
Searching for asymptotic error repair?

M. Vilares, V.M. Darriba, and M.A. Alonso

Department of Computer Science, University of A Coruña
Campus de Elviña s/n, 15071 A Coruña, Spain

{vilares,alonso}@udc.es, darriba@dc.fi.udc.es

c© Springer-Verlag

Abstract. We work in the domain of a regional least-cost strategy with
dynamic validation in order to avoid cascaded errors [3], extending the
theoretical model to illustrate its asymptotic equivalence with global
repair algorithms. This is an objective criterion to measure the quality of
an error repair algorithm, since the point of reference is a technique that
guarantees the best quality for a given error metric when all contextual
information is available. To the best of our knowledge, it is the first
time that such a discussion takes place. We also reformulate the parsing
framework using parsing schemata [1], simplifying the description.

1 The parsing model

Our aim is to parse a sentence w1...n = w1 . . . wn according to an unrestricted
context-free grammar G = (N,Σ,P, S), where the empty string is represented by
ε. We generate from G a push-down automaton (pda) for the language L(G). In
practice, we chose an lalr(1) device generated by Ice [2], although any shift-
reduce strategy is adequate. A pda is a 7-tuple A = (Q, Σ,∆, δ, q0 , Z0 ,Qf)
where: Q is the set of states, Σ the set of input symbols, ∆ the set of stack
symbols, q0 the initial state, Z0 the initial stack symbol, Qf the set of final
states, and δ a finite set of transitions of the form δ(p,X, a) 3 (q, Y) with
p, q ∈ Q, a ∈ Σ ∪ {ε} and X,Y ∈ ∆ ∪ {ε}.

To get polynomial complexity, we avoid duplicating stack contents when am-
biguity arises, storing them in a table I of items, I = {[q,X, i, j], q ∈ Q, X ∈
{ε} ∪ {∇r,s}, 0 ≤ i ≤ j}; where q is the current state, X is the top of the
stack, and the positions i and j indicate the substring wi+1 . . . wj spanned by
the last category pushed onto the stack. The symbol ∇r,s indicates that the part
Ar,s+1 . . . Ar,nr

of a rule Ar,0 → Ar,1 . . . Ar,nr
has been recognized.

We describe the parser using parsing schemata [1]. A parsing schema is a
triple 〈I,H,D〉, with H = {[a, i, i + 1], a = wi} an initial set of items called
hypothesis that encodes the sentence to be parsed1, and D a set of deduction

? Research partially supported by the Spanish Government under projects TIC2000-
0370-C02-01 and HP2001-0044, and the Autonomous Government of Galicia under
project PGIDT01PXI10506PN.

1 The empty string, ε, is represented by the empty set of hypothesis, ∅. An input string
w1...n, n ≥ 1 is represented by {[w1, 0, 1], [w2, 1, 2], . . . , [wn, n − 1, n]}.

steps that allow new items to be derived from already known items. Deduction
steps are of the form {η1, . . . , ηk ` ξ /conds}, meaning that if all antecedents ηi

are present and the conditions conds are satisfied, then the consequent ξ should
be generated. In our case, D = DInit ∪ DShift ∪ DSel ∪ DRed ∪ DHead, where:

DShift = {[q, X, i, j] ` [q′, ε, j, j + 1]

/

∃ [a, j, j + 1] ∈ H
shiftq′ ∈ action(q, a)

}

DSel = {[q, ε, i, j] ` [q,∇r,nr
, j, j]

/

∃ [a, j, j + 1] ∈ H
reducer ∈ action(q, a)

}

DRed = {[q,∇r,s, k, j][q′, ε, i, k] ` [q′,∇r,s−1, i, j] /q′ ∈ reveal(q)}
DInit = {` [q0, ε, 0, 0] } DHead = { [q,∇r,0, i, j] ` [q′, ε, i, j] /q′ ∈ goto(q, Ar,0) }

with q0 ∈ Q the initial state, and action and goto entries in the pda tables.
We say that q′ ∈ reveal(q) iff ∃Y ∈ N ∪ Σ such that shiftq ∈ action(q′, Y) or
q ∈ goto(q′, Y), that is, when there exists a transition from q′ to q in A. A
deduction step Init is in charge of starting the parsing process. The step Shift
corresponds to pushing a terminal a onto the top of the stack when the action
to be performed is a shift to state st′. A step Sel corresponds to pushing the
∇r,nr

symbol onto the top of the stack in order to start the reduction of a rule
r. The reduction of a rule of length nr > 0 is performed by a set of nr steps
Red, each of them corresponding to a pop transition replacing the two elements
∇r,s Xr,s placed on the top of the stack by the element ∇r,s−1. The reduction
of a rule r is finished by a step Head corresponding to a swap transition that
recognizes the top element ∇r,0 as equivalent to the left-hand side Ar,0 of that
rule, and performs the corresponding change of state. The parse attains a worst
case time (resp. space) complexity O(n3) (resp. O(n2)). The input string has
been recognized iff the final item [qf ,∇0,0, 0, n], qf ∈ Qf has been generated.

2 The error repair algorithm

We first assume that we are dealing with the first error detected, using the ter-
minology introduced in [3]. We extend the item structure with the accumulated
error counter e, resulting in items [p,X, i, j, e]. Once the detection items have
been fixed, we apply the set of deduction steps in error mode, Derror, that follows:

DShift
error = {[q, X, i, j, 0] ` [q′, a, j, j + 1, 0]

/

∃[a, j, j + 1] ∈ H
shiftq′ ∈ action(q, a)

}

DInsert
error = {[q, ε, i, j, 0] ` [q, ε, j, j, I(a)]

/

6 ∃ shiftq′ ∈ action(q, a)}

DDelete
error = {[q, ε, i, j, 0] ` [q, ε, j, j + 1, D(wi)]}

DReplace
error = {[q, ε, i, j, 0] ` [q, ε, j, j + 1, R(a)]

/

6 ∃ shiftq′ ∈ action(q, a)}

This process continues until a repair covers both error and detection items. Once
this has been performed on each detection item, we select the corresponding
regional repairs and the parse goes back to standard mode. Error counters are
summarized at the time of reductions by adding counters on popped items:

DSel
error = {[q, ε, i, j, e] ` [q,∇r,nr

, j, j, e], reducer ∈ action(q, a)}
DRed

error = {[q,∇r,s, k, j, e][q′, ε, i, k, e′] ` [q′,∇r,s−1, i, j, e + e′] /q′ ∈ reveal(q)}
DHead

error = { [q,∇r,0, i, j, e] ` [q′, ε, i, j, e] /q′ ∈ goto(q, Ar,0) }

with DInit
error = DInit. When the current repair is not the first one, it can modify a

previous repair in order to avoid cascaded repairs by adding the cost of the new
error hypotheses to profit from the experience gained from previous ones.

3 Asymptotic behavior

We consider the arithmetical expressions to illustrate this point. In the worst
case, when the error repair zone becomes the entire input string, performance
and cost are the same as for global error repair. We introduce two deterministic
grammars, GL and GR, and a non-deterministic one GN :

GL: E → E + T | T GR: E → T + E | T GN : S → S + S | (S) | number
T → (E) | number T → (E) | number

As GN contains a rule “S → S+S”, sentences of the form b1+b2+ . . .+bi+1 have
a number of exponential parses, which allows us to evaluate strongly ambiguous
contexts. In the deterministic case, parses are built from the left-associative
(resp. right-associative) interpretation for GL (resp. GR), in order to estimate the
impact of traversal orientation. Erroneous input strings are of the form: “b1 +
. . .+bi−1+(bi+. . .+(b[n/3]+b[n/3]+1b[n/3]+2+. . .+b`b`+1+b`+2+. . .+bn”, where
i ∈ {[n/3], . . . , 1} and ` = 3[n/3]−2i+1, with [n/3] being the integer part of n/3.
Given i, regional repairs are obtained by replacing tokens b3i by closed brackets
to obtain “b1+ . . .+bi−1+(bi+ . . .+(b[n/3]+b[n/3]+1)+ . . .+b`)+b`+2+ . . .+bn”.

3.1 The error repair region

We focus on the evolution of this region in relation to the location of the point
of error, in opposition to static strategies associated to global repair approaches.

Location of points of detection. As is shown in the left-hand-side of Fig. 1,
when we deal with global approach all input positions are points of detection.
In the regional case, results depend on the grammar. So, although the number
of points of detection grows with i because of the increase in the number of
points of error, this number is higher for GN (resp. GR). This is due to the right-
associativity introduced by the rule “S → S + S” (resp. “E → T + E”), which
generates a reduction for each “+” operator in the parsed prefix, illustrating the
convergence of regional repairs with global ones. The reason for which results for
GN and GR do not agree with results for the global case is because in regional
repairs, operators “+” are not points of detection, while this is possible in a
global one. The maximal number of points for GN and GR, corresponding to the
maximum size of the repair region as is shown in the right-hand-side of Fig. 1,
is approximately half of those related to the global case.

Factors determining the size. We first focus on the case of GR (resp. GN),
profiting from the sequence of cascaded errors raised by the repair process ex-
emplified. When the algorithm detects the first point of error at b[n/3]+1, it takes

b[n/3] as point of detection and proposes as regional repair the replacement of
b[n/3]+2 by a closed bracket. Once this has been done, the algorithm returns the
control to the parse until a new point of error is detected at b[n/3]+3. In this case,
“(b[n/3]” is taken as the point of detection, which implies that we have moved
back to a point previous to that proposed for the first error detected at b[n/3]+1.

0

5

10

15

20

25

30

35

40

2 4 6 8 10 12 14

N
um

be
r

of
 p

oi
nt

s
of

 d
et

ec
tio

n

Point of error

global cases
regional case, G_L

regional case, G_R and G_N cases

0

5

10

15

20

25

30

35

40

2 4 6 8 10 12 14

S
iz

e
of

 th
e

re
gi

on
 o

f r
ep

ai
r,

 to
ke

ns

Point of error

global cases
regional case, G_L

regional cases, G_R and G_N

Fig. 1. Points of detection (resp. repair scope) vs. position of the point of error

More exactly, the algorithm asks whether the first regional repair applied was
not optimal, taking into account the information about the parsing process now
available. Perhaps the best solution for this first error would have been either
to delete b[n/3]+2 or to insert “+” between b[n/3]+1 and b[n/3]+2, which at that
moment were not considered because the reductions defining the scopes of these
repairs were not minimal in relation to that of the regional repair finally applied.

scopes of regional repair
points of detection

����� ������� 	�

��� ����������� 	�

��������� 	�

��� ������� 	�

��� ��������� 	�

��� ������� 	�
���� � �!����� 	�

��� ��"���� 	�
���� ��#$� �����

Fig. 2. An example on cascaded errors for GR and GN

We then repeat the same steps as in the first case, proposing the regional
repair that replaces b[n/3]+4 by a closed bracket, followed by a shift over “+”.
So, the frontier of the new error repair region is “(b[n/3]−1 + (b[n/3] + b[n/3]+1) +
b[n/3]+3)”, which includes the scope of the previous regional repair, whose frontier
was “(b[n/3] + b[n/3]+1)”; as is shown in Fig. 2. The algorithm continues to apply
the previous process for all i ∈ {[n/3], . . . , 1}, until the size of the repair region
extends to the whole original input string, as is shown in Fig. 1.

In the case of GL, the size of the repair region grows with the position of the
point of error, bl, l ∈ {[n/3] + 1, [n/3] + 3, . . . , 3[n/3]− 2i + 1}. This behavior is
also a consequence of the presence of cascaded errors, as is shown in Fig. 3. In

scopes of regional repair
points of detection

����� ������� �
	���
 ����
�������� �
	���
 ����������� �
	���
������ �
	���
 ������� �
	���
 ��������� ��	���
 ������� ��	���
 �� !����� �
	���
 ��"#��� �
	���
 ��$%� �����

Fig. 3. An example on cascaded errors for GL

comparison with previous results, when the algorithm detects the first point of
error at b[n/3]+1, it takes b[n/3] as the point of detection and proposes as regional
repair the replacement of b[n/3]+2 by a closed bracket, as was the case for GR

and GN . As for GR, the rule providing the reduction is “F → (E)”. However,
in this case, this reduction does not characterize a regional repair because it is
followed by a chain of reductions in GL previous to the next shift action, and not
by an immediate shift action. These reductions are given by the rules “T → F”
and “E → E + T”, and the frontier of the repair region associated to this first
error is “b[n/3]−1 + (b[n/3] + b[n/3]+1)”. Applying a similar reasoning to the next
errors in the input string, we conclude that the sizes of the error repair regions
are now larger, as is shown in the right-hand-side of Fig. 1, which also illustrates
the asymptotic convergence with global repairs. So, the repair region when the
last point of error, b`, is to the right of the input, includes the total input string.

3.2 The computational cost

Items are the basis for showing the computational behavior of our proposal. The
cost of the algorithm is, in the worst case, given by the cost of global error repair
approaches, due to asymptotic equivalence between regional and global repairs.
Our aim is to focus on the dependency of grammar design.

The case of global repairs. The generation is illustrated in the left-hand-side
of Fig. 4. In all cases the number of items generated remains constant because
it is only dependent on the length of the input string. These strategies expend
equal effort on all parts of the program, including areas without errors. The
situation of the curve for GN is justified by subsumption phenomena between
items generated by the parse process. In effect, the compact representation of
GN in relation to GR and GL in terms of the number of rules facilitates the ap-
plication of such mechanisms. The greater cost of GR in relation to GL is due to
the introduction of a non-determinism by the error hypotheses. When a token
“bl” is shifted in GL, the only pda action available is the reduction of all or part
of the analyzed prefix, since we can assume that the lookahead is “+”, “)” or a.
For GR, two possibilities exist. When the lookahead is a “+”, a shift takes place;
but when it is a “)” or a, a reduction is made. Thus, in the case or GR, the error
repair algorithm introduces a larger number of parse conflicts, and hence items.

0

500

1000

1500

2000

2500

3000

2 4 6 8 10 12 14

N
um

be
r

of
 it

em
s

Point of error

G_L case
G_R case
G_N case

0

500

1000

1500

2000

2500

2 4 6 8 10 12 14

N
um

be
r

of
 it

em
s

Point of error

G_L case
G_R case

G_N

Fig. 4. Items for global (resp. regional) repairs vs. position of the point of error

The case of regional repairs. The generation is discussed with reference to
the right-hand-side of Fig. 4. The general distribution of curves for GR, GL and
GN is the same as mentioned for global repairs and it can be justified in the
same manner. It is of interest to compare the results for global and regional
repairs. So, Fig. 5 shows the number of items whose generation has been saved
going from global to regional repair, illustrating the asymptotic convergence. The
difference in terms of items generated is minor when the point of error is situated
to the right of the input string, enlarging the repair region. This difference does
not reach zero, which is in apparent contradiction with the above-mentioned
convergence. We should take here into account that even though the size of the
repair region can be the same for both global and regional repairs, the latter are
not forced to apply the error hypotheses on all the error parse branches.

0

500

1000

1500

2000

2 4 6 8 10 12 14

Ite
m

s
sa

ve
d

fr
om

 g
en

er
at

io
n

Point of error

G_L case
G_R case
G_N case

Fig. 5. Saved items from global to regional repair vs. position of the point of error

References

1. K. Sikkel. Parsing Schemata. PhD thesis, Univ. of Twente, The Netherlands, 1993.
2. M. Vilares. Efficient Incremental Parsing for Context-Free Languages. PhD thesis,

University of Nice. ISBN 2-7261-0768-0, France, 1992.
3. M. Vilares, V.M. Darriba, and F.J. Ribadas. Regional least-cost error repair. In

S. Yu and A. Păun, editors, Implementation and Application of Automata, volume
2088 of LNCS, pages 293–301. Springer-Verlag, Berlin-Heidelberg-New York, 2001.

