions can be limited by grouping items in itemsets refereed to
the analysis of a same word in the input string, and completing sequentially these itemsets.
So, we can guarantee that a dynamic transition can be used to synchronize a computation to
be done in this itemset if and only if the itemset is not locally deterministic and an empty
reduction has been performed on it [4]. That establishes a simple criterion to save or not
these transitions.

e Push case: (B +—— CB)(A) = Co, where 0 = mgu(A, B).

Given a DCG with clauses v : Ago : —Ak1,..., Ak n,, we introduce the following notation: The

vector fk of the variables occurring in -, and the predicate symbol v/, ;, where an instance of

Vk,i (Tk) indicates that all literals from the 7** literal in the body of 7 have been proved. We can
now describe the transitions:

1. [Agn,,it, bp, st] > (Ve (Th), it it, 5t] [Ag.n, , it, bp, st]
{action(st, token;;) = reduce(fy,{)}

2. [VilTh), it, T, st1])

[Ag,i, T, bp, st1] > [Vk,i—1(Tk), it, bp, st2]

{action(sta, token;;) = shift(st1)}, i € [1, ng]

[Ak,()a it, bp, 8t2]

{goto(st1, Ak,0) = sta}

4. [Ak,i’ it, bp, Stl] — [Ak,H—la it + 1, 4t, Stz] [Ak,ia it, bp, Stl]
{action(sty, token;;) = shift(sts)},
token;; = Ak,i+1a 1 € [O,le)

5. [Ak,i,’it, bp, st1] — [Al,o,it + 1,4t, sto] [Ak,i, it, bp, st1]
{action(sty, token;;) = shift(sto)},
token;; = Ajg # Agit1, i € [0,1%)

6. [$,0,0,0] — [Ako,0,0, st] [$,0,0,0]
{action(0, tokeng) = shift(st)}

l

3. [Vk,o(fk), it, bpa Stl]

where action(state, token) denotes the action of the driver for a given state and token, ’y,’: denotes
the context-free rule in this driver corresponding to the clause 7, and expressions between brackets
are conditions to be tested for the driver before applying transitions. Briefly, we can interpret these

transitions as follows:

1.

Select the clause 7y, whose head is to be proved, then push 7y 5, (Tk) on the stack to indicate
that none of the body literals have yet been proved.

. The position literal vk,i(fk) indicates that all body literals of 7, following the i* literal

have been proved. Now, all stacks having Ay ; just below the top can be reduced and in
consequence the position literal can be incremented.

. The literal vk,o(fk) indicates that all literals in the body of 5 have been proved. Hence, we

can replace it on the stack by the head Ay o of the rule, since it has now been proved.

. The literal Ay ;1 is pushed onto the stack, assuming that it will be needed for the proof.

5. The literal A;(is pushed onto the stack in order to begin to prove the body of clause ;.

6. As a special case of the previous transition, the initial predicate will only be used in push
transitions, and exclusively as the first step of the LPDA computation.

The parser build items from the initial one, applying transitions to existing ones until no new
application is possible. An equitable selection order in the search space ensures fairness and
completeness. Redundant items are ignored by a subsumption-based relation. Correctness and
completeness, in the absence of functional symbols, are easily obtained from [4, 5], based on these
results for LALR(1) context-free parsing and bottom-up evaluation, both using S' as dynamic
frame. Our goal now is to extent these results to a larger class of grammars.

2 Extending unification to composed terms

To prevent the unification to loop, the concept of substitution is generalized to deal with cyclic
terms, taking advantage of our fixed-mode orientation. As our bottom-up approach guarantees
that at least one of the terms implied in a substitution is ground, the extension of the unification
algorithm is limited to one case, when a predicate symbol is present. Here, after testing the
compatibility of name and arity with the other term, the algorithm establishes if the associated
non-terminals in the driver have been generated in the same state, covering the same portion of
the text, which is equivalent to compare the corresponding back-pointers. If all these comparisons
succeed, unification could be possible and we look for cyclicity, but only when these non-terminals
show a cyclic behavior in the LALR(1) driver. In this case, the algorithm verifies, one by one,
the possible occurrence of repeated terms by comparing the addresses of these with those of the
arguments of the other predicate symbol. The optimal sharing of the interpretation guarantees that
cyclicity arises if and only if any of these comparisons succeed. In this last case, the unification
algorithm stops on the pair of arguments concerned, while continuing with the rest of the arguments.

Retaking our running example, we try to unify the terms in the box numbered 2 in Fig. 1,
taking into account that we have previously unified terms in the box numbered 1. The terms to be
unified are intermediate structures in the computation of the proof shared-forest associated to the
successive reductions of rules 2 and 4 in the context-free skeleton. We compare the structures of
the arguments associated to predicate symbol “np” using X, X', X" and Y,Y',Y"” to denote the
data structures corresponding to the variables and functors of the two terms in the example, and
“—” to denote a unification link from a represented symbol to its representative. Composed terms
are denoted by a classic tree representation. The result of tree traversing is the cyclic structure
shown in the box numbered 3.

2 me np @ _snp€——n
we—r 7" e
X/\Y n_i{ \nil > x v - r \n” =X v il
— A A

Figure 1: Cyclic tree traversing

Time complexity for the parser, including online unification and subsumption checking is in the
worst case O(n3) for input strings of length n. For bounded item grammars linear time and space
are attained. This has a practical sense because this class of grammars includes the LALR(1)
family and, in consequence, linear parsing can be performed while local determinism is present.

3 Experimental results

For the tests we take our running example. Given that the grammar contains a rule NP — NP NP,
the number of cyclic parses grows exponentially with the length, n, of the phrase. This number is:

1
Co=C;=1 and 0"2(2:)71—“’ ifn>1

900 4 T 300 1400 4000
EENe items S1
4 I N° vars instantiated SN
800 B N° items S2 250 1200 4 3500
o . .
700 4 CINC items SN B N° vars instantiated S2 2000
——Theoretical num. of dynamic transitions P 510007 mINe vars instantiated 1
600 - - oy F 200 2 2 -
)) 2 S ' - 2500
» = Actual num. of dynamic transitions @ < =—N° of possible cyclicity tests bl
£ 500 4 g £ 800 z
5] 5 S
= 150 o £ == Actual n° of cyclicity tests 2000 5
S 400 4 £ 4 2
s & S 6001 2
= > o
2 5 1500 ¢,
300 i 100 S 2
z 400 4
1000
200 +
- 50
100 2004 500
0~ —+ 0 0 + +—+ + +—+ +—+ +—+ — +—+ 0
4N M YO~ ® OO Hd N MY DO~ DO O 4 N M YL ON~N®O O dN®mT W ON® OO
S 943333353 3R S 993333533
value of n value of n

Figure 2: Some experimental results

We cannot really provide a comparison with other DCG parsers because of their problems in
dealing with cyclic structures. We can however consider results on ST as a reference for non-
dynamic SLR(1)-like methods [2, 3], and naive dynamic bottom-up methods [1, 5] can be assimilated
to S! results without synchronization. This information is compiled in Fig. 3. The left-hand-side
compares the generated items in S, $? and ST, and the actual number of dynamic transitions
generated in S' and the original number to be considered if no optimization is applied. The right-
hand-side compares the variables instantiated in S, §% and S7 as well as the gain of computational
efficiency due to the use of the LALR(1) driver for test cyclicity.

References

[1] B. Lang. Towards a uniform formal framework for parsing. In M. Tomita, editor, Current Issues
in Parsing Technology, pages 153-171. Kluwer Academic Publishers, 1991.

[2] U. Nilsson. AID: An alternative implementation of DCGs. New Generation Computing, 4:383—
399, 1986.

[3] D.A. Rosenblueth and J.C. Peralta. LR inference: Inference systems for fixed-mode logic
programs, based on LR parsing. In International Logic Programming Symposium, pages 439—
453, The MIT Press, Cambridge Massachussets 02142 USA, 1994.

[4] M. Vilares. Efficient Incremental Parsing for Contezt-Free Languages. PhD thesis, University
of Nice. ISBN 2-7261-0768-0, France, 1992.

[5] E. Villemonte. Automates a Piles et Programmation Dynamique. PhD thesis, University of
Paris VII, France, 1993.

