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Abstract. We describe an algorithm to deal with automatic error re-
pair over unrestricted context-free languages. The method relies on a
regional least-cost repair strategy with validation, gathering all relevant
information in the context of the error location. The system guarantees
the asymptotic equivalence with global repair strategies.

1 Introduction

Until recently, errors were simply recovered by the consideration of fiducial sym-
bols to provide mile-posts for error recovery, which allows a reduction in time
and space bounds, although it is not always easy to determine if all relevant
information to the error recovery process has been seen [3]. The significant re-
duction in cost processing has propitiated a renewable interest in methods that
take into account the constraints on context. We can differentiate [3] two families
of algorithms: one class, called local repair, make modifications to the input so
that at least one more original input symbol can be accepted by the parser. The
simplicity of these methods sometimes causes them to choose a poor repair [4,
1].

In contrast to local techniques, the global repair algorithms examine the entire
program and make a minimum of changes to repair all the syntax errors, although
they expend equal effort on all parts of the program, including areas that contain
no errors. In between the local and global methods, Levi [2], suggested regional
repair algorithms that fix a portion of the program including the error and as
many additional symbols as needed to assure a good repair. In relation to global
and local methods, the regional algorithms must answer the additional question
of determining just how large a region to repair.

In addition, when several repairs are available, the system must provide some
method of choosing among them, and a common strategy is to assign individual
costs. A repair algorithm that guarantees finding the lowest-cost repair possi-
ble, is called a least-cost repair algorithm. Our proposal is a regional least-cost
strategy which applies a dynamic validation in order to avoid cascaded errors.

2 A Dynamic Frame for Parsing

We introduce our parsing frame, as implemented in Ice [5]. Our aim is to
parse sentences in the language L(G) generated by a context-free grammar
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G = (N, Σ, P, S), where N is the set of non-terminals, Σ the set of terminal
symbols, P the rules and S the start symbol. The empty string will be repre-
sented by ε.

2.1 The Operational Model

We assume that we produce a push-down automaton (pda) from G. In practice,
we chose an lalr(1) device, which is possibly non-deterministic, for the language
L(G). Formally, a pda is a 7-tuple A = (Q, Σ, ∆, δ, q0 , Z0 , Qf ) where: Q is the
set of states, Σ the set of input symbols, ∆ the set of stack symbols, q0 the
initial state, Z0 the initial stack symbol, Qf the set of final states, and δ a finite
set of transitions of the form p X a 7→ q Y with p, q ∈ Q, a ∈ Σ ∪ {ε} and
X, Y ∈ ∆ ∪ {ε}. Let the pda be in a configuration (p, Xα, ax), where p is the
current state, Xα is the stack contents with X on the top, ax is the remaining
input where the symbol a is the next to be shifted, x ∈ Σ∗. The application
of p X a 7→ q Y results in a new configuration (q, Y α, x) where the terminal
symbol a has been scanned, X has been popped, and Y has been pushed.

The algorithm proceeds by building a collection of items, compact represen-
tations of the recognizer stacks, by applying transitions to existing ones, until no
new application is possible. The algorithm associates a set of items Sw

i , called
itemset, for each input symbol wi at the position i in the input string of length
n, w1..n. An item is of the form [p, X, Sw

j , Sw
i ], where p ∈ Q, X ∈ ∆, Sw

j is the
back pointer to the itemset associated to the symbol wi at which we began to
look for that configuration of the automaton, and Sw

i is the current itemset.

2.2 The Recognizer

Formally, given a transition τ = δ(p, X, a) 3 (q, Y ), we translate it to items of
the following form:

1. δ̃([p, X, Sw
j , Sw

i ], a) 3 [q, ε, Sw
i , Sw

i ], if Y = X

2. δ̃([p, X, Sw
j , Sw

i ], a) 3 [p, Y, Sw
i , Sw

i+1], if Y = a

3. δ̃([p, X, Sw
j , Sw

i ], a) 3 [p, Y, Sw
i , Sw

i ], if Y ∈ N

4. δ̃([p, ε, Sw
j , Sw

i ], a) 3 δ̃d([q, ε, S
w
l , Sw

j ], a) 3 [q, ε, Sw
l , Sw

i ], if Y = ε
∀q ∈ Q such that ∃ δ(q, X, ε) 3 (p, X)

with δ̃ : It×Σ ∪{ε} −→ {It∪ δ̃d} and δ̃d : It×Σ ∪{ε} −→ It, where It is the set
of all items developed in the parsing process and δ̃d is called the set of dynamic
transitions. Succinctly, we can describe the preceding cases as follows:

1. A goto action from the state p to state q under transition X.
2. A push of a from state p. The new item belongs to itemset Sw

i+1.
3. A push of non-terminal Y from state p.
4. A pop action from state p, where q is an ancestor of state p under transition

X. We generate a dynamic transition τ̃d to treat the absence of information
about the rest of the stack. This transition is applicable not only to the
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configuration resulting from the first one, but also on those to be generated
and sharing the same syntactic structure.

Fairness and completeness of the dynamic construction are guaranteed by an
equitable selection order It. To ignore redundant items we use a subsumption
relation based on equality. Authors prove in [5] that time and space bounds are,
in the worst case, O(n3) and O(n2) respectivley, for inputs w1..n.

3 Regional Least-Cost Error Repair

Following Mauney and Fischer in [3], we talk about the error in a portion of
the input to mean the difference between what was intended and what actually
appears in the input. So, we can talk about the point of error as the point at
which the difference occurs. The point of detection is the point at which the
parser detects that there is an error in the input and calls the repair algorithm.

Definition 1. Let w1..n be an input string, we say that wi is a point of error
iff: 6 ∃ [p, ε, Sw

l , Sw
i ] ∈ Sw

i /δ(p, X, wi) = (q, wi)

The point of error is easily fixed by the parser itself and, in order to locate
the origin of the error at minimal cost, we should try to limit the impact on the
parse, focusing on the context of subtrees close to the point of error.

Definition 2. Let wi be a point of error for the input string w1..n, we define
the set of points of detection associated to wi, as follows:

detection(wi) = {wi′/∃A ∈ N, A
+
⇒ wi′αwi}

and we say that A
+
⇒ wi′αwi is a derivation defining the point of detection

wi′ ∈ detection(wi).

Intuitively, the error is located in the immediate left parse context, repre-
sented by the closest viable node, or in the immediate right context, represented
by the lookahead. However, sometimes can be usefull to isolate the parse branch
in which the error appears.

Definition 3. Let wi be a point of error for w1..n, we say that [p, X, Sw
l , Sw

i ] ∈
Sw

i is an error item iff: ∃ a ∈ Σ, δ(p, ε, a) 6= ∅, and we say that [p, ε, Sw
i′ , Sw

i′ ] ∈
Sw

i′ is a detection item associated to wi iff ∃ a ∈ Σ, δ(p, A, a) 6= ∅, A ∈
N defining wi, such that:

δ(q1, ε, wi′) 3 (q1, B2), δ(q1, B2, wi′) 3 (q2, ε)
...

...
δ(qn−1, ε, wi′) 3 (qn−1, Bn), δ(qn−1, Bn, wi′) 3 (qn, ε)

δ(qn, ε, wi′) 3 (qn, wi′), Bi
+
⇒ ε, ∀i ∈ [1, n]
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We talk about error and detection items, when they represent nodes includ-
ing the recognition of points of error and detection, respectively. The condition
for error items implies that no scan action is possible for token wi. In the detec-
tion case, conditions look for items recognizing a point of detection on a parse
branch including an error item in wi, disregarding empty reductions which are
not relevant for this purpose.

Definition 4. A modification M to a string of length n, w1..n = w1 . . . wn, is a
series of edit operations, E1 . . . EnEn+1, in which each Ei is applied to wi and
possibly consists of a series of insertions before wi, replacements or deletion of
wi. The string resulting from the application of the modification M to the string
w is written M(w).

We now restrict the notion of modification to focus on a given zone of the
input string, introducing the concept of error repair in this space. Intuitively, we
look for conditions that guarantee the ability to recover the parse from the error,
at the same time as it allows us to isolate repair branches by using the concept
of reduction. We are also interested in minimizing the structural impact in the
parse tree, and finally in introducing the notion of scope as the lowest reduction
summarizing the process at a point of detection.

Definition 5. Let x be a valid prefix in L(G), and w ∈ Σ∗, such that xw is not
a valid prefix in L(G). We define a repair of w following x as M(w), so that:

∃A ∈ N

/S
+
⇒ x1..i−1A

+
⇒ x1..i−1xi..mM(w), i ≤ m

B
∗
⇒ αAβ, ∀B

+
⇒ xj..mM(w), j < i

A
∗
⇒ γCρ, ∀C

+
⇒ xi..mM(w)

We denote the set of repairs of w following x by repair(x, w), and A by scope(M).

However, the notion of repair(x, w) is not sufficient for our purposes, since
our aim is to extend the error repair process to consider all possible points of
detection proposed by the algorithm for a given point of error, which implies
simultaneously considering different valid prefixes and repair zones.

Definition 6. Let e ∈ Σ be a point of error, we define the set of repairs for e,
as repair(e) = {xM(w) ∈ repair(x, w)/w1 ∈ detection(e)}, where detection(e)
denotes the set of points of detection associated to e.

We now need a mechanism to filter out undesirable repair processes, in order
to reduce the computational charges. To do that, we should introduce comparison
criteria to only select those repairs with minimal cost.

Definition 7. For each a ∈ Σ we assume the existence of positive insert, I(a);
delete, D(a), and replace R(a) costs1. The cost of a modification2 M(w1..n) is

1 if any edit operation is not applied, we assume its cost to be zero.
2 we assume that delete and replace operations are exclusive for the same token.
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given by cost(M(w1..n)) = Σn
i=1(Σj∈JI(wj

i ) + D(wi) + R(wi)). In particular,

Σj∈JI(wj
i ) means that several insertion hypotheses are possible before the token

wi is real.

When several repairs are available on different points of detection, we need a
condition to ensure that only those with the same minimal cost are considered,
looking for the best repair quality.

Definition 8. Let e ∈ Σ be a point of error, we define the set of regional repairs
for e, as follows:

regional(e) = {xM(w) ∈ repair(e)

/
cost(M) ≤ cost(M ′), ∀M ′ ∈ repair(x, w)
cost(M) = minL∈repair(e){cost(L)}

}

It is also necessary to take into account the possibility of cascaded errors,
that is, errors precipitated by a previous erroneous repair diagnostics. Previous to
dealing with the problem, we need to establish the existing relationship between
the regional repairs for a given point of error, and future points of error.

Definition 9. Let wi, wj be points of error in an input string w1..n, such that
j > i. We define the set of viable repairs for wi in wj, as follows:

viable(wi, wj) = {xM(y) ∈ regional(wi)/xM(y) . . . wj valid prefix for L(G)}

Intuitively, the repairs in viable(wi, wj) are the only ones capable of ensuring
the continuity of the parse in wi..j and, therefore, the only possible repairs at
the origin of the phenomenon of cascaded errors.

Definition 10. Let wi be an point of error for the input string w1..n, we say
that a point of error wj , j > i is a point of error precipitated by wi iff

∀xM(y) ∈ viable(wi, wj), ∃A ∈ N defining wj′ ∈ detection(wj)

such that A
+
⇒ βscope(M) . . . wj.

Intuitively, a point of error wj is precipitated by the result of previous repairs
on a point of error wi, when all reductions defining points of detection for wj

summarize some viable repair for wi in wj .

4 The Algorithm

We propose that the repair be obtained by searching the pda itself to find a
suitable configuration to allow the parse to continue. At this point, our approach
agrees with McKenzie et al. in [4], although this method is not asymptotically
equivalent to a global repair strategy, and introduces an unsafe technique to
speed up the repair algorithm [1]. In relation to this last, McKenzie et al. propose
a pruning mechanism in order to reduce the number of configurations to be dealt



298 M. Vilares, V.M. Darriba, and F.J. Ribadas

...

ki’

ki’

l
A

l-1

2

...
�

k

�

l-1

�

2

�

1

�

i

A
1

A

A

i’ i’ i’ i’

i’

i’

i’

i’
k k k

1lli’ i’ i’

i’ i’ i’

1

kA     [q  , A   , i’ , i, e  ]

A     [q  , A  , i’, i, e  ]

Fig. 1. Error detection

with during the repair process. This mechanism may lead to suboptimal regional
repairs or may cause failure to produce any repair even if an error exists.

The problem due to pruning is based on a simple condition that ignores a
stack configuration if an earlier one had the same stack top. The motivation is
that this newer configuration would not lead to any cheaper repairs than the
older one. Our dynamic programming construction eliminates this problem by
considering all possible repair paths.

4.1 A Simple Case

We assume that we deal with the first error detected in the input string. The
major features of the algorithm involve beginning with a list of error items, with
an error counter zero. In order to compute the error counter, we extend the item
structure: [p, X, Sw

i , Sw
j , e], where now e is the error counter accumulated in the

recognition of X ∈ N ∪ Σ.

For each error item, we successively investigate the corresponding list of
detection items, one for each parse branch including the error item. One a point
of error wi has been fixed, we can associate to it different points of detection
wi′

1
, . . . wi′

k
, as is shown in Fig. 1. Detection items are located by using the back

pointer, that indicates the itemset where we have applied the last pda action.
So, we recursively go back into its ancestors until we find the first descendant of
the last node that would have to be reduced if the lookahead was correct3.

Once the detection items have been fixed for the corresponding error item,
on each of the parse branches relying on them we apply all possible transitions
beginning at the point of detection. These transitions correspond to four error
hypotheses, from a given item:

– For scan transitions the item obtained is the same as for standard parsing.

[p, ε, Sw
j , Sw

i , 0]
scan wi−→ [p, wi, S

w
i , Sw

i+1, 0]

3 this information is directly obtained from the pda.
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– In the case of insertion hypothesis, we initialize the error counter by taking
into account the cost of the inserted token, which is included as stack symbol,
and we add the new item to the same itemset, preserving the back pointer.

[p, ε, Sw
j , Sw

i , 0]
insert a

−→ [p, a, Sw
i , Sw

i , I(a)], δ(p, ε, a) 6= ∅

– For deletion hypothesis, we initialize the error counter by taking into account
the cost of the deleted token and we add the new item to the next itemset,
using the same stack symbol. The back pointer is initialized to the current
itemset.

[p, ε, Sw
j , Sw

i , 0]
delete wi−→ [p, ε, Sw

i , Sw
i+1, D(wi)]

– Finally, for mutation hypothesis, we initialize the error counter by taking
into account the cost of the replaced token and we add the new item to the
next itemset. The back pointer is initialized to the current itemset, and the
new token resulting from the mutation is included as stack symbol.

[p, ε, Sw
j , Sw

i , 0]
replace wi by a

−→ [p, a, Sw
i , Sw

i+1, R(a)], δ(p, ε, a) 6= ∅

We do that until a reduction verifying definition 5 covers both error and detection
items accepting a token in the remaining input string, as is shown in Fig. 2,
where [wi′′′

1
, wi′′

1
] delimits the scope of a repair detected at the point wi′

1
∈

detection(wi). Once we have applied the previous methodology to each detection
item considered, we take only those repairs with regional lowest cost, applying
definition 8. At this moment the parse goes back to standard mode.

We use a bottom-up strategy not only to parse the input, but also to compute
error counters. This establishes a difference with McKenzie et al. [4], that uses
a bottom-up parsing architecture with a top-down computation of the error
counters. An inheritance strategy to compute the error counters, make the task
of propagating these counters on shared parse branches a complex one. In our
case, error counters are initialized at each error hypothesis and summarized only
at reduce actions time. So, dynamic transitions must include information about
the accumulated error counter in the part of the reduce action to be shared. The
process is illustrated in Fig. 3 for two reductions, Ai and Aj , over a same rule
A → X1 . . . Xm sharing the last Xk+1 . . . Xm syntactic categories. We re-take the
part of the error counter accumulated during the first reduction, ei′

k+1
+. . .+ei′

m
,

for these common categories.
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Fig. 3. Dynamic transitions in repair mode

4.2 The General Case

We now assume that the current repair process is not the first one and, therefore,
can modify a previously repaired string. This arises when we realize that we come
back to a detection item for which any parse branch includes a previous repair
process. This process is illustrated in Fig. 4 for a point of error wj precipitated
by wi, showing how the variable Aj′

1
defining wj summarizes Ai′′′

1
, the scope

of a previous repair defined by Ai′
1
.
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Fig. 4. Dealing with precipitated errors

To deal with precipitated errors, the algorithm re-takes the previous error
counters, adding the cost of the new error repair hypothesis to profit from the
experience gained from previous repair processes. At this point, regional repairs
have two important properties. First, it is independent of the shift-reduce parsing
algorithm used. The second property is a consequence of the lemma below.

Lemma 1. (The Expansion Lemma) Let wi, wj be points of error in w1..n ∈ Σ∗,
such that wj is precipitated by wi, then

min{j′/wj′ ∈ detection(wj)} < min{i′/wi′ = y1, xM(y) ∈ viable(wi, wj)}

Proof. Let wi′ ∈ Σ, such that wi′ = y1, xM(y) ∈ viable(wi, wj) be a point
of detection for wi, for which some parsing branch derived from a repair in
regional(wi) has successfully arrived at wj .
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Let wj be a point of error precipitated by xM(y) ∈ viable(wi, wj). By definition,
we can assure that

∃B ∈ N/B
+
⇒ wj′αwj

+
⇒ βscope(M) . . . wj

+
⇒ βxl..mM(y) . . . wj , wi′ = y1

Given that scope(M) is the lowest variable summarizing wi′ , it immediately
follows that j′ < i′, and we conclude the proof by extending the proof to all
repairs in viable(wi, wj). ut

Corollary 1. Let wi, wj be points of error in w1..n ∈ Σ∗, such that wj is
precipitated by wi, then

max{scope(M), M ∈ viable(wi, wj)} ⊂ max{scope(M̃), M̃ ∈ regional(wj)}

Proof. It immediately follows from lemma 1. ut

This allow us to get an asymptotic behavior close to global repair methods.
This property has profound implications for the efficiency, measured by time and
space taken, the simplicity and the power of computing regional repairs.

Corollary 2. Let w1..n be an input string with a point of error in wi, i ∈ [1, n],
then the time and space bounds for the regional repair algorithm are O(n3) and
O(n2), in the worst case, respectively.

Proof. It immediately follows from the previous corollary 1. ut

5 Conclusions

To improve the quality of repairs we should gather information to the right and
to the left of the point of detection as long as this information could possibly be
relevant. A criterion that meets our requirements is to expand the repair mode
until it is guaranteed to accept the next input symbol, but maintains the chance
of reconsidering the process once the system has detected that an incorrect repair
assumption has been made.
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