Natural Language Engineering 1 1-10 (© 1997 Cambridge University Press 1

Finite-State Morphology and Formal
Verificationy

Manuel Vilares Ferro, Jorge Grana Gil

Computer Science Department, University of Corunna,
Campus de Elvifia s/n, 15071 La Corufia, Spain
{vilares,grana}@dc.fi.udc.es

Pilar Alvarino Alvarino

Spanish Philology Department, University of Santiago de Compostela,
Burgo de las Naciones s/n, 15705 Santiago de Compostela, Spain
fepili@usc.es

(Received 27 December 1996)

Abstract

This paper describes an environment for the generation of non-deterministic taggers, cur-
rently used for the development of a Spanish lexicon. In relation to previous approaches,
our system includes the use of verification tools in order to assure the robustness of the
generated taggers. A wide variety of user defined criteria can be applied for checking the
exact properties of the system.

1 Introduction

There are few things more frustating than spending a great deal of time debugging
errors in an application. The existence of a tool which allows verification of the
properties of a morphological analyzer leads to safer systems at the same time that
modeling effort is saved. This kind of facility is specially useful in the implementa-
tion of taggers for inflectional languages with non-trivial morphology.

Most practical studies on verification tools are related with the concept of finite
automaton (FA) (Boudol et al. 1990; Madelaine et al. 1989; Roy 1990). This
represents an adequate starting point for our work, since most authors consider
FA’s as the most efficient and general way to deal with the problem of tagging
computationally. However, the use of FA’s poses some problems in relation with
the maintenance of the system in a continuously evolving context. In effect, they
represent the operational interpretation of a set of morphological rules in order to
decide how to tag each word encountered. This implies a loss of declarative power
and makes the study of segmentation phenomena difficult, which is of interest when

t This work was partially supported by the Autonomous Government of Galicia under
projects XUGA20403B95 and XUGA10505B96.

2 M. Vilares, J. Grana and P. Alvarinio

some kind of unexpected behavior is detected. So, we are interested in verification
methods combining modularity in the description of the system and flexibility in the
verified properties, such as AuTo (Madelaine et al. 1989). AUTO computes small-
scale models of finite transition systems, as is the case for FA’s. These reduced
systems are quotiens of that under study, up to generalized bisimulation (Milner
1980; Park 1981). The parameter of the reduction is a user-defined abstraction
criterion (Boudol 1985), which embodies a particular point of view of a system.
One is therefore able to build a variety of quotiens of a same system, which are
small enough to verify particular properties.

2 Spanish as a guideline example

To illustrate our work, we consider the case of Spanish, an inflectional language, as
a running example throughout this paper. Spanish shows a great variety of mor-
phological processes, particularly non-concatenative ones, which make it adequate
for our purposes. The most representative of this type of features can be found in
verbs. We summarize some of the outstanding problems we have to deal with:

1. A highly complex conjugation paradigm, with nine simple tenses and nine
compound tenses, all of which have six different persons. If we add the Present
Imperative with two forms, Infinitive, Compound Infinitive, Gerund, Com-
pound Gerund, and Participle with four forms, then 118 inflected forms are
possible for each verb.

2. Irregularities in both verb stems and endings. Very common verbs, such as
hacer (to do), have up to seven different stems: hac-er, hag-o, hic-e, haré,
hiz-o, haz, hech-o. Approximately 30% of Spanish verbs are irregular. We
have implemented 38 groups of irregular verbs.

3. Verbal forms with enclitic pronouns at the end. This can produce changes in
the stem due to the presence of accents: da (give), dame (give me), ddmelo
(give it to me). We have even implemented forms with three enclitic pronouns,
like traetemelo (bring it for you and me). Here, the analysis has to segment
the word and return four tokens.

This complexity suggests the need to interface the morphological analysis with a
formal proof system which allows us to verify easily the properties demanded, as
well as to recover the system from unexpected states.

Taking up the introduction of the tagger, we propose the fields for token, together
with their possible values, i.e. the tag set, shown in Table 1.

3 Verification by reduction

The verification method we want to advocate in this paper is based on reductions of
a global FA. These collapse states of the automaton to reach sizes reasonable enough
to be outprinted and easily understood. In this way, our attention is centered only
around relevant information.

Finite-State Morphology and Formal Verification

Table 1. Tag set

Field Values
Word The citation form present in the input text.
Lemma The canonical form of the word.
Category Adjective With no type.
Adverb Exclamative, modifier, nuclear, relative,
interrogative and nuclear & modifier.
Article With no type.
Conjunction Coordinate and subordinate.
Demonstrative With no type.
Indefinite With no type.
Interjection With no type.
Interrogative With no type.
Numeral Cardinal, ordinal, partitive and multiple.
Peripheral Foreign word, formula, symbol, abbreviation,
acronym and other.
Preposition With no type.
Personal Pronoun Tonic, proclitic atonic and enclitic atonic.
Possessive With no type.
Punctuation Dot, comma, colon, semicolon, dash, quotes,
Mark open/close question mark, open/close exclamation
mark, open/close parenthesis and dots.
Relative With no type.
Substantive Common and proper.
Verb With no type.
Subtype Determiner, non-determiner and both.
Gender Masculine, feminine, both, neutral and non-applicable.
Number Singular, plural, both and non-applicable.
Degree Comparative and non-applicable.
Person First, second, third,first & third and non-applicable.
Case Nominative, accusative, dative, accusative & dative, prepositional case

and nominative & prepositional case.

Verbal tense

Present, preterite, copreterite, copreterite in “se”, future, postpreterite,
antepresent, antepreterite, antecopreterite, antecopreterite in “se”,
antefuture and non-applicable.

Mode

Indicative, subjunctive, imperative, infinitive, compound infinitive,
gerund, compound gerund and participle.

4 M. Vilares, J. Grana and P. Alvarinio

3.1 Tracing facilities

A crucial feature of our proposal is to establish valid mechanisms to make it possible
to observe the behavior during tagging (Madelaine et al. 1989). Due to the com-
plexity and great size of current systems, it is not possible, in practice, to correct
errors and even detect them without help.

From the global FA, the verification process lets the user obtain the path, that is,
the set of states visited by the tagger, for a given word, and check its correctness. For
example, in the case of the word ténselo (hold it for him, her or them or tauten it),
a morphological analyzer without additional contextual information could return
two possible taggings:

=> ["ten", (V2spm02), Verb, second, sing, present, imperative,
gender non-applicable, 2 enclitic pronouns, "tener"]

=> ["se", (Re3yyy), Personal Pronoun enclitic atonic, third,
sing & plur, accusative & dative, masc & fem, "’el"]

=> ["1o", (Re3sam), Personal Pronoun enclitic atonic, third, sing,
accusative, masc, "’el"]

and also

=> ["t’ense", (V2spm01), Verb, second, sing, present, imperative,
gender non-applicable, 1 enclitic pronoun, "tensar"]

=> ["1o", (Re3sam), Personal Pronoun enclitic atonic, third, sing,
accusative, masc, "’el"]

It seems strange that this word can correspond to two verbs which are so different,
the first with two enclitic pronouns, and the second with one. However, by passing
the word through the analyzer with the debugging option, we obtain the following
paths:

0 sti 0 stil

-t --> 1 st431 -- t --> 1 st431

-- ACCENT --> 3 st1626 -— ACCENT --> 3 st1626

-- e ——> 5 st2874 -— e —-> 5 st2874

—-— n ——> 8 CLIT_IMP_SING2_st251 -— n -—> 7 st4404

-- s —--> 12 st1121 -— s -——> 11 CLIT_IMP_CONJ1_st285
-- e ——> 18 CLIT_IMP_SING22_st253 --— e —=> 15 CLIT_IMP_CORT12_st279
-- 1 —-> 23 CLITGEN2_st331 -- 1 --> 21 CLITGEN1_st329

-- o —--> 26 st1318 -- o -=> 24 st1314

both equivalent to the reduced FA in Fig. 1. The partial view produced by this
query allows us to check that the tagging is correct, and also to validate that the
treatment units involved are working correctly.

The goal is not only to guarantee the correctness of any of the current treatment
units for the inflections, but also any new ones introduced by the user. In this way,
we can minimize the set of errors present in the final application.

3.2 Improving maintenance

To illustrate this aspect, we assume that we have implemented a new version of the
morphological analyzer. This latest version should increase the power of the previous
system, but the updating has unconsciously introduced an erroneous pattern. Due

Finite-State Morphology and Formal Verification 5

= tenselo.atg /home/galena/galena/lexical/rules/work/samples/tenselolaty
=
CLIT_IHP_SING2_st251 CLIT_IHP_SING22_st253 =t1318
e 1 [O
n st1121 CLITGEH2 _st331
stl sbq3l st1626 st2874
@
t ACCENT e
n CLIT_IHP_COHJ1_st285% CLITGEM1_=t329
e 1 o
stA0d CLIT_INP_CORT12_st273 stl1314
ri
I;q I —
Fig. 1. Reduced FA for the query ténselo

r'LI tensilo.atg /shome/galenafgalenadlexical/rules/work/samples/tensilo.atg

Pt
stl st329 st2018 st2531 st759 CLITGENZ _st278
(@) = o P i F Fa Y
t ACCENT 3 n s i 51654
CLIT_IHP_SIHGZ _st109 CLIT_IHP_SIHG22_std58 s
i
IS i ¥

Fig. 2. Reduced FA for the query ténsilo

to this, the word ténselo is not recognized by the new release. Our goal is to
detect these kinds of bugs in compile time, which may be helpful for the incremental
developing of taggers.

One way of doing this is to compare patterns. So, we can automatically take
them out from the old tagger, which we assume to be correct, and verify whether
they are present, or not, in the new model. When this process deals with the case
of the pattern corresponding to ténselo, that we shall reference as pattern, the
verifier produces the following output:

@ obseqd (new-model, pattern);;

error outgoing labels:

no states in automaton-2 with same outgoing labels
than states in itl

number of iteration(s): 1

False : Bool

which indicates that it1 contains the list of problematic states. We can now see
them:

@ show itil;;
{56} : List of Integer

from which we deduce that the fifth state in the path, the state st759, represents
an erroneous option in the new model. We can make this evident by showing the
transitions in the pattern explored:

@ explore (new-model);;
State 0
stl

6 M. Vilares, J. Grana and P. Alvarinio

-— 1t ——> 1: st329

#7656

State 5

st759

-- i —--> 6: CLIT_IMP_SING22_st458

which locates the bug in the transition labeled i, as is shown in Fig. 2. This indi-
cates that we have implemented a pattern recognition for ténsilo, a word with no
meaning in Spanish.

3.3 Devising a guesser

Let’s assume, for example, that we want to introduce a new verb into the lexicon.
As we have seen, the verbal paradigm in Spanish is not trivial, and the user may
well be unaware of the group to which the verb belongs. At this point, it would
be desirable to integrate in the system a facility to guide the user in such a task.
Using AuToO, we can explore all the paths between two different states, as well
as accede to relevant states. So, it is easy for the user to start from the initial
state corresponding to a given verbal model, and recover the labels in the paths
corresponding to the verbal endings. Concatenating the stem of the verb to those
endings, we automatically obtain the set of all the verbal forms against which the

user can contrast the requested information.

The following example proves that the verb amar (to love) is regular, and belongs
to the first conjugation in Spanish. In the same manner, we shall prove that the
verb jugar (to play) is not regular, since the form jugé is not correct. We shall
show the verification process step by step. First, we load the FA containing the
morphological analyzer, which we call lexer:

@ set aut = include-fc2-automaton "lexer";;
aut : Automaton

We recover V1, the initial state for the first conjugation, in order to obtain a
reduction of the global FA that we call conj1:

@ set conjl =
subautomaton (aut , car (structure (aut, "Vi")));;
conjl : Automaton

Finally, we capture the labels in the paths from V1 to all the final states in the
first conjugation, and catenate them to the stem am of the verb.

@ catenate-stem ("am", get-endings-list (conj1));;
{ ... ; am’e; amaste; am’o; ...} : List of String

where catenate-stemand get-endings-1ist are functions implemented by using
the resources of AuTO, and “...” has been used to abbreviate the output for this
paper. In this case, all verbal forms have been correctly produced. As a consequence,

amar is a regular verb of the first conjugation.
Following a similar process, we catenate the stem jug of jugar to the preceding
set of endings.

@ catenate-stem ("jug", get-endings-list(conjl));;
{ ... ; jug’e; jugaste; jug’o; ...} : List of String

Finite-State Morphology and Formal Verification

7

rLl aprendi /usrflm:al_mnrtadeloh’galena/galena.r’lexil:al/rules/cT

i | zaje Zusr/local_mortadelol/galenasgale naflext’

A

st312 stl135 stl6%6 st2539 ot355F stddS1 stildd _I
d i

st

a T T € n

iy

St1078 J
O

stSldd st5E2§ StIRE 629

F a i

Ni

e s

a
SUCCESS

1= T =

15]

Fig. 3. Error recovery for the word aprendizaje

In this case, the form jug’e is not correct, which implies that jugar does not belong
to this model.

Although the preceding example could be qualified as naive, it illustrates a simple
approach to implement an automatic generator of derived forms, applicable to any
kind of words.

3.4 Awutomatic error recovery

In the same manner, we can consider a similar reasoning to solve another aspect of
the question. This is, for example, the case of error recovery during the analysis or
transmission of a text, when some characters are lost or ill-formed.

A verification tool for finite transition systems is necessarily capable of manip-
ulating paths in FA’s. This allows us to model a simple protocol to deal with
situations where the lack of information obstructs the normal development of the
morphological recognition process.

An error in the morphological analysis of a text often involves the skipping of large
portions of it for subsequent treatment!. This means that any additional errors that
were skipped over will go undetected until future analysis of the same text, which
increases the time required for debugging. So, one of the major services of every
lexicon ought to be to provide as much information as possible about errors in order
to minimize the time dedicated to debugging the system. This means completely
recovering, and resuming, the recognition process at the point of each error, so as
not to miss detecting any subsequent errors.

The advantages of a system having a good error recovery method are obvious.
The disadvantages are that it may be either very costly to develop or very ineffi-
cient to use. We introduce an automatic error recovery method which is based on
the capability of AUTO to reduce FA’s, and therefore to manipulate paths in the
finite state machine associated with a morphological analyzer. This implies that
our proposal is independent of the set of morphological rules which form basis of

the analyzer, thus solving the first of the two problems.

To illustrate the technique, let’s consider aprendicaje, an incorrect word in
Spanish. The minimal equally plausible correct version of the above string is the
word aprendizaje (learning). We shall detail explicitly the recovery process, al-
though in practice it would be performed automatically. Let’s assume that the

! for example, in the case of parsing.

8 M. Vilares, J. Grana and P. Alvarinio

tagging process is currently located in the word anprendicaje. Once the error has
been detected, the system calls the verifier with the erroneous string. This looks for
the minimal unit involved in the recognition from the criterion anprendicaje rep-
resenting the string. We call the resulting reduced automaton reduced. Formally,
this is recovered by the function context as follows:

@ set reduced = context (aut, aprendicaje);;
reduced : Automaton

We can now locate precisely the state in the automaton where the error was de-
tected. To do this, the system first recovers the final states in the reduced model
by using the function dead

Q@ dead aprendicaje;;
{8} : List of Integer
which implies that the only final state is numbered 8. From this point, we recover

the path for anprendicaje in the reduced model leading to this state. We call this
path road, and the system applies the function path to achieve this goal

@ set road = path (aprendicaje, 8);;
road : Path

It is now possible to get a trace of the transitions followed by the tagging process
for the original erroneous string by applying the function show as follows:

@ show road;;

0 sti

-- a ——> 1 st312
-- p ——> 3 st1135
-—r ——> 4 st1696
-- e ——> 5 st2539
-- n —--> 6 st3555
--d --> 7 st4451
-- i —-> 8 stb144
: Path

which indicates that the error state is st5144. The system is now in position to
begin with the automatic error correction process from the skeleton represented by
the left-hand-side in Fig. 3. To do this, the algorithm extracts from the global FA
the automaton beginning at the error state using the function subautomaton. We
call the resulting automaton continue, which is shown in the right-hand-side of
Fig. 3.

@ set continue = subautomaton (aut, car (number (aut, "st5144")));;

continue : Automaton

Finally, the system automatically catenates the portion of the erroneous string that
we have identified as correct, aprendi, with the endings corresponding to paths in
continue. As result, we obtain the set of possible corrections proposed by the
verifier:

@ catenate-stem ("aprendi", get-endings-list (continue));;
{aprendizaje, aprendizajes} : List of String
It is clear that, finding a bridge transition when an error makes the automaton stop
the recognition process is a strategy that solves only the change error hypothesis.
The error could of course be an insertion or a deletion, even in another position.
Therefore, this method represents a first approach to the problem of automatic
€rTor recovery.

patterns

Finite-State Morphology and Formal Verification 9

50000 50000 50000
40000 40000 40000
30000 30000 tagging tine 30000
20000 (sf;tZZs) 20000 (seconds) 20000

10000 10000 10000
1 1 1 1 et | | | | |

25000 words

conpi l ation tinme
(m nutes)

patterns
patterns

65000 135000 205000 285000 365000 P o5 2 7 16 28 6

Fig. 4. Experimental results

4 Experimental results

To illustrate performance we give both information on the current version of our
analyzer, and information on the evolution process we expect. As physical support
for tests we have taken a Sun Hyper Sparc Station.

At present, we are able to reconize and tag the most common 7000 lemmas of
Spanish. The corresponding automaton has more than 35000 states and the average
speed is 1400 words tagged per second. The number of states in the automaton is
high, but it will grow slowly because the main inflectional phenomena are already
implemented. That is, the only task that remains to be performed is the introduction
of more and more stems, and it has been proved that this process yields an average
increase of only 2 states for each new lemma. However, unfortunately, compilation
time can be very high, which is the price that must be paid when the desired
result is high performance. The only way to overcome this obstacle is to implement
incremental building processes for automata. This feature is part of our future work.

In order to achieve a better understanding of future sizes and times, we built
several analyzers from a large quantity of patterns. These patterns were generated
with a random process, but keeping the same level of ambiguity as in Spanish words,
and the results are shown in Fig. 4. These tests show that the proposed architecture
for the tagger presents a linear time and space complexity.

5 Conclusion

The design of tagging systems should respond to constraints of efficiency, safety and
maintenance that we have considered from a practical point of view. The choice of
the FA model as operational formalism assures computational efficiency. Safety is
guaranteed by the separation which exists between this operational kernel and the
high-level descriptive formalism.

However, one of the major services of every lexicon ought to be to provide as
much information as possible about errors, because of the complexity of actual
implementations, and the natural evolution suffered by these kinds of systems. The
goal is to minimize the time dedicated to debugging the system. For this reason,
our discussion has a practical sense.

The approach presented in this paper allows verification of morphological analyz-
ers by computing reductions. These reductions are parametrized by criteria chosen
by the user, reflecting the specific aspect to be worked on, for which the correctness
of the recognition procedure must be verified.

As an additional advantage, our proposal is based on the capability to reduce

10 M. Vilares, J. Grania and P. Alvarifio

general FA’s. This implies that it is independent of the particular implementation
of the system, which solves the problem of portability and reduces costs.

The work described above is not closed. It represents only a first approach to
the problem of verification in tagging, but preliminary results seem to be promising
and the operational formalism well adapted to deal with more complex problems
such as considering unrestricted error recovery algorithms, and the development of
disambiguation techniques.

References

Boudol, G. 1985. Logics and Models for Concurrent Systems. Notes on Algebraic Calculi
of Processes. Springer-Verlag.

Boudol, G., Roy, V., de Simone, R. and Vergamini, D. 1990. Process calculi, from theory to
practice: Verification tools. In Automatic Verification Methods for Finite State Systems,
Lecture Notes in Computer Science 407:1-10, Springer-Verlag.

Madelaine E. and Vergamini, D. 1989. AuTo: A verification tool for distributed systems
using reduction of finite automata networks. In Proc. FORTE’89 Conference, Vancou-
ver.

Milner, R. 1980. A calculus of communicating systems. Lecture Notes in Computer Science
92, Springer-Verlag.

Park, D. 1981. Concurrency and automata on finite sequences. Lecture Notes in Computer
Science 104: 167-183, Springer-Verlag.

Roy, V. 1990. AuTOGRAPH: Un outil de visualisation pour les calculs de processus. PhD
thesis, Université de Nice-Sophia Antipolis, France.

