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In this paper, we present a proposal intended to demonstrate the applicability
of tabulation techniques to pattern recognition problems, when we deal with
structures sharing some common parts. This work is motivated by the study of
information retrieval for textual databases, using pattern matching as a basis for
querying data.

To attain this goal, we study the existing relationship between parsing schema and
tree-to-tree correction in a dynamic programming frame. As a result, we describe
an algorithm that efficiently profits from sharing in syntactic structures.

1 INTRODUCTION

One critical aspect of an information system is indexing, that is, the representation
of concepts to get a well formed data structure for search. Until recently, this task
was accomplished by creating a bibliographic citation that references the original
text. This approach allows a reduction in time and space bounds, although it
does not facilitate the user from finding relevant information. In effect, it is the
combination of the words and their semantic implications that contain the value of
these concepts, which leads us to more sophisticated index representations, such
as context-free grammars. This information is inherent in the document and query.
So, matching becomes a possible mechanism to extract a common pattern from
multiple data and we could use it for indexing and querying in information retrieval
systems.

However, the language intended to represent the document can often only be
approximately defined, and ambiguity arises. So, it is convenient to merge parse
trees as much as possible into a single structure that allows them to share common
parts. Queries could also vary from the indices and an approximate matching
strategy becomes necessary. At this point, our aim is to exploit structural sharing
during the matching process in order to improve performances.



2 A DYNAMIC FRAME FOR PARSING

We introduce ICE [Vilares & Dion 1994], a parsing frame in dynamic
programming. Our aim is to parse sentences in the language

�������
generated by

a context-free grammar
���	��
�������������

, where



is the set of non-terminals,
�

the set of terminal symbols,
�

the rules and
�

the start symbol. The empty string
will be represented by � .
2.1 The operational model

We assume that, using a standard technique, we produce a push-down automaton
(PDA) from the grammar

�
. In practice, we chose a LALR(1) device, possibly non-

deterministic, which will allow us to improve sharing of computations. Formally,
a PDA can be represented as a 7-tuple � ���������������������! "��#$ %�&��'(�

where:
�

is
the set of states,

�
the set of input symbols,

�
the set of stack symbols,

�) 
the

initial state,
#* 

the initial stack symbol,
��'

the set of final states, and
�

a finite
set of transitions of the form +-,/.102 �43

with + ���657�
, . 58�:9<; �>= and

, ��3	5?�@9?; �)= .
Let the PDA be in a configuration

� + � ,?A � .CB � , where + is the current state, ,?A is
the stack contents with , on the top, .CB is the remaining input where the symbol
. is the next to be shifted, B 5D�FE . The application of +-,G.:02 �H3

results
in a configuration

���%��3 A � B � where the terminal symbol . has been scanned, ,
has been popped, and

3
has been pushed. If the terminal symbol . is � in the

transition, no input symbol is scanned. If , is � then no stack symbol is popped
from the stack. In a similar manner, if

3
is � then no stack symbol is pushed on

the stack. In the case of ambiguous recognition, several such transitions can be
applied.
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Figure 1: Node generation and dynamic transitions in ICE

We proceed by building items, compact representations of the recognizer stacks.
New items are produced by applying transitions to existing ones, until no new
application is possible. We associate a set of items

�JIK , called itemset, for the
symbol L K at the position M in the input string of length N , L�OQPRP S .



An item has the form � + � , ����I� ��� IK�� , where + is a PDA state, , is a stack symbol,� I� is the back pointer to the itemset associated to the input symbol L � at which
we began to look for that configuration of the automaton, and

� IK is the current
itemset. A merit ordering technique guarantees fairness and completeness, while
operations may add more items to the current itemset and may also put items in
the itemset corresponding to the following token to be analyzed from the input
string. To ignore redundant items we use a simple subsumption relation based on
the equality.

2.2 The parser

We represent a parse as the chain of the context-free rules used in a leftmost
reduction of the input sentence [Vilares & Dion 1994], rather than as a tree. When
the sentence has distinct parses, the set of all possible parse chains is represented
in finite shared form by a context-free grammar that generates that possibly infinite
set. Context-free grammars can be represented by AND-OR graphs that in our
case are precisely the shared-forest graph. In this graph, AND-nodes correspond
to the usual parse-tree nodes, while OR-nodes correspond to ambiguities. Sharing
of structures is represented by nodes accessed by more than one other node and
it may correspond to sharing of a complete subtree, but also sharing of a part of
the descendants of a given node, in fact, a consequence of the binary nature of the
transition protocol previously described. This feature allows to prove [Vilares &
Dion 1994] that time complexity for the parser is, in the worst case, � � N�� � when
the length of the input string is N . Space complexity is, also in the worst case,
� � N�� � .
Items are used as non-terminals of an output grammar

�
	6�G��
�	 ����	!���
	!���	 �
,

where

 	

is the set of all items,
� 	

the set of input symbols of the original grammar�
, and the rules in

��	
are constructed together with their left-hand-side item � by

the parsing algorithm. We generate a rule for the output grammar each time a
reduce or a shift action from the grammar defining the language is applied on the
stack, as shown in Fig. 1. The start symbol

�
	
is the last item produced by a

successful computation.

We build a push-down transducer (PDT), ��� � ��� ������� ������� ���  )��#$ &�&��'��
, from

our PDA model augmenting it with a component
�

representing the set of output
symbols, and considering transitions in

�
of the form + , .802 �:3��

with
+ ��� 56� ; . 5��H9; �)= ; , ��3	5?�@9; �)= , and

�?5�� E
.

Given � � ��� + � , � . �������%��3*��� � , we translate it to items of the following form:



��������	� 
��	������� �������� �	����� �	� ���	� ������ �!������ �	�"� if #%$ &�� ����	� 
��	������� �������� �	����� �	� 
'� # ������ ������)(+*	� �	,.-0/1���
if #%$ �23� ����	� 
��	���� �� ��� �� � �	����� �	� 
'� # ��� �� ��� �� � ��, * /4,657�
if #98�:; � ����	� 
��	� ��� �� ��� �� � �	��� � ��=<��	� ����� ��� �> ��� �� � �	���?�@�	� �3�	� ��� �> ��� �� � ��,.AB/C,.D=,6E=�
if #%$ �F � 8HG such that: I �3�J���K����"���H�L
��M����"�

with: NOQP
It RTSVUXWZY\[^]�_�W It U NO"` [aRHbdc NO"`eP

It RTSfUXWZY\[e]�_ It
and g.hdikj l�m!nom7prqs m7prqs)t�u.v g u ikj l�m!nom7prqs m7pBqs0v g6wxikj l�m�yzm=prq{ m=prqs0vg6|xikj }\m Y m=prq~ m7prqs0v g.�dikj }\m!yzm7pBq~ m=prq{�v g6�xikj l�m Y m7prq{ m7pBqsBv
where It is the set of all parse items and ���� is called the set of dynamic transitions.
Succinctly, we can describe the preceding cases as follows:

1. A goto action from the state + to state
�

under transition , in the LALR(1)
automaton.

2. A push of terminal . from state + . The new item belongs to the next itemset� IK�� O .
3. A push of non-terminal

3
from state + .

4. A pop action from state + , where
�

is an ancestor of + under transition , .
In this case, we do not generate a new item, but a dynamic transition �� � to
treat the absence of information about the rest of the stack. This transition is
applicable to the configuration resulting of the first one, but also on those to
be generated and sharing the same syntactic structure, as shown in Fig. 1.

3 A DYNAMIC FRAME FOR APPROXIMATE TREE

MATCHING

We introduce the Zhang and Shasha’s approach [Zhang & Shasha 1989] to
determine the distance between two trees as measured by the number of edit
operations needed to transform one tree into the other.

3.1 The operational model

Given trees, � O and � � , we define an edit operation as a pair . 2 � � . 5
labels

� � O �*9<; �)= � � 5 labels
� � �
� 9 ; �>= � � . � � �%�� � � � � � . Deleting a node . ,

. 2 � , means making the children of . become the children of the parent of . and



then removing . . Inserting, � 2�� , is the complement of delete. Changing a node,
.62 � , means changing the node . label into � . Generic examples of such edit
operations are shown in Fig. 2.
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Figure 2: Edit operations

Each edit operation has an associated cost, � � .?2 � � , defined by a metric � , that
we can extend to a sequence

�
of edit operations � O � � �

������� � � S in the form
� � �$� ����� 	
�K�� O � � � � K �Q� . Formally, the distance between � O and � � is defined by the
metric:

��� � O � � �
�$�

min
; � � �$��� � editing sequence taking � O��� � � =

In order to simplify the computation of
�
, Tai introduces in [Tai 1978] a particular

kind of edit sequences called mappings. Given a tree � , we shall consider a
postorder traversal to name each node M uniquely by ��� M � , as shown in the left-
hand side of Fig. 3. Then, a mapping from � O to � � is a triple

��� � � O � � �
�
, where�

is a set of integer pairs
� M ���%� satisfying, for each ��� M O � M � ����� O � and

��� � O ��� � ����� � � :� u i � w
iff � u i � w (one-to-one)� u j � u v is to the left of

� u j � w v iff
� w3j � u v is to the left of

� w�j � w v (sibling order)� u j � u v is an ancestor of
� u j � w v iff

� w j � u v is an ancestor of
� w j � w v (ancestor order)

We show, in the right-hand side of Fig. 3, an example of mapping between
two trees. The rightmost diagram includes a sequence of edit operations not
constituting a mapping. The cost, � ���D� , of a mapping

���@� � O � � �
�

is computed
from relabeling, deleting and inserting operations, as follows:

� ���8�J� �
� K! �#"�$&% �

� � O � M � 2 � � �
� � �(')�

K*$,+ �
� � O � M � 2 � �-'.�

��$�/ �
� � 2 � � �

� � �

where 0 and 1 are, respectively, the nodes in � O and � � not touched by
any line in

�
. Tai proves, given trees � O and � � , that

�%� � O � � �
� �

2 M N ; � ���D���3�
mapping from � O to � � = , which allows us to reduce the

computation effort, focusing only on edit sequences being a mapping.



j

ihc

g

b

fe

T[1..8]

d

h i

j

T[6..9]

4

a

b c d

f g h i

j

3

e
1 2 6

5

7

10

9

8

a

b c d

e

f g

a

b c d

e

g

f

a

b c d

e

f g

a

b c d

e

g

f

Postorder traversal of a tree. An example on mappings.

Figure 3: Postorder traversal and mappings

3.2 The algorithm

A major characteristic of the Zhang and Shasha’s algorithm is its bottom-up
oriented approach. The minimum cost mapping between two nodes in different
trees depends only on mapping the nodes and their children. More exactly, given
the l keyroots

� � � , the set of all nodes in � which have a left sibling plus the root,
root

� � � , of � ; the algorithm proceeds through the nodes determining mappings
from all leaf l keyroots first, then all l keyroots at the next higher level, and so on
to the root.

We introduce � � M � (resp. .CN�� � M � ) as the leftmost leaf descendant of the subtree
rooted at � K (resp. the ancestors of � K ) in a tree � , and ��� M � � � � as the ordered
subforest of � induced by the nodes numbered M to

�
inclusive, as it is shown in the

left-hand side of Fig. 3. In particular, we have ��� � � M � � � M � is the tree rooted at ��� M � .
We define the forest edition distance as a generalization of

�
, in the form

forest dist
� � O � MQO � � M � �

� � � �
� O � � � � �

�$� �%� � O � MQO � � M � �
� � � �

� O � � � � �
�

that we shall denote forest dist
� M O � � M �

��� O � � � �
�

when the context is clear. Intuitively,
this new concept computes the distance between two nodes, � O � M � � and � � �

�
� � , in

the context of their left siblings in the corresponding trees, while the corresponding
tree distance,

��� � O � M � �
� � � �

�
� �
�
, is computed only from their descendants.

Formally, we compute tree dist
� � O � � �

�
applying the formulas that follows, for

nodes MQO 5 .�N�� � M � and
� O 5 .CN�� � �%� , such as illustrated in Fig. 4, taking into

account the different cases we have that forest dist
� � � M O � � � M � � � � O � � � ��� is:



i1 1jl(i) = l(   )  and  l(j) = l(   )forestdist(l(i  ) .. i-1, l(j  ) .. j-1)

j1

l(j  )1

l(j)

tree(j) j
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treedist(i,j) = forestdist(l(i) .. i, l(j) .. j)

T  [l(i  ) .. l(i)-1]  1 1

1i

l(i  )1

. . . 
i

l(i)

l(i)-1

tree(i)

T  [l(j  ) .. l(j)-1]  2 1

j1

l(j  )1

. . . 

l(j)

jl(j)-1

tree(j)

1 1forestdist(l(i  ) .. l(i)-1, l(j  ) .. l(j)-1)
l(i) = l(   )  or  l(j) = l(   )i1 1j

1 1

Figure 4: The forest distance in Zhang and Shasha’s algorithm

min

�� � forest dist ����� � u��
	�	 � ]� m ��� � u���	�	 � � � � � � u j � v _ Y � m
forest dist ����� � u��
	�	 � m ��� � u���	�	 �e]�� � � � �JY^_ � w j � v � m
forest dist ����� � u��
	�	 � ]� m ��� � u���	�	 �a]� ��� � � � u j � v _ � w j � v �

� �
�

iff ��� � � i ��� � u � and ��� � � i ��� � u �
min

�� � forest dist ����� � u �
	�	 � ]� m ��� � u ��	�	 � � � � � � u j � v _ Y � m
forest dist ����� � u �
	�	 � m ��� � u ��	�	 �e]�� � � � ��Y^_ � w�j � v � m
forest dist ����� � u �
	�	 ��� � � ]� m ��� � u ��	�	 ��� � � ]�� ��� tree dist � � m � �

� �
�

otherwise

Now, to compute the distance between � O and � � , it will be sufficient to take into
account that

tree dist
� � O � � �

���
forest dist

� � � root
� � O �Q� � � root

� � O ��� � � root
� � �
�Q� � �

root
� � �
�Q�

It is important to remark that conditions of the type �
� M O � �� � � M � (resp. �

� � O � �� � � ��� )
rely on nodes in l keyroots

� � O � (resp. nodes in l keyroots
� � �
�
), as it is also the

case of root
� � O � (resp. root

� � �
�
). The time complexity of this algorithm is

� � N O N � 2 M N
��� O � � O � 2 M N ��� � � � � �Q� , and the space complexity is � � N O N �

�
, both in

the worst case, where N K is the number of nodes in the tree � K , � K is the depth of � K
and � K is the number of leaves in � K , M � � ��� .



4 RELATING PARSING AND TREE MATCHING

The major question of previous related works [Zhang & Shasha 1989], is the
tree distance algorithm itself. However, in dealing with information retrieval
often parsing and tree-to-tree correction are topologically related. Typically, this
relation is the case when we deal with unrestricted natural language texts, including
ambiguous sentences, and the syntactic representation used for indexing can be
composed by trees with some common parts. In this context, the number of
matching operations would be uselessly multiplied and sharing of data structures
and computations would save space needed to represent the trees. To attain this
goal, we first need to isolate the factors at the origin of structural sharing.

4.1 Sharing of a tail of sons

To get the best performance, it is necessary to understand the mechanisms that
cause the phenomenon of tree duplication. In this case, our parsing framework is
interesting because it identifies syntactic and computation structures in the same
concept, the item.
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for a top-down parsing.
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Figure 5: How shared forest are built using an AND-OR formalism

Given that actions on the PDA depend on the first and possibly second elements in
the stack, the output grammar is a 2-form one and sharing of a tail of sons in a node
of the resulting forest is possible. More exactly, bottom-up parsing may share only
the rightmost constituents, while top-down parsing may only share the leftmost
ones. This relies to the type of search used to built the forest. Breadth first search
results on bottom-up constructions and depth first search results on top-down ones,
as it is shown in Fig. 5.

Taking into account that our parsing scheme is bottom-up, rightmost search of tree
constituents should be considered in order to take advantage from sharing achieved
during the parsing process.



4.2 Adapting the approximate tree matching strategy

One major observation we noted is that Zhang and Shasha consider a postorder
traversal, computing the forest distance by left-recursion on this search. Realizing
that our parser shares computations from right-to-left, we contend that an efficient
integration of both algorithms requires to redefine the architecture of the original
matching strategy.

To accomplish this change, nodes in a tree � will be first numbered considering an
inverse postorder traversal, as shown in Fig. 6. We also introduce r keyroots

� � � as
the set of all nodes in a tree � which have a right sibling plus the root, root

� � � , of
� . And also we define �

� M � as the rightmost leaf descendant of the subtree rooted
at � K in a tree � .
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Figure 6: The forest distance using an inverse postorder numbering

From here, the alternative construction for the forest edition distance is analogous
to the original algorithm, as shown in Fig. 7. For a better understanding we shall
present the computations used with the inverse postorder. Given trees � O and � � ,
and nodes M O 5 .CN�� � M � and

� O 5 .�N�� � ��� , we have that forest dist
�
�
� M O � � � M � � � � O � � � ���

is :

min

�� � forest dist ��� � � u ��	�	 � ]�� m � � � u ��	�	 � � � � � � u j � v _ Y � m
forest dist ��� � � u ��	�	 � m � � � u ��	�	 �e]�� � � � �JY^_ � w�j � v � m
forest dist ��� � � u ��	�	 � ]�� m � � � u ��	�	 �a]� ��� � � � u j � v _ � w3j � v �

� �
�

iff � � � � i � � � u � and � � � � i � � � u �
min

�� � forest dist ��� � � u ��	�	 � ]�� m � � � u ��	�	 � � � � � � u j � v _ Y � m
forest dist ��� � � u���	�	 � m � � � u ��	�	 �e]�� � � � ��Ye_ � w j � v � m
forest dist ��� � � u���	�	 � � � � ]� m � � � u��
	�	 � � � � ]�� ��� tree dist � � m � �

� �
�

otherwise

To compute tree dist
� � O � � �

�
it will be sufficient to take into account that

tree dist
� � O � � �

�$�
forest dist

�
root

� � O � � � � � root
� � O �Q��� root

� � �
� � �

�
�
root

� � �
�Q�Q�

Lastly, time and space bounds are the same as in the classic postorder version.
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Figure 7: The forest distance in our proposal

5 APPROXIMATE MATCHING IN SHARED FOREST

Once we have motivated and formalized the adaptation of a classic approximate
matching approach to efficiently deal with bottom-up parsers, we now offer a
simple explanation about how both environments, parsing, and approximate tree
matching, can be integrated in practice.

To start with, let � O be a labeled ordered tree, and � � an AND-OR graph, both of
them built using our parsing frame. We shall identify � O with a query and � � with
a part of the syntactic representation for a textual database with a certain degree of
ambiguity. The presence of OR nodes in � � has two main implications in our work:
Firstly, there will exist situations where we must handle simultaneous values for
some forest distances and, secondly, the parser may share some structures among
the descendants of the different branches in an OR node. We shall now present the
manner we calculate the distance between a pattern tree and the set of trees that
are represented within the AND-OR graph, and how to take advantage of the shared
structures created by the parser.

Let � O � M � be the current node in the inverse postorder for � O and M O 5 anc
� M � a

r keyroot. Given an OR node � � �
� � we can distinguish two situations, depending

on the situation of this OR node and the situation of the r keyroots of � � .



5.1 Sharing into a same r keyroot

Let � � �
��� � and � � �

��� � � be the nodes we are dealing with in parallel for two branches,
labeled � � �

��� � and � � �
��� � � , of the OR node � � �

� � . We have that
� O 5 anc

� � � ���
anc

� ��� � �
, that is, the tree rooted at the r keyroot � � �

� O � includes the OR alternatives
� � �

��� � and � � �
��� � � .

Such situation is shown in Fig. 8 using a classic representation and the AND-
OR graphs. Here, the part shaded in light color refers to nodes whose distance
have been computed in the inverse postorder before the OR node � � �

� � . The
part shaded in dark color represents a shared structure. The notation “ ����� ”
in figures representing AND-OR graphs, expresses that we descend along the
rightmost branch of the corresponding tree.

We shall assume that nodes � � � �
� � � �	� � � and � � � �

� � � � �
� � � are the same, that
is, their corresponding subtrees are shared. So, � � � �

� ��� � � (resp. � � � �
� ��� � � � ) is the

following node in � � �
� � � (resp. � � �

� � � � ) to deal with once the distance for the shared
structure has been computed.

At this point, our aim is to compute the value for forest dist
�
�
� M O � � � M � �

� � O � � � � ����� 5; � � � � � � = , proving that we can translate parse sharing on sharing of computations
for these distances.

Formally, the values for forest dist
�
�
� M O � � � M � �

� � O � � � � ����� 54; � � � � � � = are given by:

min

���
�� forest dist

�
�
� M�O � � � M � � � �

� � O � � � � � ' � � � O � M � 2 � ���
forest dist

�
�
� M O � � � M � �

� � O � � � � � � � ' � � � 2 � � �
� � ���

forest dist
�
�
� M O � � � M � � � �

� � O � � � � � � � ' � � � O � M � 2 � � �
� � �

� ��
��

iff �
� M �$� �

� M O � and �
��� ��� �

� � O �

min

���
�� forest dist

�
�
� M�O � � � M � � � �

� � O � � � � � ' � � � O � M � 2 � ���
forest dist

�
�
� M O � � � M � �

� � O � � � � � � � ' � � � 2 � � �
� � ���

forest dist
�
�
� M O � � � � � M ��� � � �

� � O � � � � ��� ��� � � '
tree dist

� M ��� �
� ��
��

otherwise

Here, �
� � O � ��

�
��� � , since we have assumed there is a shared structure between

� � � �
��� � � and � � � �

� � O � � . So, we can focus on the alternative computation, where:

1. The values for forest dist
�
�
� M�O � � � M � � � �

� � O � � � � ����� 5 ; ��������� � = have
been computed by the matching algorithm in a previous step. So, in this
case, parse sharing has no consequences on the natural computation for the
distances.
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Figure 8: Sharing into a same r keyroot

2. Two cases are possible in relation to the nature of nodes � � �
� � � � 54; � � �(� � � = :

� If both nodes are leaves, then �
��� �$� � . As a consequence, we have that

� � �
� � � � � � � � � �

� � � � � � � � � � � �
� � � � ��� � � � � � �

� � � � � �
and the values forest dist

�
�
� M�O � � � M � �

� � O � � � � � � ��� � 54; ����� ��� � = are also
the same.

� Otherwise, following the inverse postorder, we would arrive at the
rightmost leaves of � � �

��� � and � � �
��� � � , where we could apply the

reasoning considered in the previous case.

3. Values for the distances forest dist
�
�
� M O � � � � � M �
� � � �

� � O � � � � ��� �	� � ��� � 5; ��� � ��� � = are identical, given that nodes � � � �
��� � � � � � � 54; ����� ��� � = are shared

by the parser.

5.2 Sharing between different r keyroots

We have that
� �O 5 .CN�� � � � � and

� � �O 5 .CN�� � � � � � , with
� �O ���� � �O , are two r keyroots.

We also have an OR node � � �
� � being a common ancestor of these two nodes. We

suppose that the r keyroots are in different branches, that is, there exists a r keyroot,
� � �
� �O � (resp. � � �

� � �O � ), in the branch labeled � � �
��� � (resp. � � �

��� � � ).
Our aim now is to compute the value for distances forest dist

�
�
� M O � � � M � �

��� O � � � � � ,
where pairs

��� O ��� � are in
;�� � �O � � � ���F� � � �O ��� � � � = . Formally, we have that these values

are given by:



min

�� � forest dist � � � � u ��	�	 � ]�� m � � �� u ��	�	 �� � � � � � u j � v _ Y � m
forest dist � � � � u ��	�	 � m � � �� u �
	�	 �� ]� � � � �JY^_ � w3j �� v � m
forest dist � � � � u ��	�	 � ]�� m � � �� u ��	�	 �� ]�� ��� � � � u j � v _ � w3j �� v �

� �
�

iff � � � � i � � � u�� and � � �� � i � � �� u��
min

�� � forest dist � � � � u���	�	 � ]�� m � � �� u ��	�	 �� � � � � � u j � v _ Y � m
forest dist � � � � u���	�	 � m � � �� u��
	�	 �� ]� � � � ��Ye_ � w j �� v � m
forest dist � � � � u���	�	 � � � � ]�� m � � �� u���	�	 � � �� � ]�� ��� tree dist � � m �� �

� �
�

otherwise

The situation, shown in Fig. 9, makes possible �
� M �$� �

� M O � and �
��� ��� �

��� O � . In the
first case, we can assume that a tail of sons is shared by nodes ��� � � ��� 5<; � � ��� � � = .
We can also assume that this tail is proper given that, otherwise, our parser
guarantees that the nodes � � �

� � ��� 5H; ����� ��� � = are also shared.
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Figure 9: Sharing between different r keyroots (first case)

Taking into account our parsing strategy, which identifies syntactic structures and
computations, we conclude that the distances forest dist

�
�
� M O � � � M � �

��� O � � � � � , with��� O ��� � 5 ;�� ���O � ��� ���@� ��� �O ����� � � = do not depend on previous computations over
the shared tail, as shown in the left-hand side of Fig. 9. So, this sharing has no
consequences on the calculus, although it will have effects on the computation of
distances for nodes in the rightmost branch of the tree immediately to the left of
the shared tail of sons, which are denoted by a double pointed line in Fig. 9.

We consider now the second case, that is, the computation of the forest distance
when �

��� O � ��
�
��� � , as shown in Fig. 10. Here, in relation to each one of the three

alternative values needed to compute the minimum, we have that:

1. For forest dist
�
�
� M O � � � M � � � �

��� O � � � � ������� O � � �5 ;�� � �O � � � ����� � � �O ��� � � � = the
matching algorithm has computed the needed values in a previous step and
parse sharing does not affect the computation for distances.



2. We distinguish two cases in relation to the nature of nodes � � �
� � � � 5;�� � � ��� � � �

. We shall apply the same reasoning considered when we had an
only r keyroot:

� If both nodes are leaves, then �
��� �$� � . As a consequence, we have that

� � �
� � � � � � � � � �

� � � � � � � � � � � �
� � � � ��� � � � � � �

� � � � � �
and therefore the values for distances forest dist

�
�
� M O � � � M � �

��� O � � � � � � �
with

��� O ��� ��� 54;�� ���O � ��� ����� ��� �O ����� � � = , are also the same.

� Otherwise, following the inverse postorder, we arrive to the rightmost
leaves of � � �

��� � and � � �
��� � � , where we can apply the reasoning

considered in the previous case.

3. Values for the distances forest dist
�
�
� M O � � � � � M �
� � � �

� �� O � � � � ��� �	� � ��� � 5; � � � � � � = are identical, given that the trees rooted by nodes � � � �
��� � � � � ��� 5; ��� � ��� � = are shared by the parser.
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Figure 10: Sharing between different r keyroots (second case)

6 EXPERIMENTAL RESULTS

To facilitate understanding we consider a simple example to illustrate our
discussion: the language,

�
, of arithmetic expressions. We compare our proposal

with Tai [Tai 1978], and Zhang and Shasha’s algorithm [Zhang & Shasha 1989].
We consider three different grammars generating

�
: two deterministic,

���
and

���
,

representing respectively the left and right associative versions for the arithmetic



operators; and one non-deterministic
���

. To simplify the explanation, we focus
on matching phenomena assuming that parsers are built using ICE [Vilares & Dion
1994]. Lexical information is common in all cases, and tests have been applied on
target inputs of the form . O ' . �

' ����� ' . K ' . K�� O , with M even, representing the
number of addition operators in the expression. Given that, in the non-deterministic
case,

� �
contains a rule ”Exp ::= Exp + Exp”, these programs have a number of

ambiguous parses which grows exponentially with i. This number is:

�  ��� O � � and
� K ����� ��	� �

M ' �
�

if M�
��

allowing us to study the compilation schema when highly redundant computations
appears. As pattern, we have used deterministic parse trees from inputs of the form
. O ' � O ' . �

' � �
' ����� � K� O ' . K�� O ' � K�� O ' . K�� O , where � � �� . ��� O , for all� 54; � ���%������� M � � � M ' �!= .

In the deterministic case, patterns are built from the left-associative (resp. right-
associative) interpretation for

� �
(resp.

� �
), which allows us to evaluate the impact

of traversal orientation in the performance of the pattern matching algorithm. So,
the rightmost diagram in Fig. 11 proves the adaptation of our proposal (resp.
Zhang and Shasha’s algorithm) to left-recursive (resp. right-recursive) derivations.
This corroborates our previous theoretical conclusions and justifies the interest of
the work presented. These practical tests also show the independence of Tai’s
algorithm of the grammar rules topology. This is basically due to the fact that
mapping between two nodes is not computed from the mapping between their
descendents, but from their ancestors, where structural sharing is not allowed by
the parser. As a consequence, Tai’s approach does not benefit from the dynamic
programming architecture.

In the non-deterministic case, patterns are built from the left-associative
interpretation of the query, which is not relevant given that rules in

���
are

symmetric. Here, we evaluate the gain in efficiency due to sharing of computations
in a dynamic frame, as shown in the leftmost diagram of Fig. 11.

7 CONCLUSIONS

Approximate tree matching can be adapted to deal with shared forest. To improve
the performances, the impact of the parsing strategy in the resulting shared
structure should be studied. This allows to formally justify the type of traversal
used to visit nodes during the matching, taking the maximum advantage from parse
sharing.
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