BUILDING FRIENDLY ARCHITECTURES FOR TAGGING

M. Vilares Ferro
J. Grana Gil

A. Pan Bermidez

Computer Science Department
University of Corunna
Campus de Elvifia s/n
15071 A Coruna
Spain
E-mail: {vilares, grana, pan}@dc.fi.udc.es.

Abstract

We introduce a development environment for the generation of taggers. Our proposal is based on the notion
of finite automaton. In relation to previous approaches, our system separates the execution strategy from the
implementation of the tagging interpreter, which is guided by the system itself. That facilitates the maintenance
at the time that assures the robustness of the taggers so generated. Empirical tests prove the adequation of our
approach to deal with languages whose morphology is non-trivial, in particular in relation with the sharing of
structures and computations during tagging.

Key Words: Tagging, User Interface, Maintenance.

1 Introduction

The last years, has seen a renewal of interest in the consideration of the finite automaton
(FA) model to the design of taggers in natural language processing (NLP), even in the case of
part-of-speech tagging [4]. This is due to the speed and compactness of the representations.
In effect, the growing complexity of current tagging systems make that the space required for
implementations is an important issue in commercial applications, together with computational
efficiency. This is specially the case for inflectional languages with a great variety of
morphological processes, such as Spanish.

However, the FA model has not the flexibility of grammar-oriented approaches [2]. In
particular, the maintenance of FA-based systems is not always trivial. So, most of authors
propose updating protocols based on the simple re-compilation from the set of grammatical
rules constituting the descriptive formalism for tagging [1, 3]. This technique is more friendly
that the direct modification of the FA serving as kernel for the system, but the process should
also assure the sharing of linguistically related paths in the automaton, in order to permit both
the implementation of efficient error recovery and debugger tools. In relation with this, classic
determinization and minimization techniques for FAs do not guarantee sharing in basis to this
requirement. This implies a lost of declarative power and make the study of segmentation
phenomena difficult, which is often of interest for language specialist. At this point, our goal
is to reconcile declarative power, and computational efficiency and safety.

Section 2 of this work introduces Spanish as running example. Section 3 describes the
system at work, introducing most relevant available functionalities. In section 4 we show some
interesting practical tests. Finally, section 5 is a conclusion about the work presented.

2 Spanish as running example

To illustrate our work, we consider the case of Spanish, an inflectional language, as a running
example throughout this paper. Spanish shows a great variety of morphological processes,

This work was partially supported by the Autonomous Government of Galicia under project XUGA20403B95.

particularly non-concatenative ones, which make it adequate for our purposes. We summarize
some of the outstanding problems we have to deal with:

1. A highly complex conjugation paradigm, with nine simple tenses and nine compound
tenses, both on the six different persons. If we add the Present Imperative with two
forms, Infinitive, Compound Infinitive, Gerund, Compound Gerund, and Participle with
four forms, then 118 inflected forms are possible for each verb.

2. Irregularities in both verb stems and endings. Very common verbs, such as hacer (fo
do), have up to seven different stems: hac-er, hag-o, hic-e, haré, hiz-o, haz, hech-o.
Approximately 30% of Spanish verbs are irregular. We have implemented 39 groups of
irregular verbs.

3. Verbal forms with enclitic pronouns at the end. This can produce changes in the stem
due to the presence of accents: da (give), dame (give me), damelo (give it to me). We have
implemented forms even with three enclitic pronouns, like traetemelo (bring it for you
and me). Here, the analysis has to segment the word and return four tokens.

4. There exist some highly irregular verbs that can be handled only by including many of
their forms directly in the lexicon. This is, for example, the case of ir (o go) and ser (to
be).

5. Gaps in some verbs paradigms, in which some forms are missing or simply not used. For
instance, meteorological verbs such as nevar (fo snow) are conjugated only in third singular
person.

6. Duplicate past participles, like impreso and imprimido (printed). In such cases, the tagger
has to treat both.

7. A highly complex gender inflection, with words with only one gender as hombre (man)
and mujer (woman), and words with the same form for both genders as azul (blue). In
relation to words with separate forms for masculine and feminine, we have a lot of models:
autor, autora (author); jefe, jefa (boss); poeta, poetisa (poet); rey, reina (king) or
actor, actriz (actor). We have implemented 20 variation groups for gender.

8. An also highly complex number inflection, with words presenting only the singular form,
as estrés (stress), and others where only the plural form is correct, as matemiticas
(mathematics). The construction of different forms does not involve as many variants as
it is the case of the gender, but we can also consider a certain number of models: rojo,
rojos (red); luz, luces (light); lord, lores (lord) or frac, fraques (dress coat). We have
implemented 10 variation groups for number.

This complexity suggests the necessity to interface the tagging process in order to verify easily
the properties demanded, as well as to facilitate the maintenance. To deal with, we propose
the fields for spanish tokens, together with their possible values, i.e. the tag set represented in
table 1. As an example, let’s consider the word sobre. This word has three possible meanings
in Spanish: preposition (on, upon, over, about), noun (envelope) and verb (to exceed, to be
unnecessary). When it is a verb, there are two possible values for the person: first and third.
So, the output of the morphological analyzer should contain four taggings:

Word: "sobre"
Preposition, "sobre"
Common Noun, Masculine, Singular, '"sobre"

Verb, Subjunctive Present, First, Singular, "sobrar"
Verb, Subjunctive Present, Third, Singular, "sobrar"

3 The system at work

On the basis of a classic compilation process from a set of morphological rules, our goal is to
make transparent for the user the generation of these rules. In this manner, the user can turn
his attention around the linguistic information, leasing to the system most of the problems

| Field | Values

‘Word The citation form present in the input text.

Lemma The canonical form of the word.

Category Adjective With no type.
Adverb Exclamatory, modifier, nuclear, nuclear & modifier and relative.
Conjunction Coordinate, coordinate & subordinate, subordinate and que.
Determiner Alterizer, article, cardinal, combinable quantifier, comparative, demonstrative,

interrogative, non combinable quantifier, ordinal, possessive, relative and totalizer.

Idiom With no type.
Preposition With no type.
Pronoun Alterizer, atonic, cardinal, combinable quantifier, comparative, demonstrative,

enclitic atonic personal, enclitic tonic personal, interrogative, non combinable,
quantifier, ordinal, possessive, relative, tonic and totalizer.
Punctuation Mark | With no type.

Noun Common and proper.
To be With no type.
To have With no type.
Unknown With no type.
Verb With no type.
Gender Masculine, feminine, masculine & feminine and neutral.
Number Singular, plural and singular & plural.
Mode Indicative, subjunctive, imperative, infinitive, gerund and participle.
Verbal tense Present, imperfect in “ra”, imperfect in “se”, simple perfect, future, conditional, perfect past,

pluperfect in “ra”, pluperfect in “se”, anterior past, perfect future and perfect conditional.
Person First, second and third.

Determination | Definite and indefinite.

Case Nominative, accusative, dative, accusative & dative and case preposition.

Comparison Equality, superiority & inferiority and non comparative.

Table 1: Tag set

imposed by the programming task. From the computational point of view, this implies a gain
of safety, as well as a more friendly user-interface.

3.1 Tracing facilities

Due to the complexity and great size of current systems, it is not possible, in practice, to correct
errors and even detect them without help. A crucial feature of our proposal is to establish valid
mechanisms to make it possible to observe the behavior during tagging.

The tracing facility lets the user obtain, from the global system, the set of states visited by
the tagger for a given word and check its correctness. Furthermore, we call these sequences
of states paths. Path recovery can be small enough to verify simple properties related to the

correction of the recognition units for inflection or derivation.
For example, in the case of the word ténselo (hold it for him, her or them or tauten it), the
tagger could return a first tagging formed by three tokens:

Word: "t’en"

Verb, Imperative Present, Second, Singular, 2 Enclitic Pronouns, "tener"
Word: "se"

Enclitic Pronoun, Atonic, Feminine & Masculine, Third, Singular & Plural, "’el"
Word: "lo"

Enclitic Pronoun, Atonic, Masculine, Third, Singular, Accusative, "’el"

and a second one formed by two tokens:

Word: "t’ense"

Verb, Imperative Present, Second, Singular, 1 Enclitic Pronoun, "tensar"
Word: "lo"
Enclitic Pronoun, Atonic, Masculine, Third, Singular, Accusative, "’el"

It seems strange that this word can correspond to two verbs which are so different, the former
with one enclitic pronoun, and the latter with two.

However, by passing the word through the tagger with the debugging option, we obtain the
following two paths:

0 st1
-— t --> 1 st431
—-— ACCENT --> 3 st1626

0 sti
-— t -—> 1 st431
—-— ACCENT --> 3 st1626

-- e ——> b st2874 -- e ——> b st2874

-- n --> 8 CLIT_IMP_SING2_st251 -- n —--> 7 st4404

-- s ——> 12 st1121 -- s ——> 11 CLIT_IMP_CONJ1_st285
-- e ——> 18 CLIT_IMP_SING22_st253 -- e ——> 15 CLIT_IMP_CORT12_st279
-- 1 --> 23 CLITGEN2_st331 -- 1 --> 21 CLITGEN1_st329

-- o ——> 26 st1318 -- o ——> 24 st1314

both equivalents to the reduced FA in Fig. 1. Briefly, in the trace, each character in the
token is associated to a transition over an state in the FA, denoted by expressions of the form
xst*. When some of these states have a well defined meaning from a linguistic point of view,
they are denoted by a phrase indicating their functionality. In the example, the system has
used the following set of keywords: CLIT (by enclitic pronoun), IMP (by imperative), SING (by
singular), GEN (by gender), CONJ (by conjugation), and CORT (by courtesy). In this case, the
trace produced by the query let us check that the tagging is correct, and also validate that the
involved treatment units are working correctly.

| tenselo.atg fhome/galenasgalenadlexical/rules/work/samples/tenselol.atg
X
CLIT_IHP_SING2_st251 CLIT_IHP_SING22_st253 st1318
e 1 0 O
n st1121 CLITGEH2_st331
stl st431 st1626 st2874
@)
L ACCENT e
" CLIT_THP_COHJ1_st285 CLITGEN1_st329
Vi))
e 1 o
=LA CLIT_THP_CORT12_st279 st1314
i
|E‘J J i

Figure 1: Reduced FA for the query ténselo

3.2 Updating facilities

Our goal now is to provide a mechanism to verify the correctness of incremental developing
of taggers. This may be helpful to minimize the set of errors present in the new releases of
the system by assuring the compatibility with previous ones. The verification method we want
to advocate for is based on reductions of a global FA. These reductions collapse states of the
automaton to reach sizes reasonable enough to be outprinted and well understood. So, we can
center our attention only around relevant information that can be easily manipulated.

To illustrate this point, we assume a new version at the tagger have been implemented.
Despite of the increasing of power, the update has changed a correct pattern recognition in the
former release. Due to this, the word ténselo is not recognized by the new release. Our goal

is to detect these kinds of bugs in compile time.

A way to do that is to compare patterns. So, we can automatically take out them from the old
tagger® and verify whether they are present or not, in the new model. When this process deals
with the case of the pattern corresponding to ténselo, which we shall reference as pattern,
the verifier produces the following output:

@ obseqd (new-model, pattern);;

error outgoing labels:

no states in automaton-2 with same outgoing labels than states in itl
number of iteration(s): 1

False : Bool

!That we assume correct.

which indicates that it1 contains the list of problematic states. We can now see them:

@ show it1l;;
{6} : List of Integer

From here, we deduce that the fifth state in the path represents somewhere an erroneous option
in the new model. By showing the transitions in the pattern explored, we can visualize this
state as follows:

@ explore (new-model);;

State 0

stl

-t --> 1: st329

#75

State 5

st759

-- i --> 6: CLIT_IMP_SING22_st458

which locates the bug in the state st759 for the transition labeled i, as it is also shown in
Fig. 2. This puts into evidence that we have implemented a pattern recognition for ténsilo,
a word with no meaning in Spanish.

r'LI tensilo.atg Shome/galena/galenadlexical/rules/work/samples/tensilo.atg
j
skl s£329 st2018 =£2531 s£759 CLITGENZ _st278
(@) Py oy P . oy iy
t ACCENT e n $ i O st1654
CLIT_IHP_SIHGZ_st109 CLIT_IHP_SIHG22_st458 s
/

1 i =

Figure 2: Reduced FA for the query ténsilo

4 Experimental results

To illustrate performance we give both information on the current version of our analyzer, and
information on the evolution process we expect. As physical support for tests we have taken a
Sun SPARCStation 10.

Actually, we are able to reconize and tag the most common 4000 lemmas of Spanish. The
corresponding automaton has more than 32000 states and the average speed is 1400 words
tagged per second. Number of states in the automaton is high, but it will grow slowly because
main inflectional phenomena are already implemented. That is, the only task that remains
undone is the introduction of more and more stems, and it is checked that this process yields
an average increase of only 2 states for each new lemma. However, unfortunately, compilation
time can be very high. This is the cost you must pay when what you really want is high
performance. The only solution for this obstacle is to implement incremental building processes
for automata. This point is part of our future work.

In order to have a better idea of future sizes and times, we built several analyzers from a
great amount of patterns. These patterns were generated with a random process, but keeping
the same level of ambiguity as in Spanish words, and the results are in figure 3. These tests
show that the proposed architecture for the tagger presents a linear time and space complexity.

5 Conclusion

The design of tagging systems should respond to constraints of efficiency, safety and
maintenance that we have considered from a practical point of view.

50000 50000 50000
40000 40000 25000 wor ds 40000
30000 30000 tagging time 30000 n . .
si ze (seconds) conpilation tine
20000 20000 20000 (m nutes)
(states)

10000 10000 10000
1 1 1 ey | | | | |

1
65000 135000 205000 285000 365000 e 65 2 7 16 28 46

patterns
patterns
patterns

Figure 3: Experimental results

The choice of the FA model as operational formalism assures the computational efficiency.
Safety is guaranteed by the separation between this operational kernel, and the high-level
descriptive formalism.

However, one of the major services of every lexicon ought to be to provide as much information
as possible about errors, because of the complexity of actual implementations, and the natural
evolution suffered by these kinds of systems. The goal is to minimize the time dedicated to
debug the system. So, our discussion has a practical sense.

As an additional advantage, our proposal is based on the capability to reduce general FA’s.
This implies that it is independent of the particular implementation of the system, which solves
the problem of portability and reduces costs.

The described work is not closed. It represents only a first approach to the problem of
verification in tagging, but preliminary results seem to be promising and the operational
formalism well adapted to deal with more complex problems as to consider unrestricted error
recovery algorithms, and development of disambiguation techniques.

References

[1] K. Koskenniemi. Compilation of automata from morphological two-level rules. In Proc.
of the 5" Scandinavian Conference of Computational Linguistics, pages 143-149, Helsinki,
Finland, 1985.

[2] G. Ritchie. On the generative power of two-level morphological rules. In European Chapter
of the ACL, pages 51-57, Manchester, 1989.

[3] G. Ritchie, D. Pulman, Stephen, A.W. Black, and G.J Russell. Computational Morphology.
The MIT Press, Cambridge, Massachusetts, U.S.A., 1991.

[4] E. Roche and Y. Schabes. Deterministic part-of-speech tagging with finite-state transducers.
Computational Linguistics, 21(2):227-253, 1995.

