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Abstract

This paper describes a practical approach for detecting, traversing and representing cyclic
terms in definite clause grammars. Our goal is to make a wider range of this formalism
executable, without overload for non-cyclic structures. Unlike preceding approaches, our
proposal avoids backtracking and changing of values in variables, increasing computational
efficiency in a dynamic programming frame based on the logical push-down automaton
model.

Key Words: Definite Clause Grammar, Dynamic Programming, Logical Push-Down
Automaton, Cyclic Term.

1 Introduction

Grammar formalisms based on the encoding of grammatical information in unification-based
strategies enjoy some currency both in linguistics and natural language processing. Such
formalisms, as it is the case of definite clause grammars (DCGs), can be thought of, by analogy
to context-free grammars, as generalizing the notion of non-terminal symbol from a finite domain
of atomic elements to a possibly infinite domain of directed graph structures.

Although the use of infinite terms can be often avoided in practical applications, the potential
offered by cyclic trees is fortly appreciated in language development tasks, where a large
completion domain allows the modeling effort to be saved. Unfortunately, in moving to an
infinite non-terminal domain, standard methods of parsing may no longer be applicable to the
formalism. Typically, the problem manifests itself as gross inefficiency or even non-termination
of the algorithms.

On the other hand, computational tractability is required if we intend to use descriptions
for mechanical processing. Though much research has been devoted to this subject, most of the
usable work in practice deals with the two following approaches:

e To restrict in some way the parsing process. These limitations can be applied to the
operational formalism by mandating a context-free backbone. Major category information
in the original grammar is only used to filter spurious hypotheses by top-down filtering [1].
So, crucial information is often not used to eliminate useless computations.

We can also couple grammar and parsing design, which is the case of some works based
on constraint logic programming [11]. Since linguistic and technological problems are
inherently mixed, this approach magnifies the difficulty of writing an adequate grammar-
parser system.

Finally, we can parametrize the parsing algorithm by grammar-dependent information
that tells the algorithm which of the information in the feature structures is significant
for guiding the parse [10]. Here, the choice for the exact parameter to be used is dependent
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on both the grammar and the parsing algorithm, which produce results that are of no
practical interest in a grammar development context.

e To extend the unification to provide the capacity to traverse cyclic trees. So, we can
base unification on mechanisms other than resolution, avoiding occur checking. This is
the case of Haridi and Sahlin in [3], who base unification on natural deduction [8]. Here,
pointers are temporarily replaced in the structures, requiring undoing after execution, and
unification of non-cyclic structures is penalized.

It is also possible to modify the unification algorithm so that function and predicate
symbols are treated in the same way as for variables, as is shown by Filgueiras in [2].
Essentially, the idea is the same as that considered by Haridi and Sahlin, and the
drawbacks are extensible to this case.

Finally, we can implement an algorithm for detecting and traversing cyclic trees by a
simple generalization of cycle detecting algorithms for lists [4], as is the case of Nilsson
and Tanaka in [6]. These strategies require some past nodes in structures to be saved and
compared to new nodes. So, computational efficiency depends heavily on the depth of the
structures.

Our goal is to combine the advantages of the preceding approaches, eliminating the
drawbacks. We choose to work in the context of fixed-mode programs [9], that seem to be
the only ones that are linguistically relevant, where each argument in a predicate acts either as
input or as output of an operation. We shall focus on two aspects: Firstly, avoiding limitations
on the parsing process. Secondly, extending the unification concept to composed terms without
overload for non-cyclic structures.

In Section 2 of this paper, we present our parsing model for DCGs, a summary of the results
described in [13] by the first and the third authors of this work. Section 3 describes our strategy
for detecting and traversing cyclic terms. In Section 4 we analyze bounds for both time and
space. Section b compares our work with preceding proposals. In Section 6, we include a general
consideration of the quality of the system. Finally, Section 7 is a conclusion regarding the work
presented.

2 A parsing model for DCGs

Strategies for executing DCGs are still often expressed directly as symbolic manipulations of
terms and rules, which does not constitute an adequate basis for efficient implementations.
Sharing quality is another factor in obtaining efficiency in a framework which is not
deterministic. This sharing saves on the space needed to represent the computations, and
also on the later processing. Finally, it is also desirable to restrict computation effort to the
useful part of the search space, which is not the case for analyzers based on backtracking.

2.1 The operational formalism

Our operational formalism is an evolution of the notion of logical push-down automaton (LPDA)
introduced by Lang in [5], essentially a push-down automaton that stores logical atoms and
substitutions on its stack, and uses unification to apply transitions.

For us, an LPDA is a 7-tupla A = (X, F,%,A,$,8;,0), where: X is a denumerable and
ordered set of variables, F is a finite set of functional symbols, 33 is a finite set of extensional
predicate symbols, A is a finite set of predicate symbols used to represent the literals stored in the
stack, § is the initial predicate, $; is the final predicate; and © is a finite set of transitions. The
stack of the automaton is a finite sequence of items [A, it, bp, st].o, where the top is on the left,
A is in the algebra of terms Ta[F U X], o a substitution, it is the current position in the input



string, bp is the position in this input string at which we began to look for that configuration of
the LPDA, and st is a state for the driver controlling the evaluation. Transitions are of three
kinds:

e Horizontal: B — C{A}. Applicable to stacks E.p &, iff there exists the most general
unifier (mgu), o = mgu(F,B) such that Fo = Ao, for F a fact in the extensional
database. We obtain the new stack Co.po £.

e Pop: BD ~—— C{A}. Applicable to stacks of the form E.pE'p' &, iff there is 0 =
mgu((E, E'p), (B, D)), such that Fo = Ao, for F a fact in the extensional database. The
result will be the new stack Co.p'po &.

e Push: B — CB{A}. We can apply this to stacks E.p &, iff there is 0 = mgu(E, B),
such that F'o = Ao, for F a fact F' in the extensional database. We obtain the stack
Co.oc B.pé.

where B, C and D are items and A is in Tx[F U X], representing the control condition. The use
of it and bp is equivalent to indexing the parse, which allows us to reduce the search space and
to implement a garbage collector facility, by deleting information relating to earlier substrings,
as parsing progresses. This relies on the concept of itemset, for which we associate a set of items
to each token in the input string, and which represents the state of the parsing process at that
point of the scan. We illustrate this work with the DCG given by the following clauses:

7 os(X) — {(X). v ff(X)) — {(X). v3: f(a()) — a.

throughout the rest of this paper, our running example

2.2 An LALR approach in dynamic programming

In order to maximize efficiency, we exploit the possibilities of dynamic programming taking S* as
dynamic frame [12, 14] by collapsing stacks to obtain structures that we call items. Essentially,
we represent a stack by its top. In this way, we optimize sharing of computations in opposition
to the dynamic frames S?, where the stack is collapsed in its last two items; and S, where
stacks are represented by all their elements. To replace the lack of information about the rest of
the stack during pop transitions, we redefine the behavior of transitions on items S', as follows:

e Horizontal case: (B — C)(A) = Co, where 0 = mgu(A4, B).

e Pop case: (BD — C)(A) = {Do — Co}, where 0 = mgu(A4, B), and Do —— Co is
the dynamic transition generated by the pop transition. This is applicable not only to the
item resulting from the pop transition, but also to those to be generated and which share
the same syntactic context.

e Push case: (B —— CB)(A) = Co, where 0 = mgu(A4, B).

On the other hand, experience shows that the most efficient evaluation strategies seem to
be those bottom-up approaches including a predictive phase in order to restrict the search
space. So, our evaluation scheme is a bottom-up architecture optimized with a control
provided by an LALR(1) driver, that we shall formalize now. Assuming a DCG of clauses
Yk Akt —Ak1,- .., Agpy, we introduce: The vector T}c of the variables occurring in 7y, and
the predicate symbol v/ ;. An instance of 7 ; (fk) indicates that all literals from the 3" literal
in the body of «; have been proved.

We first recover the context-free skeleton of the logic program, by keeping only functors in
the clauses to obtain terminals from the extensional database, and variables from heads in the
intensional one. Terms with the same name, but a different number of arguments, correspond



to different symbols in the skeleton. In our running example, the context-free skeleton is given
by the rules:

0 & — S (1) S - F (2) F - F 3) F — a

whose characteristic state machine is shown in Fig. 1. We consider now the following set of
transitions:

L [Apn,it,bp,st] — [V (Th), ity it, st] [Agn, , it, bp, st]
{action(st, token;;) = reduce('y,{ )}
2. [vk,i(fk),it,’r,stl] .
[Api» 7, bp, sto] — [Vki-1(Tk), it, bp, sto]
{action(stg, token;;) = shift(st1)}, @ € [1, ]
3. [Vko(Tk) it bp,st] — [Ago,it, bp, st]

for the reduction mode, and

4. [Ak,ia it, bp, st1] +— [Ak,i+17 it + 1,4t, sto] [Ak,i’ it, bp, st1]
{action(st, token;;) = shift(stz)}, i € [0, ng)
5. [$,0,0,0] — [Aro,0,0, st] [$,0,0,0]
{action(0, tokeng) = shift(st)}

for the scanning one, where action(state, token) denotes the action of the LALR(1) automaton
associated to the context-free skeleton, for a given state and token. Briefly, we can interpret
these transitions as follows:

1. Selection of a clause: Select the clause v, whose head is to be proved; then push 745, (Tk)
on the stack to indicate that none of the body literals have yet been proved.

2. Reduction of one body literal: The position literal 7 ; (fk) indicates that all body literals
of ~y;, following the ** literal have been proved. Now, all stacks having Ay ; just below the
top can be reduced and in consequence the position literal can be incremented.

3. Termination of the proof of the head of clause i : The position literal Vk,o(fk) indicates
that all literals in the body of 4 have been proved. Hence, we can replace it on the stack
by the head Ay ¢ of the rule, since it has now been proved.

4. Pushing literals: The literal Ay ;. is pushed onto the stack, assuming that it will be
needed in reverse order for the proof.

5. Initial push transition: The initial predicate will be only used in push transitions, and
exclusively as the first step of the LPDA computation.

a
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Figure 1: Characteristic state machine for the running example

The parsing algorithm proceeds by building items from the initial configuration, applying
transitions to existing ones until no new application is possible. An equitable selection



order in the search space assures fairness and completeness. Redundant items are ignored
by a subsumption-based relation. Correctness and completeness, in the absence of functional
symbols, are easily obtained from [12, 14], based on these results for LALR(1) context-free
parsing and bottom-up evaluation, both using S' as dynamic frame.

3 Traversing cyclic terms

We choose to separate cyclic tree traversing in two different phases: Cycle detection in the
context-free backbone, and cycle traversing for predicate and function symbols by extending
the unification algorithm to these terms. We justify this approach by the fact that the syntactic
structure of the predicate symbols represents the context-free skeleton of the DCG. As a
consequence, it is possible to efficiently guide the detection of cyclic predicate symbols on
the basis of the dynamic programming interpretation for the LALR(1) driver. In effect, for
cycles to arise in arguments, it is first necessary that the context-free backbone given by the
predicate symbols determines the recognition of a same syntactic category without extra work
for the scanning mode.

3.1 A necessary condition to loop

From the previous discussion, we can translate the first phase in our traverse strategy to detect
cycles in context-free grammars in a dynamic frame S, using an LALR(1) parser.

This problem has previously been treated in [12] by the first author of this work, and the
solution is very simple. Given that we have indexed the parse, it is sufficient to verify that in a
same itemset the parsing process re-visits a state. In effect, this implies that an empty string has
been parsed in a loop within the automaton. This can be shown on the context-free backbone
of our running example. To do so, we consider the stack shared-forest in the left-hand-side of
Fig. 2, where we include information about both the current state and the syntactic categories
recognized. So, we can see that the reduce/reduce conflict at state 2 of Fig. 1 results in a cycle
on the rule numbered 2.
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Figure 2: Stack shared-forests

To verify now that we can extend cyclicity to predicate symbols, it will be sufficient to test
whether the terms implicated unify. In particular, we must generalize unification to detect
cyclic terms with functional symbols.

It is important to remark that the condition explained can be performed in constant time,
and therefore overload for non-cyclic structures is limited.



3.2 Extending unification

To prevent the unification to loop, the concept of substitution is generalized to include function
and predicate symbol substitution. This means modifying the unification algorithm so that
these symbols are treated in the same way as for variables.

Here, we take advantage of our fixed-mode orientation in a dynamic programming frame
that guarantees an optimal sharing of computations. So, our bottom-up approach assures that
at least one of the terms, cyclic or non-cyclic, implied in a substitution, is ground. This limits
the complexity of the unification algorithm to the following three cases:

e There is an unbound variable, that will become bound to the ground term.

e There is a function symbol with unground arguments. In this case, the algorithm looks for
the structural equivalence with the other term (ground), binding the unbound variables.

e There is a predicate symbol. Here, after testing the compatibility of name and arity with
the other term, the algorithm establishes if the associated non-terminals in the LALR(1)
driver have been generated in the same state, covering the same portion of the analyzed
text!. At this point, we distinguish two cases:

— If any of these comparisons does not succeed, unification is not possible. Both terms
represent different nodes in the proof shared-forest.

— If all these comparisons succeed, we can distinguish two further possibilities:

* When arguments are the same for both predicate symbols, that implies the
generation of a same node in the proof shared-forest in two different ways. So,
we stop computations on this branch.

* When arguments are not the same, we look for cycles in these, but only when the
associated non-terminal to the predicate symbol in the LALR(1) driver shows a
cyclic behavior.

Here, the algorithm verifies, one by one, the possible occurrence of repeated
terms by comparing the addresses of these with those of the arguments of the
other predicate symbol. The optimal sharing of computations of the dynamic
programming interpretation guarantees that cyclicity arises iff any of these
comparisons succeed. In this last case, the unification algorithm stops on the
pair of arguments concerned, while continuing with the rest of the arguments.
Retaking the cyclicity previously detected in the context-free backbone of the
running example, we check for the extension to the original DCG. We compare
the structures of the arguments associated to predicate symbol “f” in the stack
shared-forest in the center of Fig. 2, for the two upper occurrences. These
are numbered 1 and 2 in Fig. 3, which illustrates the process resulting from
the detection of the cycle numbered 3 in the figure. We use X, X', X" to
denote the data structures corresponding to the variables and functors of the two
terms in the example, and “—” to denote a unification link from a represented
symbol to its representative, while composed terms are denoted by a classic tree
representation. The right-hand-side of Fig. 2 shows the stack shared-forest after
the cycle detection.

Otherwise, unification does not succeed.

Lthis is equivalent to compare the corresponding back-pointers.
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Figure 3: Tree traversal for a cyclic structure

4 Complexity bounds

Assuming an input string of length n, our algorithm takes a time O(n?) and a space O(n?), in
the worst case. The reasons are:

e For a given DCG, the depth of a cyclic term is bounded by the number L x D, where L is
the maximum length of a cycle in its context-free skeleton, and D is the maximum depth
of a function symbol.

e The number of variables to access in an item and their ranges are both bounded. Only
the value for the back pointer depends on 4, and it is bounded by n. In consequence, the
number of items associated to the string position 7 is O(i), and the algorithm needs a
space O(Z1_ i) = O(n?).

e Push and horizontal transitions each execute a bounded number of steps per item in any
itemset, while pop ones can execute O(i) steps because they may have to add O(l) items
for the itemset in the position I pointed back to. So, it takes a time O(i?) for the itemset
in the position 7, in the worst case, and time complexity for a successful parsing, including
online unification and subsumption checking is O(X?_,i?) = O(n?).

For the class of bounded item grammars, the number of items is bounded regardless of the
itemset, and linear time and space on the length of the input string are attained. This has a
practical sense because this class of grammars includes the LALR(1) family and, in consequence,
linear parsing can be performed while local determinism is present.

5 A comparison with previous works

In relation to systems forcing the primacy of major category [1], we only consider the context-
free skeleton of a DCG as a guideline for parsing, without leaving out information about
subcategorization. So, we apply constraints due to unification as soon as rules are applied,
rather than considering a supplementary filtering phase after a classic context-free parsing.

On the other hand, the strategy described does not couple the design of descriptive and
operational formalisms [11], nor even limits them [10]. In particular, we do not split up the
infinite non-terminal domain into a finite set of equivalence classes that can be used for parsing.
The only constraint is the consideration of fixed-mode DCGs, that we justify for their practical
linguistic interest [9]. This allows us to conceive their consideration in a grammar development
context.

In comparison with algorithms based on the temporary replacement of pointers in
structures [3], our method does not need main memory references for pointer replacements.
In addition, the absence of backtracking makes it unnecessary to undo work after execution,
which facilitates the processing of shared structures.



Focusing now our attention on methods extending the concept of unification to composed
terms [2], the overload for non-cyclic structures is often great. In our case, we minimize this
factor of cost by a previous filtering phase to detect cyclicity in the context-free backbone. In the
same way, the treatment of fixed-mode programs in a bottom-up evaluation scheme simplifies
the unification protocol.

Finally, we can make reference to algorithms based on the memorization of nodes and
comparison to new ones [6]. Here, the disadvantage is that these algorithms, to the best of our
knowledge, cannot be optimized in order to avoid overload on non-cyclic structures.
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Figure 4: Number of items and instantiated variables

6 Experimental results

For the tests we looked for a DCG with the following characteristics that cannot be qualified
as advantageous:

e The language includes sentences with a high density of ambiguities, to prove the adequacy
of the algorithm for the sharing of computations.

e The grammar should also tackle the problem of recursive evaluation, and the data contain
cycles to prove the adaptation to this feature.

We choose the Dyck-language with one type of brackets, given by the following clauses:
v1:  s(nil) - €
Y2 s(s(T1,T2)) — s(T1) s(To)
v os(s(LT,])  — [s(T)]

In this case, the context-free skeleton is given by the context-free rules:

0) & -S4 (1) S—=¢ (2) S—=SS (3) S — [9]

As a consequence, taking as input strings sentences of the form [.7. [ ] .7.], given that the
grammar contains a rule § — S S, the number of cyclic parses grows exponentially with n.
This number is:

1
Co=C1=1 and Cn:<2:>n—+1’ ifn>1
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Figure 5: Economy of tests due to the use of the LALR(1) driver

We cannot really provide a comparison with other DCG parsers because of their problems in
dealing with cyclic structures. Retaking the work of the first and third authors in [13], we can
however consider results on S7 as a reference for non-dynamic SLR(1)-like methods [7, 9],
and naive dynamic bottom-up methods [5, 14] can be assimilated to S® results without
synchronization. This information is compiled in Fig. 4: The number of items generated in
S1, comparing the generated items in S' and S7, and the number of dynamic transitions
generated in S considering synchronization on itemsets as well as when that synchronization
is not considered. There is also a comparison of the variables instantiated in S', S? and S7.

In order to illustrate the gain of computational efficiency due to the use of the LALR(1)
driver, Fig. 5 shows the number of tests to be performed for cyclic detection in both cases, using
the LALR(1) driver and not.
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Figure 6: Relation between number of items in context-free and definite clause cases

In spite of giving a comparison with more simple formalisms, we have also tested the parser
against itself in the context-free version [12], using the context-free backbone of the example
grammar. The results are significant since the number of dynamic transitions is the same in



both cases and the increment in the number of items generated from the context-free parser to
the definite clause parser is really small, as we can see in Fig. 6.

7 Conclusion

We have described a strategy for implementing efficient cyclic tree traversal in DCG parsers.
Our operational frame is an LPDA in dynamic programming. The architecture is a parallel
bottom-up evaluation scheme optimized with a predictive control provided by an LALR(1)
driver, that avoids backtracking in all cases. The system assures both an optimal treatment of
sharing of computations, and completeness and correctness for fixed-mode DCGs.

The motivation for the development of our proposal is inspired by the operational
resemblance between classic context-free parsing and evaluation in first order Horn-logic, in
particular in the case of DCGs. In this sense, we take advantage of the simplicity in the
treatment of the context-free backbone of these logic programs to efficiently guide detection
of cyclic structures. So, we significantly reduce the amount of work necessary for cyclic tree
traversal, cutting down overload on non-cyclic structures.
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