Parsing incomplete sentences revisited *

M. Vilares!, V.M. Darriba!, and J. Vilares?

! Department of Computer Science, University of Vigo
Campus As Lagoas s/n, 32004 Ourense, Spain
{vilares,darriba}@uvigo.es
2 Department of Computer Science, University of A Corufia
Campus de Elvifia s/n, 15071 A Corufia, Spain
jvilares@mail2.udc.es

Abstract. We describe a context-free parsing algorithm to deal with
incomplete sentences, including unknown parts of unknown length. It
produces a finite shared-forest compiling all parses, often infinite in
number, that could account for both the error and the missing parts.
In contrast to previous works, we derive profit from a finer dynamic
programming construction, leading to an improved computational
behavior. We also introduce a deductive construction, which has the
advantage of simplifying the task of description.

1 Introduction

An ongoing question in the design of dialogue systems is how to provide the
maximal coverage and understanding of the language, finding the interpretations
that have maximal thresholds, when the computational process must be
prompted immediately at the onset of new input. This is largely due to the fact
that the user often does not know the type of questions that the system answers.
In this sense, it is often better to have a system that tries to guess a specific
interpretation in case of ambiguity rather than ask the user for a clarification.
As a consequence, analysis of the utterance should continuously anticipate the
interaction with the user, based on the expectations of the system.

To comply with these requests, we need a parser which analyses the input
simultaneously as it is entered, even when current data are only partially known.
Two factors are at the origin of this behavior in natural language man-machine
interfaces, whether text or speech-based. In the case of the former, the input
language can only be approximately defined and individual inputs can vary
widely from the norm [6] due to ungrammatical spontaneous phenomena. In the
case of the latter [7], inputs can only often be considered as a distorted version of
any of several possible patterns resulting from an erroneous recognition process.

In this context, our aim is computational. We restrict interaction types to
only those necessary for immediate understanding using a predictive model

* Research partially supported by the Spanish Government under projects TIC2000-
0370-C02-01 and HP2002-0081, and the Autonomous Government of Galicia under
projects PGIDT01PXI10506PN, PGIDIT02PXIB30501PR and PGIDIT02SINO1E.

based on the parsing algorithm for unrestricted context-free grammars (CFG’s)
proposed by Vilares in [9]. In relation to previous works [8,3], our proposal
provides a formal definition framework and an improved computational behavior.

2 The standard parser

Our aim is to parse a sentence w;.. ., = wj ... wy according to an unrestricted
CFG G = (N, X, P,S), where the empty string is represented by €. We generate
from G a push-down transducer (PDA) for the language £(G). In practice, we
choose an LALR(1) device generated by ICE [9], although any shift-reduce
strategy is adequate. A PDA is a 7-tuple A = (Q,X,A,d,q0,Zo, Qf) where:
Q is the set of states, X' the set of input symbols, A the set of stack symbols, go
the initial state, Zy the initial stack symbol, Qy the set of final states, and J a
finite set of transitions of the form d(p, X, a) 5 (¢,Y) with p,g € Q,a € YU {e}
and X,Y € AU {e}. Let the PDA be in a configuration (p, X, ax), where p is
the current state, Xa is the stack contents with X on the top, and ax is the
remaining input where the symbol a is the next to be shifted, x € X*. The
application of d(p, X,a) 3 (¢,Y) results in a new configuration (q,Y «, z) where
a has been scanned, X has been popped, and Y has been pushed.

To get polynomial complexity, we avoid duplicating stack contents when
ambiguity arises. We determine the information we need to trace in order
to retrieve it [4]. This information is stored in a table Z of items, T =
{le, X,4,5], ¢ € Q, X € {e}U{V,s}, 0 < i < j}; where ¢ is the current
state, X is the top of the stack, and the positions 7 and j indicate the substring
Wit1 ... w; spanned by the last terminal shifted to the stack or by the last
production reduced. The symbol V, ; indicates that the part A, s41... A4, p, of
arule A, g = Ap1... Ay, has been recognized.

We describe the parser using parsing schemata [5]; a triple (Z,H, D), with
T the table of items previously defined, H = {[a,%,% + 1], a = w;} an initial
set of triples called hypotheses that encodes the sentence to be parsed®, and
D a set of deduction steps that allow new items to be derived from already
known items. Deduction steps are of the form {n,...,n; F & /conds}, meaning
that if all antecedents 1n; € 7 are present and the conditions conds are
satisfied, then the consequent £ € 7 should be generated. In the case of ICE,
D = ‘phit |y pShift | pSel | pRed | fDHead’ where:

3[@,j,j+1]€7‘[}
shift,, € action(q, a)

. . da,j,j+1]eH
Sel __ 1
D - {[Q) & 'L’J] = [Qa VT:”T’J)J] reduceT c action(q, (l) }

DR = {[q, Vr,s, ks jlla, 6,6, K] - [a', Vis-1,4,] /4’ € reveal(q) }

D = {[q, X, 1,41+ [d', &, 4, § + 1]/

Dlnit = {I_ [q0, = 0’ 0] } DHead = { [qa VT,Oa 7/1.7] = [qla €, Z:J] /q' € gOto(Q7 AT,O) }

3 The empty string, ¢, is represented by the empty set of hypothesis, #. An input string
W1...n, n > 1 is represented by {[w1,0,1], [w2,1,2], ..., [wn,n —1,n]}.

with go € Q the initial state, and action and goto entries in the PDA tables [1].
We say that ¢' € reveal(q) iff 3Y € N U X such that shift, € action(q',Y) or
q € goto(q',Y), that is, when there exists a transition from ¢’ to ¢ in 4. This set
is equivalent to the dynamic interpretation of non-deterministic PDA’s:

— A deduction step Init is in charge of starting the parsing process.

— A deduction step Shift corresponds to pushing a terminal a onto the top of
the stack when the action to be performed is a shift to state st'.

— A step Sel corresponds to pushing the V., symbol onto the top of the stack
in order to start the reduction of a rule r.

— The reduction of a rule of length n,. > 0 is performed by a set of n,. steps Red,
each of them corresponding to a pop transition replacing the two elements
Vs Xrs placed on the top of the stack by the element V, ,_;.

— The reduction of a rule r is finished by a step Head corresponding to a swap
transition that recognizes the top element V, o as equivalent to the left-hand
side A, of that rule, and performs the corresponding change of state.

These steps are applied until new items cannot be generated. The splitting of
reductions into a set of Red steps allows us to share computations corresponding
to partial reductions, attaining a worst case time (resp. space) complexity O(n®)
(resp. O(n?)) with respect to the length n of the input string [9]. The input string
is recognized iff the final item [gf, Vo,0,0,n + 1], g5 € Qy, is generated.

When the sentence has several distinct parses, the set of all possible parse
chains is represented in finite shared form by a CFG that generates that possibly
infinite set, which is equivalent to using an AND-OR graph. In this graph, AND-
nodes correspond to the usual parse-tree nodes, while OR-nodes correspond to
ambiguities. Sharing of structures is represented by nodes accessed by more than
one other node, and may correspond to sharing of a complete subtree, but also
to sharing of a part of the descendants of a given node.

3 Parsing incomplete sentences

In order to handle incomplete sentences, we extend the input alphabet. Following
Lang in [3], we introduce two new symbols. So, “?” stands for one unknown word
symbol, and “x” stands for an unknown sequence of input word symbols.

3.1 The parsing algorithm

Once the parser detects that the next input symbol to be shifted is one of
these two extra symbols, we apply the set of ded uction steps D;.ompletes Which
includes the following two sets of deduction steps:

7,7, +1eH

Dyst iete = La:6,%, 71+ [d',€, 5,5 + 1] / shift,, € action(g,a) }
a € E

[x,5,j +1] eH
DLoop—shift _ - h '7 '7] X
incomplete — {lg,e,4,51+ [d',€, 3,] S Zﬂq € action(q, X) }
XeNUXY

while we maintain the rest of the deduction steps in D®it, DShift pSel pRed 554
DHead From an intuitive point of view, DiRift | applies any shift transition
independently of the current lookahead available, provided that this transition is
applicable with respect to the PDA configuration and that the next input symbol
is an unknown token. In relation to DILHOC%II’I;;}{;{Z, it applies any valid shift action
on terminals or variables to items corresponding to PDA configurations for which
the next input symbol denotes an unknown sequence of tokens. Given that in this
latter case new items are created in the same starting itemset, shift transitions
may be applied any number of times to the same computation thread, without
scanning the input string.

All deduction steps in dealing with incomplete sentences are applied until
a parse branch links up to the right-context by using a standard shift action,
resuming the standard parse mode. In this process, when we deal with sequences
of unknown tokens, we can generate nodes deriving only “x” symbols. This
over-generation is of no interest in most practical applications and introduces
additional computational work, which supposes an extra loss of parse efficiency.
So, our goal is to replace these variables with the unknown subsequence terminal,
“x”. We solve this problem by extending the item structure in order to consider
an insertion counter to tabulate the number of syntactic and lexical categories
used to rebuild the incomplete sentence. When several items representing the
same node are generated, only those with minimal number of insertions are
saved, eliminating the rest, which are pruned from the output parse shared-
forest.

100000 ‘ ‘
ICE ——

Lang’s and Tomita et al.'s -
Backtracking with cycle detection -

%

10000 |

Number of items

1000 ¢

100

Number of *

Fig. 1. Number of items for the noun’s example

Formally, items extended with counters, e, are of the form [p, X, i, j, €] and,
to deal with them, we should redefine the set of deduction steps D as
follows:

incomplete

375 i+1 €N
DRt olete = {[@:655,4,€] F [, 7,5 + 1,e+ I(a)] / shift, € action(q,a) }
a€ X
. x4, i +1 €H
Df;li?;;}l‘;i ={[g,e,i,5,€] F[d',¢,4,4,e + I(X)] /shiﬁq, € action(q, X) }
XeNuUuxy

where I(X) is the insertion cost for X € N U X, and we have to adapt the
previous deduction steps to deal with counters:

Dig&nt = {|_ [qoa g,0,0, 0] }
; . . Ja,j,i+1]€H
Shift __ ! v

DCount - {[Q7X717.7] F [q y€505] + 1] Shiftq/ c action(q, a) }
3[a7j7j+1]€H }
reduce, € action(q, a)
Dgﬁ:int = {[ga VdT,Sa k.3, e][q', &%, k, el] F [q,a Virs-1,0,J,e + el] /q' € reveal(q) }

ea ’

Dcount = { [q: V’I‘,O: WA 6] = [qla €%], 6] /q S gOtO(q, A"‘,O) }

Dcsoelllnt = {[quviv.jy 6] }_ [qa VT,nrijjv 6] /

As for the standard mode, these steps are applied until new items cannot be
generated. The resulting complexity bounds are also, in the worst case, O(n?)
and O(n?) for time and space, respectively, with respect to the length n of the
input string. The parse is defined by the final item [g¢, Vo 0,0,n+1,¢€], gr € Qy.

3.2 Previous works

Both, Tomita et al. [8] and Lang [3], apply dynamic programming techniques
to deal with no determinism in order to reduce space complexity and improve
computational efficiency. However, the approach is different in each case:

— From the point of view of the descriptive formalism, Lang’s proposal
generalizes Tomita et al.’s. In effect, in order to solve the problems derived
from grammatical constraints, Earley’s construction [2] is extended by Lang
to PDA’s, separating the execution strategy from the implementation of the
interpreter. Tomita et al.’s work can be interpreted as simply a specification
of Lang’s for LR(0) PDA’s.

— From the point of view of the operational formalism, Lang introduces items
as fragments of the possible PDA computations that are independent of the
initial content of the stack, except for its two top elements, allowing partial
sharing of common fragments in the presence of ambiguities. This relies
on the concept of dynamic frame for CrG’s [9], for which the transitional
mechanism is adapted to be applied over these items. Tomita et al. use a
shared-graph based structure to represent the stack forest, which improves
the computational efficiency at the expense of practical space cost.

— Neither Lang nor Tomita et al., avoid over-generation in nodes deriving only

“x” symbols. In relation with this, only Lang includes a complementary

simplification phase to eliminate these nodes from the output parse shared
forest. In addition, these authors do not provide details about how to deal
with these nodes when they are generated from more than one parse branch,
which is usual in a non-deterministic frame.

Our proposal applies Lang’s descriptive formalism to the particular case of an
LALR(1) parsing scheme, which makes lookahead computation easier, whilst
maintaining the state splitting phenomenon at reasonable levels. This ensures
a good sharing of computation and parsing structures, leading to an increase
in efficiency. In relation to Tomita et al.’s strategy, our deterministic domain
is larger and, in consequence, the time complexity for the parser is linear on a
larger number of grammars.

With regard to the operational formalism, we work in a dynamic frame S*,
which means that our items only represent the top of the stack. This implies
a difference with Lang’s proposal, or implicitly Tomita et al.’s, which used S2.
From a practical point of view, S! translates in a better sharing for both syntactic
structures and computations, and improved performance.

n '
nil!,
‘U friend. ~/

itimes (1=1.8) | NP "ie boy

| det . noun .
\ nil ngr
‘the friend -
(8-i) times

Fig. 2. Shared-forest for the noun’s example

Finally, we solve both the consideration of an extra simplification phase and
the over-generation on unknown sequences by considering a simple subsumption
criteria over items including error counters.

4 Experimental results

We consider the language of pico-English to illustrate our discussion, comparing
our proposal on ICE [9], with Lang [3] and Tomita et al.’s algorithm [8]. As
grammatical formalism, we take the following set of rules:

S - NPVP NP — det noun VP — verb NP
S - SPP NP — NP PP PP — prep NP

generating the language. Tests have been applied on input strings of two types:

det ? verb det noun prep det noun {* noun}’ {prep det noun}*~* prep det noun (1)

det ? verb det noun prep { prep}’ {det noun prep}*~* det noun (2)

where ¢ represents the number of tokens “x”, that is, the number of unknown

sentences in the corresponding input string. This could correspond, for example,
to concrete input strings of the form:

The ? gives the cake to the friend {x friend}’ {of the friend}*~* of the boy (3)
The ? gives the cake to {* of}* {the friend of}* * the boy (4)

respectively. As our running grammar contains rules “NP — NP PP” and “PP
— prep NP”, these incomplete sentences have a number of cyclic parses which
grows exponentially with 7. This number is:
Co=Cri=1 and C;= (i’) 1%1 ifi>1

In effect, the parser must simulate the analysis of an arbitrary number of tokens
and, in consequence, it is no longer limited by the input string. At this point, the
parser may apply repeatedly the same reductions over the same grammar rules.
So, although the running grammar is not cyclic, the situation generated is close
to this kind of framework. More exactly, in dealing with unknown sentences, we
can derive a non-terminal from itself without extra scan actions on the input
string. This allows us to evaluate our proposal in a strongly ambiguous context
with cycles, in spite of the simplicity of the grammar.

The essential experimental results are shown in Fig. 1 (resp. Fig. 3) in
relation to running example 1 (resp. example 2), for which the output shared-
forests are shown in Fig. 2 (resp. Fig. 4). Since the number of possible tree
combinations in these forests is exponential, these figures focus only on particular
examples. In all cases our reference for measuring efficiency is the number of
items generated by the system during the parsing process, rather than of pure
temporal criteria, which are more dependent on the implementation. The shared-
forests represented clearly show the existence of a cyclic behavior and ambiguous
analyses.

At this point, we are comparing three dynamic frames. The classic one, ST,
is comparable to parse methods based on backtracking and including some kind
of mechanism to detect cycles. In this case, no sharing of computations and

1e+06 ‘ ; ‘ : : ‘
ICE ——
Lang's and Tomita et al.'s -
Backtracking with cycle detection -
100000 r]
1%2]
£ I
e . .
S 10000 ¢ |
Q
Qo
£
=]
z
000 o o]
100 . : L . . .

Number of *

Fig. 3. Number of items for the prep’s example

structures is possible, and it is of only theoretical interest. The other two dynamic
frames, S1 and S2, are of real practical interest. The first one is considered by
IcE, while S? can be identified in these tests with Lang’s and Tomita et al.’s

results.

’—nil
VP nil
I
verb NP
i —nil
gives PP nil
’\"Pi’—nil pmr;_,,,,,f»;
det . noun [NP I o
il ’—nll to ' " N
i
the 2 NP) P :
nil | ’i"'l ’7’—ml ’
det ., noun . I --
itimes (1=1.8)! P "
) PR
/‘\ OIT ‘,NP nil
)

' det nounnd‘the boy

" nil
«the friend ./

Fig. 4. Shared-forest for the prep’s example

In order to allow an objective comparison to be made between all proposals
considered, we have made the parsing schema used uniform. So, although Lang’s
algorithm can be applied to any parse strategy, and Tomita et al.’s was originally
intended for LR(0) PDA’s, we have adapted both of them to deal with an LALR(1)
scheme, as used by ICE. In all cases, these experimental results illustrate the
superior performance of our proposal, ICE, in relation to previous strategies.

This is due to the following causes:

— We do not need a supplementary simplification phase in order to eliminate
nodes deriving only sequences of unknown sequences, “x”, from the output
structure.

— The choice of S! instead of S? as dynamic frame provides a better sharing
efficiency for both structures and computations. As a consequence, the

number of items generated is smaller.

In order to illustrate the cost of the previously mentioned simplification phase
used by Lang and Tomita et al., Fig. 5 shows the number of items to be
eliminated in this process for both examples, noun’s and prep’s. We include
this estimation for S?, the original dynamic frame for these proposals, and S?.
In this last case, we have previously adapted the original methods of Lang’s and
Tomita et al..

5 Conclusions

Dialogue systems should provide total understanding of the input. However,
in practice, this is not always possible with current technology, even when
we restrict ourselves to the treatment of a limited domain of knowledge. In
consequence, robustness becomes crucial in order to find a suitable interpretation
for the utterance, and we are forced to compute hypotheses to guarantee the
interactivity in this kind of frames. So, parsing of incomplete sentences is a
fundamental task in a variety of man-machine interfaces, as part of the more
general and complex robust parsing activity. This is the case of speech-based
systems, where the language often appears to contain noise derived from human
causes such as a stutter or a cough; or even mechanical ones due to an imperfect
signal recognition.

160 | ‘ " either example, S items —— |
noun’s example, S2 items -
140 | prep’s example, S2 items -

Number of pruned items

Number of *

Fig. 5. Items to be pruned in the simplification phase

In this context, our proposal provides an improved treatment of the
computation, avoiding extra simplification phases used in previous proposals

and profiting from the concept of dynamic frame. In particular, this allows the
sharing of computations and structures, reducing the amount of data to be taken
into account as well as the work necessary to manipulate them.

References

1. A.V. Aho, R. Sethi, and J.D. Ullman. Compilers: Principles, Techniques and Tools.
Addison-Wesley Publishing Company, Inc., Reading, Massachusetts, U.S.A.; 1986.

2. J. Earley. An efficient context-free parsing algorithm. Communications of the ACM,
13(2):94-102, 1970.

3. B. Lang. Parsing incomplete sentences. In D. Vargha (ed.), editor, COLING’8S,
pages 365-371, Budapest, Hungary, 1988. vol. 1.

4. Bernard Lang. Deterministic techniques for efficient non-deterministic parsers. In
J. Loeckx, editor, Automata, Languages and Programming, number 14 in Lecture
Notes in Computer Science, pages 255—269. Springer, Berlin, DE, 1974.

5. K. Sikkel. Parsing Schemata. PhD thesis, Univ. of Twente, The Netherlands, 1993.

6. Robert S. Stainton. The meaning of ‘sentences’. Nods, 34(3):441-454, 2000.

7. Andreas Stolcke. Linguistic knowledge and empirical methods in speech recognition.
The AI Magazine, 18(4):25-31, 1998.

8. M. Tomita and H. Saito. Parsing noisy sentences. In COLING’88, pages 561-566,
Budapest, Hungary, 1988.

9. M. Vilares. Efficient Incremental Parsing for Context-Free Languages. PhD thesis,
University of Nice. ISBN 2-7261-0768-0, France, 1992.

